Relación Entre El Tamaño Celular

Total Page:16

File Type:pdf, Size:1020Kb

Relación Entre El Tamaño Celular Ilustración de la portada por Diana Toledo, Berlín 2011. TESIS DOCTORAL Relación entre el tamaño celular, la abundancia y el metabolismo en el fitoplancton marino Relationship between cell size, abundance and metabolic rate in marine phytoplankton Memoria presentada por María Huete Ortega para optar al grado de Doctor por la Universidad de Vigo Emilio Marañón Sainz, profesor titular del Departamento de Ecología y Biología Animal de la Universidad de Vigo, HACE CONSTAR que la presente memoria, titulada “Relación entre el tamaño celular, la abundancia y el metabolismo en el fitoplancton marino”, presentada por la Licenciada María Huete Ortega para optar al grado de Doctor por la Universidad de Vigo, ha sido realizada bajo mi dirección, cumpliendo con las condiciones exigidas para su presentación, la cual autorizo. Para que así conste a efectos oportunos firmo la presente en Vigo, a 31 de Enero de 2011. Fdo. Emilio Marañón Sainz Director de la Tesis Doctoral Fdo. Mª Jesús Iglesias Briones Directora del Departamento de Ecología y Biología Animal Universidad de Vigo Agradecimientos Érase una vez…, no…, así no..., comenzar los agradecimientos de esta tesis como si fuera un cuento no sería apropiado ¿no? Aunque…bien pensado, ¿acaso no lo es al final? Al fin y al cabo es la consumación de un trabajo de cinco años, pero también lo es de una carrera académica que se inició cuando tenía ¿Cuántos? ¿diez? ¿catorce? ¿dieciocho?...y de toda una vida de toma de decisiones, buenas o malas da igual, que al final me han llevado a este punto, a este aquí y ahora, en el que me paro, me bajo de la tierra que da vueltas y miro hacia atrás, uniendo los puntos, uno a uno hasta que llego al mismo instante en que comenzó todo. Y es cuando una se pregunta ¿y dónde comenzó? Sinceramente, ni idea. No sé por qué un buen día se me ocurrió que quería hacer Biología Marina cuando fuese mayor y tampoco es plan aquí de contar la historia de mi vida. Así que, centrándonos un poco, vayamos a uno de esos eventos aislados que tanto definieron lo que soy ahora y dónde estoy. Sí, imaginémonos entonces un día soleado, de esos de comienzos de primavera en Madrid, cuando la brisa sopla trayendo la frescura de las montañas y el olor de las flores recién nacidas. Imaginemos un césped verde, todavía no excesivamente secado por el sol, y dos chavales, llenos de sueños, cargados de libros y tirados cual lagartijas, mirando hacia el futuro durante unos instantes. Uno de ellos era yo, por supuesto, y el otro era Javi, al que, sin ninguna duda, le debo ese primer comienzo. Por tanto, bicho, para ti va este primer agradecimiento. Porque, sin ti, no habría tenido ni el valor, ni la decisión de liarme la manta a la cabeza, subirme al coche de mi madre y recorrerme 600 kilómetros de carretera hasta una ciudad húmeda, antigua, llena de voces y de historia, y comenzar a realizar el sueño que llevaba siendo mío desde que tenía uso de razón. No fue fácil, eso desde luego, e incluso a veces habré lamentado haber cogido ese camino por diversas razones, pero al final, reflexionando, no me arrepiento. Esta vida va de aprender y mejorar, y ser mejores personas, y todo eso lo hice en Santiago durante esos dos años, y desde luego, sin ti no podría haberlo superado. Y la carrera pasó y, tal y como ocurre ahora, nos enfrentamos al abismo del ¿y ahora qué? Siguiente parada en la carretera de la vida, siguiente punto a unir. Y, una vez más, fuiste tú, Javi el que me ayudaste en la decisión. Una vez más, superando obstáculos y rodeando vayas, apostamos por nuestros sueños y por nuestro futuro juntos. Y, tras mucho mail y meditación, aquí nos instalamos, en esta terra gallega, verde y picuda, en la que ya llevamos viviendo 6 años. Seis años de lecciones, de alegrías y batallas ganadas juntos, como el equipo que somos. Gracias por hacer todo esto posible. Por apoyarme paso a paso, en los comienzos, en las ausencias, durante las estancias, por mail, por teléfono, en casa, por cuestionar, por luchar, por creer en mí y por caminar conmigo paso a paso, de punto en punto con paciencia y decisión. Realmente, sin ti, creo que esta tesis no sería lo que es porque habría terminado volando por la ventana, entre otras cosas. Por supuesto, también tengo mucho que agradecer a mis padres que, como siempre, me apoyaron en todas mis locuras y me ayudaron a llegar hasta aquí. A ti, mamá, te debo de agradecer el haber aprendido a perseverar, a no rendirme, a ser responsable, a coger el toro por los cuernos y tirar para adelante. Gracias por haberte esforzado tanto y haber estado siempre a mi lado y haberme permitido alcanzar mis sueños. Y a ti papá, te debo ese lado imaginativo de mí que sueña despierto y se divierte creando e inventando. Gracias por nuestras conversaciones sobre ciencia ficción cuando era pequeña, que siempre recordaré como un preciado tesoro. Gracias también a los dos por estar ahí, a pesar de que no llame todo lo que os gustaría y no me veáis muy a menudo, por haberme traído el calor de mi familia hasta estas tierras gallegas y no permitirme olvidar de dónde vengo y a dónde voy. Igualmente, gracias a mis hermanos, que en estos años han pasado de ser sólo eso, mis hermanos, a convertirse en mis mejores amigos. Os quiero, y saber que puedo contar con vosotros siempre es una de las más maravillosas certezas que podría tener en mi vida. A ti, James, bienvenido a la familia. Gracias también a mi otra familia, la adoptiva. Gracias Jesús y Blanca por apoyarnos a Javi y a mí en nuestra aventura norteña. Gracias por acogerme entre vosotros como si fuera una más. Gracias también a la pequeña duende, y a Mario, por acosarnos a visitas cuando podéis y hacernos más amena nuestra estancia aquí. Os echamos mucho de menos, así que venir siempre que queráis, siempre estaremos con los brazos abiertos, vayamos donde vayamos. Y retomando ese punto esencial que fue la decisión de comenzar esta tesis, mi más sincero agradecimiento es para Emilio, que a lo largo de estos años no sólo ha sido mi jefe sino también mi mentor. Aún recuerdo el día que, nerviosa, entré en tu despacho para decirte que quería hacer la tesis. Obviamente, no tenía mucha idea de en qué me estaba metiendo y tampoco sabía mucho sobre el tema en sí, por no hablar de que era la primera vez que aparecía por allí. Pero aun así, me escuchaste paciente y me diste una oportunidad. Gracias por confiar en mí entonces y por haberlo hecho desde entonces, ayudándome a formarme profesional y académicamente y ser mi fuente de inspiración. De ti, Emilio, he aprendido muchas cosas, tantas que darían para una larga lista, pero sobre todas ellas destacaría una. Nunca olvidaré el momento en el que, durante esa primera entrevista, me confesaste que realmente, para aquellos a los que realmente les gusta investigar, lo de menos es el tema y lo importante es el hecho en sí de cuestionar, de profundizar, de luchar por encontrar la solución. Ese comentario se me gravó a fuego en la mente y, con el tiempo, ha terminado por confirmarse. Pues aunque durante estos años me ha llegado a apasionar el scaling o la macroecología, si soy sincera creo que investigar cualquier otro tema me parecería igualmente interesante. Y esa certeza creo que me acompañará allá donde vaya a partir de ahora. Desde el punto de vista profesional también mi más especial agradecimiento es para Pedro, sin el cual habría estado bastante perdida en mis primeros pasos por la vida y milagros del scaling. Gracias por tu paciencia y por contestar a mis más absurdas preguntas con tu característica campechanería zaragozana. Gracias también a Eva Teira por ayudarme en el labo, apoyarme todos estos años y permitirme participar en su proyecto ADDEX. Mi más sincero agradecimiento también a Manuel Varela por ser mi segundo mentor en esos primeros años y ayudarme a desentrañar el lío de la base de datos de la Radial. Gracias también, Manuel, por tus historias y divertidas anécdotas que tantas reuniones, comidas y congresos han amenizado. Gracias a Antonio Bode por sus consejos durante el trabajo de la Radial. Gracias a Ale y Laura, de Gijón, por tener paciencia a la hora de revisar una y otra vez los datos de citometría y soportar mis constantes preguntas. Sin vosotras, realmente, ninguno de los espectros que hecho estos años habría visto el sol. Gracias a Bea, por poner a mi disposición sus conocimientos de oceanografía, a Bernardino por su apoyo estadístico y a Cris por guiarme en la fisiología del fitoplancton. Gracias también a todas aquellas personas que me he ido encontrado a lo largo de estos años durante el desarrollo de mi trabajo y que de alguna forma han ayudado a su consecución. A Jaime Rodríguez, Paco, José María y Andy por recibirme tan cordialmente en el Departamento de Ecología de Málaga y abrirme los ojos al mundo de los espectros. Gracias a Débora Iglesias por darme la oportunidad de iniciarme en el mundo de la ecología molecular en el National Oceanography Centre of Southampton y a John Gittins por guiarme en el camino, poniendo a mi disposición todos sus conocimientos y ayuda. Un especial reconocimiento se merecen también todas aquellas personas que han vivido y trabajado conmigo durante las campañas Carpos, Trynitrop y Aselva.
Recommended publications
  • Microbial Community and Geochemical Analyses of Trans-Trench Sediments for Understanding the Roles of Hadal Environments
    The ISME Journal (2020) 14:740–756 https://doi.org/10.1038/s41396-019-0564-z ARTICLE Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments 1 2 3,4,9 2 2,10 2 Satoshi Hiraoka ● Miho Hirai ● Yohei Matsui ● Akiko Makabe ● Hiroaki Minegishi ● Miwako Tsuda ● 3 5 5,6 7 8 2 Juliarni ● Eugenio Rastelli ● Roberto Danovaro ● Cinzia Corinaldesi ● Tomo Kitahashi ● Eiji Tasumi ● 2 2 2 1 Manabu Nishizawa ● Ken Takai ● Hidetaka Nomaki ● Takuro Nunoura Received: 9 August 2019 / Revised: 20 November 2019 / Accepted: 28 November 2019 / Published online: 11 December 2019 © The Author(s) 2019. This article is published with open access Abstract Hadal trench bottom (>6000 m below sea level) sediments harbor higher microbial cell abundance compared with adjacent abyssal plain sediments. This is supported by the accumulation of sedimentary organic matter (OM), facilitated by trench topography. However, the distribution of benthic microbes in different trench systems has not been well explored yet. Here, we carried out small subunit ribosomal RNA gene tag sequencing for 92 sediment subsamples of seven abyssal and seven hadal sediment cores collected from three trench regions in the northwest Pacific Ocean: the Japan, Izu-Ogasawara, and fi 1234567890();,: 1234567890();,: Mariana Trenches. Tag-sequencing analyses showed speci c distribution patterns of several phyla associated with oxygen and nitrate. The community structure was distinct between abyssal and hadal sediments, following geographic locations and factors represented by sediment depth. Co-occurrence network revealed six potential prokaryotic consortia that covaried across regions. Our results further support that the OM cycle is driven by hadal currents and/or rapid burial shapes microbial community structures at trench bottom sites, in addition to vertical deposition from the surface ocean.
    [Show full text]
  • OCEANS ´09 IEEE Bremen
    11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education.
    [Show full text]
  • Impacts of Climate Change on the Occurrence of Harmful Algal Blooms
    Office of Water EPA 820-S-13-001 MC 4304T May 2013 Impacts of Climate Change on the Occurrence of Harmful Algal Blooms Summary Background Climate change is predicted to change many Algae occur naturally in marine and fresh waters. environmental conditions that could affect the Under favorable conditions that include adequate natural properties of fresh and marine waters both in light availability, warm waters, and high nutrient the US and worldwide. Changes in these factors levels, algae can rapidly grow and multiply causing could favor the growth of harmful algal blooms and “blooms.” Blooms of algae can cause damage to habitat changes such that marine HABs can invade aquatic environments by blocking sunlight and and occur in freshwater. An increase in the depleting oxygen required by other aquatic occurrence and intensity of harmful algal blooms organisms, restricting their growth and survival. may negatively impact the environment, human Some species of algae, including golden and red health, and the economy for communities across the algae and certain types of cyanobacteria, can produce US and around the world. The purpose of this fact potent toxins that can cause adverse health effects to sheet is to provide climate change researchers and wildlife and humans, such as damage to the liver and decision–makers a summary of the potential impacts nervous system. When algal blooms impair aquatic of climate change on harmful algal blooms in ecosystems or have the potential to affect human freshwater and marine ecosystems. Although much health, they are known as harmful algal blooms of the evidence presented in this fact sheet suggests (HABs).
    [Show full text]
  • Ocean Circulation and Climate: an Overview
    ocean-climate.org Bertrand Delorme Ocean Circulation and Yassir Eddebbar and Climate: an Overview Ocean circulation plays a central role in regulating climate and supporting marine life by transporting heat, carbon, oxygen, and nutrients throughout the world’s ocean. As human-emitted greenhouse gases continue to accumulate in the atmosphere, the Meridional Overturning Circulation (MOC) plays an increasingly important role in sequestering anthropogenic heat and carbon into the deep ocean, thus modulating the course of climate change. Anthropogenic warming, in turn, can influence global ocean circulation through enhancing ocean stratification by warming and freshening the high latitude upper oceans, rendering it an integral part in understanding and predicting climate over the 21st century. The interactions between the MOC and climate are poorly understood and underscore the need for enhanced observations, improved process understanding, and proper model representation of ocean circulation on several spatial and temporal scales. The ocean is in perpetual motion. Through its DRIVING MECHANISMS transport of heat, carbon, plankton, nutrients, and oxygen around the world, ocean circulation regulates Global ocean circulation can be divided into global climate and maintains primary productivity and two major components: i) the fast, wind-driven, marine ecosystems, with widespread implications upper ocean circulation, and ii) the slow, deep for global fisheries, tourism, and the shipping ocean circulation. These two components act industry. Surface and subsurface currents, upwelling, simultaneously to drive the MOC, the movement of downwelling, surface and internal waves, mixing, seawater across basins and depths. eddies, convection, and several other forms of motion act jointly to shape the observed circulation As the name suggests, the wind-driven circulation is of the world’s ocean.
    [Show full text]
  • Cross-Shelf Transport of Pink Shrimp Larvae: Interactions of Tidal Currents, Larval Vertical Migrations and Internal Tides
    Vol. 345: 167–184, 2007 MARINE ECOLOGY PROGRESS SERIES Published September 13 doi: 10.3354/meps06916 Mar Ecol Prog Ser Cross-shelf transport of pink shrimp larvae: interactions of tidal currents, larval vertical migrations and internal tides Maria M. Criales1,*, Joan A. Browder2, Christopher N. K. Mooers1, Michael B. Robblee3, Hernando Cardenas1, Thomas L. Jackson2 1Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA 2NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149, USA 3US Geological Survey, Center for Water and Restoration Studies, 3110 SW 9th Avenue, Ft Lauderdale, Florida 33315, USA ABSTRACT: Transport and behavior of pink shrimp Farfantepenaeus duorarum larvae were investi- gated on the southwestern Florida (SWF) shelf of the Gulf of Mexico between the Dry Tortugas spawning grounds and Florida Bay nursery grounds. Stratified plankton samples and hydrographic data were collected at 2 h intervals at 3 stations located on a cross-shelf transect. At the Marquesas station, midway between Dry Tortugas and Florida Bay, internal tides were recognized by anom- alously cool water, a shallow thermocline with strong density gradients, strong current shear, and a high concentration of pink shrimp larvae at the shallow thermocline. Low Richardson numbers occurred at the pycnocline depth, indicating vertical shear instability and possible turbulent transport from the lower to the upper layer where myses and postlarvae were concentrated. Analysis of verti- cally stratified plankton suggested that larvae perform vertical migrations and the specific behavior changes ontogenetically; protozoeae were found deeper than myses, and myses deeper than postlar- vae.
    [Show full text]
  • Crab Predators Are More Important at Higher Latitudes
    Marine Biology (2019) 166:142 https://doi.org/10.1007/s00227-019-3587-0 ORIGINAL PAPER Variation in consumer pressure along 2500 km in a major upwelling system: crab predators are more important at higher latitudes Catalina A. Musrri1 · Alistair G. B. Poore2 · Iván A. Hinojosa3,4 · Erasmo C. Macaya4,5,6 · Aldo S. Pacheco7 · Alejandro Pérez‑Matus8 · Oscar Pino‑Olivares1 · Nicolás Riquelme‑Pérez1 · Wolfgang B. Stotz1 · Nelson Valdivia6,9 · Vieia Villalobos1,10 · Martin Thiel1,4,11 Received: 21 January 2019 / Accepted: 10 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pat- tern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three diferent baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fsh Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h.
    [Show full text]
  • I. Wind-Driven Coastal Dynamics II. Estuarine Processes
    I. Wind-driven Coastal Dynamics Emily Shroyer, Oregon State University II. Estuarine Processes Andrew Lucas, Scripps Institution of Oceanography Variability in the Ocean Sea Surface Temperature from NASA’s Aqua Satellite (AMSR-E) 10000 km 100 km 1000 km 100 km www.visibleearth.nasa.Gov Variability in the Ocean Sea Surface Temperature (MODIS) <10 km 50 km 500 km Variability in the Ocean Sea Surface Temperature (Field Infrared Imagery) 150 m 150 m ~30 m Relevant spatial scales range many orders of magnitude from ~10000 km to submeter and smaller Plant DischarGe, Ocean ImaginG LanGmuir and Internal Waves, NRL > 1000 yrs ©Dudley Chelton < 1 sec < 1 mm > 10000 km What does a physical oceanographer want to know in order to understand ocean processes? From Merriam-Webster Fluid (noun) : a substance (as a liquid or gas) tending to flow or conform to the outline of its container need to describe both the mass and volume when dealing with fluids Enterà density (ρ) = mass per unit volume = M/V Salinity, Temperature, & Pressure Surface Salinity: Precipitation & Evaporation JPL/NASA Where precipitation exceeds evaporation and river input is low, salinity is increased and vice versa. Note: coastal variations are not evident on this coarse scale map. Surface Temperature- Net warming at low latitudes and cooling at high latitudes. à Need Transport Sea Surface Temperature from NASA’s Aqua Satellite (AMSR-E) www.visibleearth.nasa.Gov Perpetual Ocean hWp://svs.Gsfc.nasa.Gov/cGi-bin/details.cGi?aid=3827 Es_manG the Circulaon and Climate of the Ocean- Dimitris Menemenlis What happens when the wind blows on Coastal Circulaon the surface of the ocean??? 1.
    [Show full text]
  • Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Coastal Upwelling Revisited: Ekman, Bakun, and Improved 10.1029/2018JC014187 Upwelling Indices for the U.S. West Coast Key Points: Michael G. Jacox1,2 , Christopher A. Edwards3 , Elliott L. Hazen1 , and Steven J. Bograd1 • New upwelling indices are presented – for the U.S. West Coast (31 47°N) to 1NOAA Southwest Fisheries Science Center, Monterey, CA, USA, 2NOAA Earth System Research Laboratory, Boulder, CO, address shortcomings in historical 3 indices USA, University of California, Santa Cruz, CA, USA • The Coastal Upwelling Transport Index (CUTI) estimates vertical volume transport (i.e., Abstract Coastal upwelling is responsible for thriving marine ecosystems and fisheries that are upwelling/downwelling) disproportionately productive relative to their surface area, particularly in the world’s major eastern • The Biologically Effective Upwelling ’ Transport Index (BEUTI) estimates boundary upwelling systems. Along oceanic eastern boundaries, equatorward wind stress and the Earth s vertical nitrate flux rotation combine to drive a near-surface layer of water offshore, a process called Ekman transport. Similarly, positive wind stress curl drives divergence in the surface Ekman layer and consequently upwelling from Supporting Information: below, a process known as Ekman suction. In both cases, displaced water is replaced by upwelling of relatively • Supporting Information S1 nutrient-rich water from below, which stimulates the growth of microscopic phytoplankton that form the base of the marine food web. Ekman theory is foundational and underlies the calculation of upwelling indices Correspondence to: such as the “Bakun Index” that are ubiquitous in eastern boundary upwelling system studies. While generally M. G. Jacox, fi [email protected] valuable rst-order descriptions, these indices and their underlying theory provide an incomplete picture of coastal upwelling.
    [Show full text]
  • The Role of Ekman Ocean Heat Transport in the Northern Hemisphere Response to ENSO
    The Role of Ekman Ocean Heat Transport in the Northern Hemisphere Response to ENSO Michael A. Alexander NOAA/Earth System Research Laboratory, Boulder, Colorado, USA James D. Scott CIRES, University of Colorado, and NOAA/ Earth System Research Laboratory, Boulder, Colorado. Submitted to the Journal of Climate December 2007 Corresponding Author Michael Alexander NOAA/Earth System Research Laboratory Physical Science Division R/PSD1 325 Broadway Boulder, Colorado 80305 [email protected] 1 Abstract The role of oceanic Ekman heat transport (Qek) on air-sea variability associated with ENSO teleconnections is examined via a pair of atmospheric general circulation model (AGCM) experiments. In the “MLM” experiment, observed sea surface temperatures (SSTs) for the years 1950-1999 are specified over the tropical Pacific, while a mixed layer model is coupled to the AGCM elsewhere over the global oceans. The same experimental design was used in the “EKM” experiment with the addition of Qek in the mixed layer ocean temperature equation. The ENSO signal was evaluated using differences between composites of El Niño and La Niña events averaged over the 16 ensemble members in each experiment. In both experiments the Aleutian Low deepened and the resulting surface heat fluxes cooled the central North Pacific and warmed the northeast Pacific during boreal winter in El Niño relative to La Niña events. Including Qek increased the magnitude of the ENSO- related SST anomalies by ~1/3 in the central and northeast North Pacific, bringing them close to the observed ENSO signal. Differences between the ENSO-induced atmospheric circulation anomalies in the EKM and MLM experiments were not significant over the North Pacific.
    [Show full text]
  • Habs in UPWELLING SYSTEMS
    GEOHAB CORE RESEARCH PROJECT: HABs IN UPWELLING SYSTEMS 1 GEOHAB GLOBAL ECOLOGY AND OCEANOGRAPHY OF HARMFUL ALGAL BLOOMS GEOHAB CORE RESEARCH PROJECT: HABS IN UPWELLING SYSTEMS AN INTERNATIONAL PROGRAMME SPONSORED BY THE SCIENTIFIC COMMITTEE ON OCEANIC RESEARCH (SCOR) AND THE INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION (IOC) OF UNESCO EDITED BY: G. PITCHER, T. MOITA, V. TRAINER, R. KUDELA, P. FIGUEIRAS, T. PROBYN BASED ON CONTRIBUTIONS BY PARTICIPANTS OF THE GEOHAB OPEN SCIENCE MEETING ON HABS IN UPWELLING SYSTEMS AND THE GEOHAB SCIENTIFIC STEERING COMMITTEE February 2005 3 This report may be cited as: GEOHAB 2005. Global Ecology and Oceanography of Harmful Algal Blooms, GEOHAB Core Research Project: HABs in Upwelling Systems. G. Pitcher, T. Moita, V. Trainer, R. Kudela, P. Figueiras, T. Probyn (Eds.) IOC and SCOR, Paris and Baltimore. 82 pp. This document is GEOHAB Report #3. Copies may be obtained from: Edward R. Urban, Jr. Henrik Enevoldsen Executive Director, SCOR Programme Co-ordinator Department of Earth and Planetary Sciences IOC Science and Communication Centre on The Johns Hopkins University Harmful Algae Baltimore, MD 21218 U.S.A. Botanical Institute, University of Copenhagen Tel: +1-410-516-4070 Øster Farimagsgade 2D Fax: +1-410-516-4019 DK-1353 Copenhagen K, Denmark E-mail: [email protected] Tel: +45 33 13 44 46 Fax: +45 33 13 44 47 E-mail: [email protected] This report is also available on the web at: http://www.jhu.edu/scor/ http://ioc.unesco.org/hab ISSN 1538-182X Cover photos courtesy of: Vera Trainer Teresa Moita Grant Pitcher Copyright © 2005 IOC and SCOR.
    [Show full text]
  • Upwelling As a Source of Nutrients for the Great Barrier Reef Ecosystems: a Solution to Darwin's Question?
    Vol. 8: 257-269, 1982 MARINE ECOLOGY - PROGRESS SERIES Published May 28 Mar. Ecol. Prog. Ser. / I Upwelling as a Source of Nutrients for the Great Barrier Reef Ecosystems: A Solution to Darwin's Question? John C. Andrews and Patrick Gentien Australian Institute of Marine Science, Townsville 4810, Queensland, Australia ABSTRACT: The Great Barrier Reef shelf ecosystem is examined for nutrient enrichment from within the seasonal thermocline of the adjacent Coral Sea using moored current and temperature recorders and chemical data from a year of hydrology cruises at 3 to 5 wk intervals. The East Australian Current is found to pulsate in strength over the continental slope with a period near 90 d and to pump cold, saline, nutrient rich water up the slope to the shelf break. The nutrients are then pumped inshore in a bottom Ekman layer forced by periodic reversals in the longshore wind component. The period of this cycle is 12 to 25 d in summer (30 d year round average) and the bottom surges have an alternating onshore- offshore speed up to 10 cm S-'. Upwelling intrusions tend to be confined near the bottom and phytoplankton development quickly takes place inshore of the shelf break. There are return surface flows which preserve the mass budget and carry silicate rich Lagoon water offshore while nitrogen rich shelf break water is carried onshore. Upwelling intrusions penetrate across the entire zone of reefs, but rarely into the Lagoon. Nutrition is del~veredout of the shelf thermocline to the living coral of reefs by localised upwelling induced by the reefs.
    [Show full text]
  • Life on the Coral Reef
    Coral Reef Teacher’s Guide Life on the Coral Reef Life on the Coral Reef THE CORAL REEF ECOSYSTEM The muddy silt drifts out to sea, covering the nearby Coral reefs provide the basis for the most productive coral reefs. Some corals can remove the silt, but many shallow water ecosystem in the world. An ecosystem cannot. If the silt is not washed off within a short pe- is a group of living things, such as coral, algae and riod of time by the current, the polyps suffocate and fishes, along with their non-living environment, such die. Not only the rainforest is destroyed, but also the as rocks, water, and sand. Each influences the other, neighboring coral reef. and both are necessary for the successful maintenance of life. If one is thrown out of balance by either natural Reef Zones or human-made causes, then the survival of the other Coral reefs are not uniform, but are shaped by the is seriously threatened. forces of the sea and the structure of the sea floor into DID YOU KNOW? All of the Earth’s ecosystems are a series of different parts or reef zones. Understand- interrelated, forming a shell of life that covers the ing these zones is useful in understanding the ecol- entire planet – the biosphere. For instance, if too many ogy of coral reefs. Keep in mind that these zones can trees are cut down in the rainforest, soil from the for- blend gradually into one another, and that sometimes est is washed by rain into rivers that run to the ocean.
    [Show full text]