The Relationship Between Chironomids and Climate In
Total Page:16
File Type:pdf, Size:1020Kb
The relationship between chironomids and climate in high latitude Eurasian lakes: implications for reconstructing Late Quaternary climate variability from subfossil chironomid assemblages in lake sediments from northern Russia. Angela Edith Self Department of Geography, UCL Thesis submitted for the degree of Doctor of Philosophy 1 Declaration I, Angela Self, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Angela Self January 2010 2 Abstract This thesis investigates climate variability during the Late Quaternary in northern Russia by analysis of subfossil Chironomid assemblages in lake sediment cores. The modern chironomid fauna was determined in surface- sediment samples from 94 lakes, located between 61° - 72°N and 52° - 131°E. The influence of chemical and physical environmental variables on the distribution and abundance of taxa was investigated using multivariate analysis and modelling of taxon responses. Chironomid distribution showed a statistically strong relationship to mean July air temperature and continentality, and inference models were developed to reconstruct these variables. Palaeoclimate reconstructions for the past 700 years are presented from lakes on the Putoran Plateau, western Siberia (68°N, 92°E). These reconstructions show that whilst July air temperatures have remained relatively stable over the last 50 years, continentality has declined, resulting in a longer growing season. The results also enabled the models to be validated against instrumental records. Reconstructions are then presented from lakes in north-east European Russia: Lake Kharinei, (67.36°N, 62.75°E) where sedimentation started approximately 12600 cal. yrs BP, and a mid-Holocene sequence (4500 – 6500 cal. yr BP) from VORK5 (67.86°N, 59.03°E). The chironomid-inferred reconstructions suggest the early Holocene was approximately 2°C warmer than present with a more continental climate. July air temperatures then declined but remained warmer than present until 6000 yrs BP. From approximately 6000 yrs BP, July temperatures declined and the climate became more continental, indicating a shift to short cool summers. Combined use of the July air temperature and continentality inference models enhances the explanatory power of the palaeoenvironmental reconstructions and helps to reconcile apparent discrepancies with other proxy records. The results improve our understanding of the nature and timing of climate change, such as the spatial extent of the Younger Dryas, in poorly-studied regions of northern Eurasia. 3 Table of contents Title ……………………………………………………………………….. 1 Declaration ………………………………………………………………. 2 Abstract …………………………………………………………………... 3 Table of contents ………………………………………………………… 4 List of figures .................................................................................... 11 List of tables ..................................................................................... 22 Glossary ........................................................................................... 28 Acknowledgements .......................................................................... 30 Chapter 1. Introduction……………………………………………….. 31 1.1. Introduction………………………………………………………………. 31 1.2. Mechanisms of climate change………………………………………… 32 1.2.1. External forcing…………………………………………………. 33 1.2.2. Internal forcing…………………………………………………… 35 1.2.3. Sensitivity of high latitude sites to climate change…………… 38 1.3. Late Quaternary climate variability in the northern hemisphere……. 38 1.3.1. Late Quaternary climate variability in northern Russia………. 42 1.3.2. Recent climate variability in northern Russia…………………. 44 1.3.3. Issues to be addressed…………………………………………. 46 1.4. Palaeoclimate reconstructions using proxy records…………………. 48 1.4.1. Lake sediments as archives of palaeoenvironmental records. 49 1.4.2. The selection of chironomids for this study…………………. 49 1.4.3. Chironomids as a proxy in palaeoenvironmental reconstructions…………………………………………………………… 51 1.5. Biology of chironomids…………………………………………………. 53 1.5.1. The chironomid life cycle and its adaptations to temperature. 53 1.5.2. Physiological adaptation of insects to arctic environments…. 56 1.5.3. Responses of insects to continentality………………………… 57 4 1.6. Scientific issues to be addressed in this thesis………………………. 58 1.7. Structure of the thesis…………………………………………………… 61 Chapter 2. Description of the study areas…………………………. 62 2.1. Introduction………………………………………………………………. 62 2.2. Selection of training set lakes in arctic and subarctic Russia………. 62 2.2.1. Pechora Basin and Komi Republic……………………………. 64 2.2.1.1. Previously studied sites used in thesis………………. 64 2.2.1.2. Vorkuta lakes…………………………………………… 65 2.2.1.3. Lakes from the Komi Republic………………………. 67 2.2.2. Igarka and Putorana Plateau…………………………………… 68 2.2.3. Lower Lena River and Lena delta lakes………………………. 71 2.2.4. Central Yakutia, Lena River……………………………………. 72 2.3. Physical and geological characteristics of the study areas…………. 74 2.4. Permafrost………………………………………………………………… 77 2.5. Weather and climate characteristics of the study areas……………. 79 2.5. Biological characteristics………………………………………………. 81 2.6. Human settlement………………………………………………………. 84 2.7. Summary…………………………………………………………………. 86 Chapter 3 Methods…………………………………………………. 88 3.1 Introduction………………………………………………………………. 88 3.2 Field methods……………………………………………………………. 88 3.2.1 Water chemistry…………………………………………………. 88 3.2.2 Collection of sediment cores from the study areas…………. 89 3.2.3 Collection of contemporary chironomid pupae………………. 92 3.2.4. Field descriptions………………………………………………… 93 3.3. Laboratory methods……………………………………………………. 94 3.3.1. Water chemistry…………………………………………………. 94 3.3.2. Analysis of sediment cores……………………………………. 94 3.3.2.1. Wet density, dry weight, loss-on-ignition and carbonate content of sediments………………………………. 94 3.3.2.2. Carbon and nitrogen isotopic composition…………. 94 3.3.2.3. Preparation of larval head capsules…………………. 95 5 3.3.3. Chironomid pupae………………………………………………. 97 3.3.4. Core chronologies………………………………………………. 97 3.3.4.1. Lead-210 dating………………………………………. 97 3.3.4.2. Radiocarbon dating…………………………………….. 99 3.3.5. Derivation of environmental variables…………………………. 100 3.3.6. Note on collection of primary data……………………………… 105 3.3.7. Secondary data…………………………………………………. 106 3.4. Numerical analysis………………………………………………………. 107 3.4.1. Transformation of data prior to analysis ………………………. 107 3.4.2. Exploratory data analysis………………………………………. 108 3.4.3. Species response models………………………………………. 109 3.4.4. Indirect and direct gradient analysis (Ordination and constrained ordination)…………………………………………………. 112 3.4.4.1. Principal Components Analysis (PCA)………………. 114 3.4.4.2. Correspondence Analysis (CA); Detrended Correspondence Analysis (DCA)……………………………… 115 3.4.4.3. Redundancy Analysis (RDA)…………………………. 115 3.4.4.4. Canonical Correspondence Analysis (CCA)………… 116 3.4.4.5. Analysis and presentation of results…………………. 116 3.4.5. Calibration and environmental reconstruction…………………. 117 3.4.5.1. Inference models………………………………………. 119 3.4.5.2. Analogue matching techniques………………………. 121 3.4.5.3. Down-core reconstruction of environmental variables122 3.4.5.4. Down-core ordination and zonation……………………122 3.5. Summary…………………………………………………………………. 123 Chapter 4. Factors influencing present-day chironomid distribution………………………………………………………………… 125 4.1 Introduction………………………………………………………………. 125 4.2. Russian surface sediment data-set……………………………………. 126 4.2.1. Environmental data………………………………………………. 126 4.2.2. Chironomid data ……………………………………………….... 137 4.2.3. Patterns of chironomid distribution …………………………….. 140 4.2.4. Species – environment relationships ………………………..... 142 6 4.3. Norwegian surface sediment data-set…………………………………. 148 4.3.1. Environmental data ……………………………………………… 148 4.3.2. Chironomid data …………………………………………………. 158 4.3.3. Patterns of chironomid distribution …………………………….. 162 4.3.4. Species – environment relationships ………………………….. 164 4.4. Combined Russian and Norwegian surface sediment data-sets…… 168 4.4.1. Environmental data ……………………………………………... 168 4.4.2. Patterns of chironomid distribution…………………………….. 176 4.4.3. Species – environment relationships………………………….. 179 4.5. Norwegian and Russian surface sediments with LOI data………… 186 4.5.1. Species – environment relationships ………………………….. 187 4.6. Discussion ………………………………………………………………….. 193 4.6.1. Patterns of chironomid distribution …………………………..... 193 4.6.2. Species - environment relationships ………………………….. 194 4.6.3. Implications for development of inference models …………… 196 Chapter 5. Taxonomic resolution and species responses………. 198 5.1. Introduction………………………………………………………………. 198 5.2. Examination of chironomid pupae…………………………………….. 198 5.2.1. Introduction ……………………………………………………… 199 5.2.2. Taxonomy………………………………………………………... 199 5.2.3. Comparison with larval assemblages from the surface Sediments ……………………………………………………………….. 203 5.2.4. Discussion ……………………………………………………….. 206 5.3. Species responses to significant environmental variables………….. 208 5.3.1. Species response to mean July air temperature …………….. 210 5.3.2. Species response to continentality…………………………….. 225 5.3.3. Species response to continentality and July air temperature . 239 5.4. Implications for the development of palaeoclimatic inference models246 Chapter 6 Development of the inference models………………… 248 6.1. Introduction…………………………………………………………....... 248 6.2. Russian CI-T models …………………………………………………… 249 6.2.1. CI-T model A