The Relationship Between Chironomids and Climate In

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Chironomids and Climate In The relationship between chironomids and climate in high latitude Eurasian lakes: implications for reconstructing Late Quaternary climate variability from subfossil chironomid assemblages in lake sediments from northern Russia. Angela Edith Self Department of Geography, UCL Thesis submitted for the degree of Doctor of Philosophy 1 Declaration I, Angela Self, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Angela Self January 2010 2 Abstract This thesis investigates climate variability during the Late Quaternary in northern Russia by analysis of subfossil Chironomid assemblages in lake sediment cores. The modern chironomid fauna was determined in surface- sediment samples from 94 lakes, located between 61° - 72°N and 52° - 131°E. The influence of chemical and physical environmental variables on the distribution and abundance of taxa was investigated using multivariate analysis and modelling of taxon responses. Chironomid distribution showed a statistically strong relationship to mean July air temperature and continentality, and inference models were developed to reconstruct these variables. Palaeoclimate reconstructions for the past 700 years are presented from lakes on the Putoran Plateau, western Siberia (68°N, 92°E). These reconstructions show that whilst July air temperatures have remained relatively stable over the last 50 years, continentality has declined, resulting in a longer growing season. The results also enabled the models to be validated against instrumental records. Reconstructions are then presented from lakes in north-east European Russia: Lake Kharinei, (67.36°N, 62.75°E) where sedimentation started approximately 12600 cal. yrs BP, and a mid-Holocene sequence (4500 – 6500 cal. yr BP) from VORK5 (67.86°N, 59.03°E). The chironomid-inferred reconstructions suggest the early Holocene was approximately 2°C warmer than present with a more continental climate. July air temperatures then declined but remained warmer than present until 6000 yrs BP. From approximately 6000 yrs BP, July temperatures declined and the climate became more continental, indicating a shift to short cool summers. Combined use of the July air temperature and continentality inference models enhances the explanatory power of the palaeoenvironmental reconstructions and helps to reconcile apparent discrepancies with other proxy records. The results improve our understanding of the nature and timing of climate change, such as the spatial extent of the Younger Dryas, in poorly-studied regions of northern Eurasia. 3 Table of contents Title ……………………………………………………………………….. 1 Declaration ………………………………………………………………. 2 Abstract …………………………………………………………………... 3 Table of contents ………………………………………………………… 4 List of figures .................................................................................... 11 List of tables ..................................................................................... 22 Glossary ........................................................................................... 28 Acknowledgements .......................................................................... 30 Chapter 1. Introduction……………………………………………….. 31 1.1. Introduction………………………………………………………………. 31 1.2. Mechanisms of climate change………………………………………… 32 1.2.1. External forcing…………………………………………………. 33 1.2.2. Internal forcing…………………………………………………… 35 1.2.3. Sensitivity of high latitude sites to climate change…………… 38 1.3. Late Quaternary climate variability in the northern hemisphere……. 38 1.3.1. Late Quaternary climate variability in northern Russia………. 42 1.3.2. Recent climate variability in northern Russia…………………. 44 1.3.3. Issues to be addressed…………………………………………. 46 1.4. Palaeoclimate reconstructions using proxy records…………………. 48 1.4.1. Lake sediments as archives of palaeoenvironmental records. 49 1.4.2. The selection of chironomids for this study…………………. 49 1.4.3. Chironomids as a proxy in palaeoenvironmental reconstructions…………………………………………………………… 51 1.5. Biology of chironomids…………………………………………………. 53 1.5.1. The chironomid life cycle and its adaptations to temperature. 53 1.5.2. Physiological adaptation of insects to arctic environments…. 56 1.5.3. Responses of insects to continentality………………………… 57 4 1.6. Scientific issues to be addressed in this thesis………………………. 58 1.7. Structure of the thesis…………………………………………………… 61 Chapter 2. Description of the study areas…………………………. 62 2.1. Introduction………………………………………………………………. 62 2.2. Selection of training set lakes in arctic and subarctic Russia………. 62 2.2.1. Pechora Basin and Komi Republic……………………………. 64 2.2.1.1. Previously studied sites used in thesis………………. 64 2.2.1.2. Vorkuta lakes…………………………………………… 65 2.2.1.3. Lakes from the Komi Republic………………………. 67 2.2.2. Igarka and Putorana Plateau…………………………………… 68 2.2.3. Lower Lena River and Lena delta lakes………………………. 71 2.2.4. Central Yakutia, Lena River……………………………………. 72 2.3. Physical and geological characteristics of the study areas…………. 74 2.4. Permafrost………………………………………………………………… 77 2.5. Weather and climate characteristics of the study areas……………. 79 2.5. Biological characteristics………………………………………………. 81 2.6. Human settlement………………………………………………………. 84 2.7. Summary…………………………………………………………………. 86 Chapter 3 Methods…………………………………………………. 88 3.1 Introduction………………………………………………………………. 88 3.2 Field methods……………………………………………………………. 88 3.2.1 Water chemistry…………………………………………………. 88 3.2.2 Collection of sediment cores from the study areas…………. 89 3.2.3 Collection of contemporary chironomid pupae………………. 92 3.2.4. Field descriptions………………………………………………… 93 3.3. Laboratory methods……………………………………………………. 94 3.3.1. Water chemistry…………………………………………………. 94 3.3.2. Analysis of sediment cores……………………………………. 94 3.3.2.1. Wet density, dry weight, loss-on-ignition and carbonate content of sediments………………………………. 94 3.3.2.2. Carbon and nitrogen isotopic composition…………. 94 3.3.2.3. Preparation of larval head capsules…………………. 95 5 3.3.3. Chironomid pupae………………………………………………. 97 3.3.4. Core chronologies………………………………………………. 97 3.3.4.1. Lead-210 dating………………………………………. 97 3.3.4.2. Radiocarbon dating…………………………………….. 99 3.3.5. Derivation of environmental variables…………………………. 100 3.3.6. Note on collection of primary data……………………………… 105 3.3.7. Secondary data…………………………………………………. 106 3.4. Numerical analysis………………………………………………………. 107 3.4.1. Transformation of data prior to analysis ………………………. 107 3.4.2. Exploratory data analysis………………………………………. 108 3.4.3. Species response models………………………………………. 109 3.4.4. Indirect and direct gradient analysis (Ordination and constrained ordination)…………………………………………………. 112 3.4.4.1. Principal Components Analysis (PCA)………………. 114 3.4.4.2. Correspondence Analysis (CA); Detrended Correspondence Analysis (DCA)……………………………… 115 3.4.4.3. Redundancy Analysis (RDA)…………………………. 115 3.4.4.4. Canonical Correspondence Analysis (CCA)………… 116 3.4.4.5. Analysis and presentation of results…………………. 116 3.4.5. Calibration and environmental reconstruction…………………. 117 3.4.5.1. Inference models………………………………………. 119 3.4.5.2. Analogue matching techniques………………………. 121 3.4.5.3. Down-core reconstruction of environmental variables122 3.4.5.4. Down-core ordination and zonation……………………122 3.5. Summary…………………………………………………………………. 123 Chapter 4. Factors influencing present-day chironomid distribution………………………………………………………………… 125 4.1 Introduction………………………………………………………………. 125 4.2. Russian surface sediment data-set……………………………………. 126 4.2.1. Environmental data………………………………………………. 126 4.2.2. Chironomid data ……………………………………………….... 137 4.2.3. Patterns of chironomid distribution …………………………….. 140 4.2.4. Species – environment relationships ………………………..... 142 6 4.3. Norwegian surface sediment data-set…………………………………. 148 4.3.1. Environmental data ……………………………………………… 148 4.3.2. Chironomid data …………………………………………………. 158 4.3.3. Patterns of chironomid distribution …………………………….. 162 4.3.4. Species – environment relationships ………………………….. 164 4.4. Combined Russian and Norwegian surface sediment data-sets…… 168 4.4.1. Environmental data ……………………………………………... 168 4.4.2. Patterns of chironomid distribution…………………………….. 176 4.4.3. Species – environment relationships………………………….. 179 4.5. Norwegian and Russian surface sediments with LOI data………… 186 4.5.1. Species – environment relationships ………………………….. 187 4.6. Discussion ………………………………………………………………….. 193 4.6.1. Patterns of chironomid distribution …………………………..... 193 4.6.2. Species - environment relationships ………………………….. 194 4.6.3. Implications for development of inference models …………… 196 Chapter 5. Taxonomic resolution and species responses………. 198 5.1. Introduction………………………………………………………………. 198 5.2. Examination of chironomid pupae…………………………………….. 198 5.2.1. Introduction ……………………………………………………… 199 5.2.2. Taxonomy………………………………………………………... 199 5.2.3. Comparison with larval assemblages from the surface Sediments ……………………………………………………………….. 203 5.2.4. Discussion ……………………………………………………….. 206 5.3. Species responses to significant environmental variables………….. 208 5.3.1. Species response to mean July air temperature …………….. 210 5.3.2. Species response to continentality…………………………….. 225 5.3.3. Species response to continentality and July air temperature . 239 5.4. Implications for the development of palaeoclimatic inference models246 Chapter 6 Development of the inference models………………… 248 6.1. Introduction…………………………………………………………....... 248 6.2. Russian CI-T models …………………………………………………… 249 6.2.1. CI-T model A
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • From Lake Sediments in British Columbia / by Ian Richard
    LATE-QUATERNARY PALAEOECOLOGY OF CHIRONOMIDAE (DIPTERA: INSECTA) FROM LAKE SEDIMENTS IN BRITISH COLUMBIA Ian Richard Walker B.Sc., Mount Allison University, 1980 M.Sc., University of Waterloo, 1982 THESIS SUBMIlTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Biological Sciences @ Ian Richard Walker 1988 SIMON FRASER UNIVERSITY March 1988 All rights -eserved. This work may not be reproduced in whole or in part, by photocopy or other means, .without permission of the author. APPROVAL Name : Ian Richard Walker Degree : Doctor of Philosophy Title of Thesis: LATE-QUATERNARY PAWIlEOECOLOGY OF CHIRONOMIDAE (D1PTERA:INSECTA) FROM LAKE SEDIMENTS IN BRITISH COLUMBIA Examining Comnittee: Chairman: Dr. R.C. Brooke, Associate Professor Dr. R .W . hlathewes , Professor, Senior Supervisor professor T. ~inspisq,~merd- J.G. ~tocX~%$ ~e~artmentof and Oceans, West Vancouver Dr. P. Belton, Associate Professor, Public Examiner Dr. R.J. Hebda, Royal British Columbia Museum, Victoria, Public Examiner Dr. D.R. Oliver, Biosystematics Research Centre, Central Experimental Farm, Agriculture Canada, Ottawa, External Examiner Date Approved ern& 23, /988 PARTIAL COPYRIGHT LICENSE I hereby grant to Slmn Fraser Unlverslty the right to lend my thesis, proJect or extended essay (the :It10 of whlch Is shown below1 to users ot the Slmon Fraser Unlverslty ~lbrlr~,and to make part la1 or single copies only for such users or in response to a request from the 1 i brary of any other unlversl ty, or other educat lona l Insti tutIon, on its own behalf or for one of Its users. I further agree that permission for multiple copying of thls work for scholarly purposes may be granted by me or the Dean of Graduate Studies.
    [Show full text]
  • Download The
    AN ECOLOGICAL STUDY OF SOME OF THE CHIRONOMIDAE INHABITING A SERIES OF SALINE LAKES IN CENTRAL BRITISH COLUMBIA WITH SPECIAL REFERENCE TO CHIRONOMUS TENTANS FABRICIUS by Robert Alexander Cannings BSc. Hons., University of British Columbia, 1970 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Zoology We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA May, 1973 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver 8, Canada Date ii ABSTRACT This thesis is concerned with a study of the Chironomidae occuring in a saline lake series in central British Columbia. It describes the ecological distribution of species, their abundance, phenology and interaction, with particular attention being paid to Chironomus tentans. Emphasis is placed on the species of Chironomus that coexist in these lakes and a further analysis is made of the chromo• some inversion frequencies in C. tentans. Of the thirty-four species represented by identifiable adults in the study, eleven species have not been previously reported in British Columbia, five are new records for Canada and seven species are new to science.
    [Show full text]
  • Structure, Condition, and Prospects of Electrical Grids in the Republic of Sakha (Yakutia)
    E3S Web of Conferences 124, 04001 (2019) https://doi.org/10.1051/e3sconf/201912404001 SES-2019 Structure, condition, and prospects of electrical grids in the Republic of Sakha (Yakutia) N. S. Volotkovskaya1, N. N. Kugusheva1,2, A. S. Semenov1,2,*, I. A. Yakushev1,2, S. N. Pavlova1,3, and O. V. Kolosova4 1 North-Eastern Federal University n.a. M.K. Ammosov, Polytechnic Institute (branch) in Mirny, Sakha (Yakutia), Russia 2 North-Eastern Federal University n.a. M.K. Ammosov, Institute of Mathematics and Information Science, Sakha (Yakutia), Russia 3 North-Eastern Federal University n.a. M.K. Ammosov, Institute of Finances and Economics, Sakha (Yakutia), Russia 4 Peter the Great St. Petersburg Polytechnic University, St Petersburg, Russia Abstract. The paper analyzes the condition of electrical grids in the west of the Republic of Sakha (Yakutia); data sampled for the last 10 years. It demonstrates the geographic location of grids, which defines the scale of the study. Technical indicators are presented for 10 years; they reflect an increase in the fixed assets. The paper derives mathematical models of the wear of transmission equipment used in the western grids. It proves that the condition of equipment will deteriorate further unless its maintenance is properly funded. The paper analyzes the prospects of electrical grids in the Republic of Sakha (Yakutia). It presents a program for local energy optimization. The costs associated with five alternative development scenarios are calculated and presented in a tabular format. 1 Introduction 30% of the total heat in the Republic. HPPs account for 37.5% of the installed capacity.
    [Show full text]
  • The Fluvial Geochemistry of the Rivers of Eastern Siberia: I. Tributaries Of
    Geochimica et Cosmochimica Acta, Vol. 62, No. 10, pp. 1657–1676, 1998 Copyright © 1998 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/98 $19.00 1 .00 PII S0016-7037(98)00107-0 The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton 1, 1 2 1 YOUNGSOOK HUH, *MAI-YIN TSOI, ALEXANDR ZAITSEV, and JOHN M. EDMONd 1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Laboratory of Erosion and Fluvial Processes, Department of Geography, Moscow State University, Moscow, Russia (Received June 11, 1997; accepted in revised form February 12, 1998) ABSTRACT—The response of continental weathering rates to changing climate and atmospheric PCO2 is of considerable importance both to the interpretation of the geological sedimentary record and to predictions of the effects of future anthropogenic influences. While comprehensive work on the controlling mechanisms of contemporary chemical and mechanical weathering has been carried out in the tropics and, to a lesser extent, in the strongly perturbed northern temperate latitudes, very little is known about the peri-glacial environments in the subarctic and arctic. Thus, the effects of climate, essentially temperature and runoff, on the rates of atmospheric CO2 consumption by weathering are not well quantified at this climatic extreme. To remedy this lack a comprehensive survey has been carried out of the geochemistry of the large rivers of Eastern Siberia, the Lena, Yana, Indigirka, Kolyma, Anadyr, and numerous lesser streams which drain a pristine, high-latitude region that has not experienced the pervasive effects of glaciation and subsequent anthropogenic impacts common to western Eurasia and North America.
    [Show full text]
  • Quantifying the Northward Spread of Ticks (Ixodida) As Climate Warms in Northern Russia
    atmosphere Article Quantifying the Northward Spread of Ticks (Ixodida) as Climate Warms in Northern Russia Leonid N. Vladimirov 1, Grigory N. Machakhtyrov 1, Varvara A. Machakhtyrova 1 , Albertus S. Louw 2 , Netrananda Sahu 3 , Ali P. Yunus 4 and Ram Avtar 2,5,* 1 Yakut Scientific Research Institute of Agriculture, Yakutsk 677001, Russia; [email protected] (L.N.V.); [email protected] (G.N.M.); [email protected] (V.A.M.) 2 Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan; [email protected] 3 Department of Geography, Delhi School of Economics, University of Delhi, Delhi 110007, India; [email protected] 4 Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; [email protected] 5 Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan * Correspondence: [email protected]; Tel.: +81-011-706-2261 Abstract: Climate change is affecting human health worldwide. In particular, changes to local and global climate parameters influence vector and water-borne diseases like malaria, dengue fever, and tick-borne encephalitis. The Republic of Sakha in northern Russia is no exception. Long-term trends of increasing annual temperatures and thawing permafrost have corresponded with the northward range expansion of tick-species in the Republic. Indigenous communities living in these remote areas may be severely affected by human and livestock diseases introduced by disease vectors like ticks. To better understand the risk of vector-borne diseases in Sakha, we aimed to describe the Citation: Vladimirov, L.N.; increase and spatial spread of tick-bite cases in the Republic.
    [Show full text]
  • CHIRONOMUS Newsletter on Chironomidae Research
    CHIRONOMUS Newsletter on Chironomidae Research No. 25 ISSN 0172-1941 (printed) 1891-5426 (online) November 2012 CONTENTS Editorial: Inventories - What are they good for? 3 Dr. William P. Coffman: Celebrating 50 years of research on Chironomidae 4 Dear Sepp! 9 Dr. Marta Margreiter-Kownacka 14 Current Research Sharma, S. et al. Chironomidae (Diptera) in the Himalayan Lakes - A study of sub- fossil assemblages in the sediments of two high altitude lakes from Nepal 15 Krosch, M. et al. Non-destructive DNA extraction from Chironomidae, including fragile pupal exuviae, extends analysable collections and enhances vouchering 22 Martin, J. Kiefferulus barbitarsis (Kieffer, 1911) and Kiefferulus tainanus (Kieffer, 1912) are distinct species 28 Short Communications An easy to make and simple designed rearing apparatus for Chironomidae 33 Some proposed emendations to larval morphology terminology 35 Chironomids in Quaternary permafrost deposits in the Siberian Arctic 39 New books, resources and announcements 43 Finnish Chironomidae 47 Chironomini indet. (Paratendipes?) from La Selva Biological Station, Costa Rica. Photo by Carlos de la Rosa. CHIRONOMUS Newsletter on Chironomidae Research Editors Torbjørn EKREM, Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Peter H. LANGTON, 16, Irish Society Court, Coleraine, Co. Londonderry, Northern Ireland BT52 1GX The CHIRONOMUS Newsletter on Chironomidae Research is devoted to all aspects of chironomid research and aims to be an updated news bulletin for the Chironomidae research community. The newsletter is published yearly in October/November, is open access, and can be downloaded free from this website: http:// www.ntnu.no/ojs/index.php/chironomus. Publisher is the Museum of Natural History and Archaeology at the Norwegian University of Science and Technology in Trondheim, Norway.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Forests Warranting Further Consideration As Potential World
    Forest Protected Areas Warranting Further Consideration as Potential WH Forest Sites: Summaries from Various and Thematic Regional Analyses (Compendium produced by Marc Patry, for the proceedings of the 2nd World Heritage Forest meeting, held at Nancy, France, March 11-13, 2005) Four separate initiatives have been carried out in the past 10 years in an effort to help guide the process of identifying and nominating new WH Forest sites. The first, carried out by Thorsell and Sigaty (1997), addresses forests worldwide, and was developed based on the authors’ shared knowledge of protected forests worldwide. The second focuses exclusively on tropical forests and was assembled by the participants at the 1998 WH Forest meeting in Berastagi, Indonesia (CIFOR, 1999). A third initiative consists of potential boreal forest sites developed by the participants to an expert meeting on boreal forests, held in St. Petersberg in 2003. Finally, a fourth, carried out jointly between UNEP and IUCN applied a more systematic approach (IUCN, 2004). Though aiming at narrowing the field of potential candidate sites, these initiatives do not automatically imply that all of the listed forest areas would meet the criteria for inscription on the WH List, and conversely, nor do they imply that any site left off the list would not meet these criteria. Since these lists were developed, several of the proposed sites have been inscribed on the WH List, while others have been the subject of nominations, but were not inscribed, for various reasons. The lists below are reproduced here in an effort to facilitate access to this information and to guide future nomination initiatives.
    [Show full text]
  • Putorana Plateau - 2014 Conservation Outlook Assessment (Archived)
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Putorana Plateau - 2014 Conservation Outlook Assessment (archived) IUCN Conservation Outlook Assessment 2014 (archived) Finalised on 25 May 2014 Please note: this is an archived Conservation Outlook Assessment for Putorana Plateau. To access the most up-to-date Conservation Outlook Assessment for this site, please visit https://www.worldheritageoutlook.iucn.org. Putorana Plateau عقوملا تامولعم Country: Russian Federation Inscribed in: 2010 Criteria: (vii) (ix) This site coincides with the area of the Putoransky State Nature Reserve, and is located in the central part of the Putorana Plateau in northern Central Siberia. It is situated about 100 km north of the Arctic Circle. The part of the plateau inscribed on the World Heritage List harbours a complete set of subarctic and arctic ecosystems in an isolated mountain range, including pristine taiga, forest tundra, tundra and arctic desert systems, as well as untouched cold-water lake and river systems. A major reindeer migration route crosses the property, which represents an exceptional, large-scale and increasingly rare natural phenomenon. © UNESCO صخلملا 2014 Conservation Outlook Good Because of its remoteness, inaccessibility, low population density and low level of infrastructure development (with resulting limited anthropogenic threats), as well as its overall effective protection and management regime, this property has one of the best conservation outlooks of all natural World Heritage sites in the Russian Federation.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • Checklist of the Family Chironomidae (Diptera) of Finland
    A peer-reviewed open-access journal ZooKeys 441: 63–90 (2014)Checklist of the family Chironomidae (Diptera) of Finland 63 doi: 10.3897/zookeys.441.7461 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Checklist of the family Chironomidae (Diptera) of Finland Lauri Paasivirta1 1 Ruuhikoskenkatu 17 B 5, FI-24240 Salo, Finland Corresponding author: Lauri Paasivirta ([email protected]) Academic editor: J. Kahanpää | Received 10 March 2014 | Accepted 26 August 2014 | Published 19 September 2014 http://zoobank.org/F3343ED1-AE2C-43B4-9BA1-029B5EC32763 Citation: Paasivirta L (2014) Checklist of the family Chironomidae (Diptera) of Finland. In: Kahanpää J, Salmela J (Eds) Checklist of the Diptera of Finland. ZooKeys 441: 63–90. doi: 10.3897/zookeys.441.7461 Abstract A checklist of the family Chironomidae (Diptera) recorded from Finland is presented. Keywords Finland, Chironomidae, species list, biodiversity, faunistics Introduction There are supposedly at least 15 000 species of chironomid midges in the world (Armitage et al. 1995, but see Pape et al. 2011) making it the largest family among the aquatic insects. The European chironomid fauna consists of 1262 species (Sæther and Spies 2013). In Finland, 780 species can be found, of which 37 are still undescribed (Paasivirta 2012). The species checklist written by B. Lindeberg on 23.10.1979 (Hackman 1980) included 409 chironomid species. Twenty of those species have been removed from the checklist due to various reasons. The total number of species increased in the 1980s to 570, mainly due to the identification work by me and J. Tuiskunen (Bergman and Jansson 1983, Tuiskunen and Lindeberg 1986).
    [Show full text]