Intramolecular Nicholas Reaction Enables the Stereoselective Synthesis of Strained Cyclooctynes

Total Page:16

File Type:pdf, Size:1020Kb

Intramolecular Nicholas Reaction Enables the Stereoselective Synthesis of Strained Cyclooctynes molecules Article Intramolecular Nicholas Reaction Enables the Stereoselective Synthesis of Strained Cyclooctynes Diego M. Monzón 1,2, Juan Manuel Betancort 2,†, Tomás Martín 2,3, Miguel Ángel Ramírez 1,2,Víctor S. Martín 1,2,* and David Díaz Díaz 1,2,4,* 1 Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain; [email protected] (D.M.M.); [email protected] (M.Á.R.) 2 Instituto de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain; [email protected] (J.M.B.); [email protected] (T.M.) 3 Instituto de Productos Naturales y Agrobiología, CSIC, Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain 4 Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany * Correspondence: [email protected] (V.S.M.); [email protected] (D.D.D.) † Current address: Rakuten Medical, Inc., 11080 Roselle St., San Diego, CA 92121, USA. Abstract: Cyclic products can be obtained through the intramolecular version of the Nicholas reaction, which requires having the nucleophile connected to the alkyne unit. Here, we report the synthesis of 1-oxa-3-cyclooctynes starting from commercially available (1R,3S)-camphoric acid. The strategy is based on the initial preparation of propargylic alcohols, complexation of the triple bond with Co2(CO)8, and treatment with BF3·Et2O to induce an intramolecular Nicholas reaction with the free hydroxyl group as nucleophile. Finally, oxidative deprotection of the alkyne afforded the cyclooctynes in good yields. Notably, large-sized R substituents at the chiral center connected to the O atom were oriented in such a way that steric interactions were minimized in the cyclization, allowing the Citation: Monzón, D.M.; Betancort, formation of cyclooctynes exclusively with (R) configuration, in good agreement with theoretical J.M.; Martín, T.; Ramírez, M.Á.; predictions. Moreover, preliminary studies demonstrated that these cyclooctynes were reactive in the Martín, V.S.; Díaz Díaz, D. presence of azides yielding substituted triazoles. Intramolecular Nicholas Reaction Enables the Stereoselective Synthesis of Strained Cyclooctynes. Molecules Keywords: Nicholas reaction; cyclooctyne; propargylic carbocation; cyclization; oxacycle; ring strain 2021, 26, 1629. https://doi.org/ 10.3390/molecules26061629 Academic Editor: Narciso M. Garrido 1. Introduction Organometallic complexes have found extensive use in organic chemistry due to the Received: 1 March 2021 unique properties they impart on the coordinated organic ligands. A notable transforma- Accepted: 13 March 2021 tion that showcases this altered reactivity is the Nicholas reaction [1–6]. It involves the Published: 15 March 2021 reaction of dicobalt hexacarbonyl-stabilized propargylic carbocations with nucleophiles. The remarkable stability of these carbocations arises from delocalization of the cationic Publisher’s Note: MDPI stays neutral charge onto the metallic complex. The mild conditions used to form the acetylenic cobalt with regard to jurisdictional claims in complexes, coupled with the versatility of the highly functionalized reaction products published maps and institutional affil- obtained upon demetallation, has rendered this reaction a useful tool for the synthesis of iations. diverse and complex molecules [7–11]. An extensive list of nucleophiles has been employed in this transformation, from carbon-based entities such as ketones and enol silanes, to nitrogen nucleophiles such as amines and sulfonamides, or oxygen centered species such as alcohols [12,13] or epox- Copyright: © 2021 by the authors. ides [14,15]. In the case where the nucleophile is connected to the alkyne via a suitable chain, Licensee MDPI, Basel, Switzerland. the Nicholas reaction will result in intramolecular attack and formation of a ring [12,13]. This article is an open access article This process is favored by the altered geometry of the complexed triple bond that reduces distributed under the terms and ring strain. Of particular interest are cyclooctynes, the smallest stable cyclic alkynes. Their conditions of the Creative Commons inherent strain has been exploited in organic synthesis and bioorthogonal chemistry for the Attribution (CC BY) license (https:// development of novel cycloaddition reactions and labeling agents [16–18]. Introduction creativecommons.org/licenses/by/ of heteroatoms in their structure has subtle effects on the reactivity and stability of the 4.0/). Molecules 2021, 26, 1629. https://doi.org/10.3390/molecules26061629 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 13 inherent strain has been exploited in organic synthesis and bioorthogonal chemistry for the development of novel cycloaddition reactions and labeling agents [16–18]. Introduc- tion of heteroatoms in their structure has subtle effects on the reactivity and stability of the resulting rings [19]. Herein, we describe the synthesis of 1-oxa-3-cyclooctyne deriva- tives by making use of an intramolecular Nicholas reaction. The use of this reaction has Molecules 2021, 26, 1629 been also reported to obtain other strained cycloalkynes such as cyclononynes [20].2 of 12 2. Results and Discussion resultingOur ringssynthetic [19]. design Herein, towards we describe the preparation the synthesis of of strained 1-oxa-3-cyclooctyne 1-oxa-3-cyclooctynes derivatives via bythe making Nicholas use reaction of an intramolecular was based on the Nicholas use of reaction.(1R,3S)-camphoric The use of acid this as reaction starting has material been also(Scheme reported 1), a tolow obtain-cost natural other strained product cycloalkynes that is commercially such as cyclononynes available in both [20]. enantiomeric forms. Apart from the cyclopentane ring, the structure of the desired cyclooctynes is char- 2.acterized Results by and the Discussion presence of two quaternary centers at α- and β-positions of the triple bond,Our thus synthetic providing design a sterically towards demanding the preparation environment of strained around 1-oxa-3-cyclooctynes it. via the NicholasIn this way, reaction we wasfirst based envisioned on the the use preparation of (1R,3S)-camphoric of the corresponding acid as starting propargylic material (Schemealcohols1 ),as a in low-costtermediate natural products product, which that iscould commercially be obtained available from (+) in both-(1R,3 enantiomericS)-camphoric forms.acid. The Apart camphoric from the acid cyclopentane not only provides ring, the a cyclic structure structure of the to desiredcontribute cyclooctynes to the preor- is characterizedganization of bythe the system presence prior of to two cyclization, quaternary but centersit also enables at α- and theβ -positionspresence of of the the oxygen triple bond,heteroatom, thus providing which would a sterically act as demandingthe nucleophile environment during formation around it. of the oxacycle. H H H OH OH H O H COOH R R R COOH (CO) Co 6 2 OH OH 1-oxa-3-cyclooctyne propargylic (+)-(1R,3S)-camphoric alcohol acid SchemeScheme 1.1.Retrosynthetic Retrosynthetic analysisanalysis ofof thethe cyclooctynescyclooctynes envisionedenvisioned in in this this work. work. InTherefore this way,, t wehe first first objective envisioned was the to preparation form a suitable of the precursor corresponding of the propargylic alco-alco- holshol, asfrom intermediate which we products,could introduce which different could be R obtained substituents. from (+)-(1For thisR,3 Spurpose,)-camphoric we began acid. Thewith camphoric the reduction acid notof only(+)-(1 providesR,3S)-camphoric a cyclic structure acid using to contributeborane complexes to the preorganization to obtain the ofcorresponding the system prior diol to 2 cyclization, (Scheme 2 but). In it alsothis enablesstep, the the best presence result of was the oxygen obtained heteroatom, with the whichBH3·SM woulde2 complex act as thein THF nucleophile, affording during the desired formation diol of 2 the in oxacycle.96% yield. Subsequently, the differentTherefore, steric demand the first of objective both alcohols was to in form2, dictated a suitable by the precursor presence of the chiral propargylic methyl alcohol,group, made from it which possible we to could perform introduce the selective different protection R substituents. of the most For accessible this purpose, hydroxyl we begangroup withas its the t-butyldiphenylsilyl reduction of (+)-(1 etherR,3S)-camphoric at 0 °C in 1 h, acid affording using borane product complexes 3 in excellent to obtain yield the(95%). corresponding diol 2 (Scheme2). In this step, the best result was obtained with the BH3·SMe2 complex in THF, affording the desired diol 2 in 96% yield. Subsequently, the different steric demand of both alcohols in 2, dictated by the presence of the chiral methyl Molecules 2021, 26, x FOR PEER REVIEW 3 of 13 group, made it possible to perform the selective protection of the most accessible hydroxyl group as its t-butyldiphenylsilyl ether at 0 ◦C in 1 h, affording product 3 in excellent yield (95%). 1. SO ·Py, DCM H H TBDPSCl H 3 H BH3·Me2S OH imidazole OTBDPS Et N, DMSO OTBDPS i) n-BuLi, THF COOH 3 Br COOH THF DCM, 0 ºC 2. CBr4, PPh3 ii) RCHO Br OH OH DCM (+)-(1R,3S)-camphoric 4 (91%) acid 2 (96%) 3 (95%) H H H H OTBDPS TBAF 1. Co2(CO)8, DCM OH O NMO O H R R R THF 2. BF3·Et2O DCM R DCM, −20 ºC OH OH Co2(CO)6 5, R = n-hexyl, 78% 10, R = n-hexyl, 90% 15, R = n-hexyl 1, R = n-hexyl, 64% (from 10) 6, R = H, 81% 11, R = H, 99% 16, R = H 20, R = H, n.d. 7, R = Me, 84% 12, R = Me, 92% 17, R = Me 21, R = Me, 58% (from 12) 8, R = Ph, 70% 13, R = Ph, 86% 18, R = Ph 22, R = Ph, 31% (from 13) 9, R = 3-butenyl, 66% 14, R = 3-butenyl, 76% 19, R = 3-butenyl 23, R = 3-butenyl, 57% (from 14) SchemeScheme 2. Synthetic2. Synthetic route route forfor the preparation preparation of ofstrained strained cyclooctynes cyclooctynes (1, 20 (213,)20 starting−23) startingfrom commercially from commercially available (+) available- (+)-(1(1R,3S))-camphoric-camphoric acid acid.
Recommended publications
  • Molecular Rearrangements in the Camphor Series : the Decomposition Products of the Methyl Ester of Isoaminocamphonanic Acid
    MOLECULAR REARRANGEMENTS IN THE CAMPHOR SERIES. THE DECOMPOSITION PRODUCTS OF THE METHYL ESTER OF ISOAMINOCAMPHONANIC ACID. BY GLENN SEYMOUR SKINNER A. B. Kansas State Manual Training Normal, 1913 A. M. University of Illinois, 1915 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1917 Digitized by the Internet Archive in 2013 http://archive.org/details/molecularrearranOOskin SK3 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL .191 7 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER- VISION BY .QleiirL...S.eymo.nr.....S.]s;i.nner ENTITLED .MQlficulax....E.earrii.ng_meiits in... the .G.amj2hgr....Se^^^^ The I)ejG.QiQ.p.Q.ai.t.i.o.rL...I!r.Q.d.iL.c.t.s Q±....tha.JvIe.l]i3fl....B.st.e..r o.t.....Is..oanDn.ocam^^^^^ Acid. BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF.. .J).Q.C..1i.QX._..Q±....PJlilQ.S..Q.p.llZ. In ChargeCI of Thesis Head of Department Recommendation concurred in :* .<:. TSr:^. Committee on Final Examination* *Required for doctor's degree but not for master's. •^L^n .X o o TABLE OF GONTEIITS. PART I. HISTORICAL. The Camphors ------------------------- 1 The Camphoric Acids --------------------- 2 The Methyl Esters of d-Camphoric and 1-Isocaraphoric Acid - - - 3 The Methyl Esters of d-Camphoramidic and l-Isocamphoramidic Acids 4 The d-Oamphoramidic and 1- Is o camphoramidic Acids ------- 6 The Amino Acids Which are Derived from the d-Gamphoramidic and 1-Isocamphoramidic Acids ---------- 7 The Methyl Esters of the Amino Acid-S - -- -- -- -- -- -- 8 The Decomposition Products of Amino Camphonanic Acid ----- 8 The Decomposition Products of Dihydroaminocampholytic Acid - - 10 The Decomposition of Isoaminocamphonanic Acid ----- - 15 The Decomposition of Isodihydr oaminocampholytic Acid ----- 15 The Unsaturated Acids- -------------------- 1^ The Hydroxy Acids- ---------------------- 1^ The Hydrocarbons ----------------------- 22 The Lactones ------------------------- PART II.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • Reactivity of Zinc Halide Complexes Containing Camphor-Derived Guanidine Ligands with Technical Rac-Lactide
    inorganics Article Reactivity of Zinc Halide Complexes Containing Camphor-Derived Guanidine Ligands with Technical rac-Lactide Angela Metz 1, Joshua Heck 1, Clara Marie Gohlke 1, Konstantin Kröckert 1, Yannik Louven 1, Paul McKeown 2, Alexander Hoffmann 1, Matthew D. Jones 2 and Sonja Herres-Pawlis 1,* ID 1 Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; [email protected] (A.M.); [email protected] (J.H.); [email protected] (C.M.G.); [email protected] (K.K.); [email protected] (Y.L.); [email protected] (A.H.) 2 Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; [email protected] (P.M.); [email protected] (M.D.J.) * Correspondence: [email protected]; Tel.: +49-241-80-939-02 Received: 27 October 2017; Accepted: 23 November 2017; Published: 30 November 2017 Abstract: Three new zinc complexes with monoamine–guanidine hybridligands have been prepared, characterized by X-ray crystallography and NMR spectroscopy, and tested in the solvent-free ring-opening polymerization of rac-lactide. Initially the ligands were synthesized from camphoric acid to obtain TMGca and DMEGca and then reacted with zinc(II) halides to form zinc complexes. All complexes have a distorted tetrahedral coordination. They were utilized as catalysts in the solvent-free polymerization of technical rac-lactide at 150 ◦C. Colorless polylactide (PLA) can be produced and after 2 h conversion up to 60% was reached.
    [Show full text]
  • EPDM & FKM Chemical Resistance Guide
    EPDM & FKM Chemical Resistance Guide FIRST EDITION EPDM & FKM CHEMICAL RESISTANCE GUIDE Elastomers: Ethylene Propylene (EPDM) Fluorocarbon (FKM) Chemical Resistance Guide Ethylene Propylene (EPDM) & Fluorocarbon (FKM) 1st Edition © 2019 by IPEX. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without prior written permission. For information contact: IPEX, Marketing, 1425 North Service Road East, Oakville, Ontario, Canada, L6H 1A7 ABOUT IPEX At IPEX, we have been manufacturing non-metallic pipe and fittings since 1951. We formulate our own compounds and maintain strict quality control during production. Our products are made available for customers thanks to a network of regional stocking locations from coast-to-coast. We offer a wide variety of systems including complete lines of piping, fittings, valves and custom-fabricated items. More importantly, we are committed to meeting our customers’ needs. As a leader in the plastic piping industry, IPEX continually develops new products, modernizes manufacturing facilities and acquires innovative process technology. In addition, our staff take pride in their work, making available to customers their extensive thermoplastic knowledge and field experience. IPEX personnel are committed to improving the safety, reliability and performance of thermoplastic materials. We are involved in several standards committees and are members of and/or comply with the organizations listed on this page. For specific details about any IPEX product, contact our customer service department. INTRODUCTION Elastomers have outstanding resistance to a wide range of chemical reagents. Selecting the correct elastomer for an application will depend on the chemical resistance, temperature and mechanical properties needed. Resistance is a function both of temperatures and concentration, and there are many reagents which can be handled for limited temperature ranges and concentrations.
    [Show full text]
  • List of Chemical Resistance of Materials in Contact with Liquid ANALYSETTE 22 Next & ANALYSETTE 28 Imagesizer LASER PARTICLE SIZER & PARTICLE SIZER
    List of chemical resistance of materials in contact with liquid ANALYSETTE 22 NeXT & ANALYSETTE 28 ImageSizer LASER PARTICLE SIZER & PARTICLE SIZER This chart information is based on FRITSCH's knowledge and experience and are intended as a guide and not as a guarantee. We cannot assure the perfect performance of the materials as that depends on many factors as working pressure, pressure picks, fluid, ambient temperature, fluid temperature, concentra‐ tion, duration of exposure, etc… Fritsch GmbH Milling and Sizing Industriestrasse 8 D - 55743 Idar-Oberstein Telephone: +49 (0) 6784/ 70-0 Email: [email protected] Internet: www.fritsch.de Version 04/2020 Index 001 Table of contents Table of contents 1 Materials in contact with liquid.................................................... 4 2 Abbreviations................................................................................. 5 3 List of chemical resistance............................................................. 7 3.1 KEY......................................................................................... 7 3.2 Note....................................................................................... 7 3.3 Table 1.................................................................................... 7 3.4 Table 2.................................................................................. 97 3.5 Table 3................................................................................ 105 - 3 - Materials in contact with liquid 1 Materials in contact with liquid Wet dispersion
    [Show full text]
  • Elastomer Fluid Compatibility Chart
    ELASTOMER FLUID COMPATIBILITY CHART Recommended: 1 Not Recommended:4 Probably Satisfactory: 2 Insuficient Data: X Marginal: 3 Chemical NBR EPDM FKM PTFE 0-Chloronaphthalene 4 4 1 X 0-Chlorphenol 4 4 1 X 0-Dichlorobenzene 4 4 1 X 1-Butene, 2-Ethyl 1 4 1 X 1-Chloro 1-Nitro Ethane 4 4 4 X 90, 100, 150, 220, 300, 500 4 1 1 X Abietic Acid X X X X Acetaldehyde 3 2 4 X Acetamide 1 1 3 X Acetanilide 3 1 3 X Acetic Acid 5% 2 1 1 X Acetic Acid, 30% 2 1 3 X Acetic Acid, Glacial 2 2 4 X Acetic Acid, Hot, High Pressure 4 3 4 X Acetic Anhydride 4 2 4 X Acetoacetic Acid 3 1 3 X Acetone 4 1 4 X Acetone Cyanohydrin 3 1 3 X Acetonitrile 3 1 1 X Acetophenetidine 2 4 1 X Acetophenone 4 1 4 X Acetotoluidide 2 4 1 X Acetyl Acetone 4 1 4 X Acetyl Bromide 4 1 1 1 Acetyl Chloride 4 4 1 X Acetylacetone 4 1 4 X Acetylene 1 1 1 X Acetylene Tetrabromide 4 1 1 X Acetylene Tetrachloride 4 1 1 X Acetylsalicylic Acid 2 4 1 X Acids, Non-organic X X X X Acids, Organic X X X X Aconitic Acid X X X X Acridine X X X X Acrolein 3 1 3 X Acrylic Acid 2 3 4 X Acrylonitrile 4 4 3 X Adipic Acid 1 2 2 X Aero Lubriplate 1 4 1 X Aero Shell 17 Grease 1 4 1 X Page 1 of 61 ELASTOMER FLUID COMPATIBILITY CHART Recommended: 1 Not Recommended:4 Probably Satisfactory: 2 Insuficient Data: X Marginal: 3 Chemical NBR EPDM FKM PTFE Aero Shell 1AC Grease 1 4 1 X Aero Shell 750 2 4 1 X Aero Shell 7A Grease 1 4 1 X Aerosafe 2300 4 1 4 X Aerosafe 2300W 4 1 4 X Aerozene 50 (50% Hydrazine 50% UDMH) 3 1 4 X Air, 1 1 1 X Air, 200 - 300° F 3 2 1 X Air, 300 - 400° F 4 4 1 X Air, 400 - 500° F 4 4 3 X Air,
    [Show full text]
  • Organic Synthesis from France 10/02/2010
    Baran Group Meeting Q. Michaudel Organic Synthesis from France 10/02/2010 Early French organic chemists (18th and 19th centuries): Albin Haller (1849–1925): Antoine-Laurent de Lavoisier (1743–1794): * semi-synthesis of camphor from camphoric acid and synthesis of menthol * law of conservation of mass * use of NaNH2 ("birth of strong bases chemistry") * recognized and named oxygen and hydrogen * abolished the phlogiston theory (see Seiple's GM 2010) Wurtz coupling (1855): * helped construct the metric system Na 2 + R W. heterocoupling * wrote the first extensive list of elements R1 X R2 X R1 * helped to reform chemical nomenclature THF, Et2O... Na R2 Wurtz-Fittig An appeal to delay the execution so that he could continue his experiments Ar X + R2 X Ar was cut short by the judge: "The Republic needs neither scientists nor THF, Et2O... chemists; the course of justice can not be delayed." (This quote may be more Ann. Chim. Phys. 1855, 96, 275 part of the legend than the reality) Lagrange's quote: "It took them only an instant to cut off his head, but France Müller modification: THF, -78°C, TPE (cat) to help Na solubilization may not produce another such head in a century." other modifications possible: different metal, sonication... Ph Ph Claude Berthollet (1748–1822): discovery of bleach Friedel-Crafts reaction (1877): Ph Ph Al, I2 Jean-Antoine Chaptal (1756–1832): TPE chaptalization (addition of sugar to unfermented wine to increase the Cl benzene I final alcohol level) Joseph Louis Gay-Lussac (1778–1850): " !!! * work in thermodynamics (Gay-Lussac's law) * discovery of boron, cyanogen and hydrogen cyanide Compt.
    [Show full text]
  • (+)-Camphoric Acid Pierre Thuéry, Jack Harrowfield
    Chiral one- to three-dimensional uranyl-organic assemblies from (1R,3S)-(+)-camphoric acid Pierre Thuéry, Jack Harrowfield To cite this version: Pierre Thuéry, Jack Harrowfield. Chiral one- to three-dimensional uranyl-organic assemblies from (1R,3S)-(+)-camphoric acid. CrystEngComm, Royal Society of Chemistry, 2014, 16 (14), pp.2996- 3004. 10.1039/c3ce42613k. hal-01157641 HAL Id: hal-01157641 https://hal.archives-ouvertes.fr/hal-01157641 Submitted on 17 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CrystEngComm View Article Online PAPER View Journal | View Issue Chiral one- to three-dimensional uranyl–organic assemblies from (1R,3S)-(+)-camphoric acid† Cite this: CrystEngComm,2014,16, 2996 Pierre Thuéry*a and Jack Harrowfieldb Four complexes were obtained from reaction of uranyl nitrate with (1R,3S)-(+)-camphoric acid under solvo-/hydrothermal conditions with either acetonitrile or N-methyl-2-pyrrolidone (NMP) as the organic component. All complexes crystallize in chiral space groups and are enantiopure species. Complexes [(UO2)4(L)3(OH)2(H2O)4]·3H2O(1) and [(UO2)8K8(L)12(H2O)12]·H2O(2) were obtained in water–acetonitrile in the presence of LiOH or KOH in excess beyond or equal to that simply required to neutralize the acid, respectively.
    [Show full text]
  • Supplement Of
    Supplement of Feedbacks between acidity and multiphase chemistry of atmospheric aqueous particles and clouds 5 Andreas Tilgner1, Thomas Schaefer1, Becky Alexander2, Mary Barth3, Jeffrey L. Collett, Jr.4, Kathleen M. Fahey5, Athanasios Nenes6,7, Havala O. T. Pye5, Hartmut Herrmann1*, and V. Faye McNeill8* 1Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany 2Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA 10 3National Center for Atmospheric Research, Boulder, CO, 80307, USA 4Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA 5Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA 6 School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH- 1015, Switzerland 15 7Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece 8Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA Correspondence to: V. Faye McNeill ([email protected]), H. Herrmann ([email protected]) 1 Supplementary material to section 2 20 Table S1: Summary of the applied !"($) and &!' values for calculation of the LWC-acidity dependent aqueous fraction ($')presented in Figure 2, Figure 3 and Figure S1. KH Compound Reference pKa1 pKa2 Reference (298K) M atm-1 Sulfurous acid 1.32 Sander (2015) 1.9 7.0 Kolthoff and Elving (1959) (dissolved SO2) Nitrous acid 48.6 Park and Lee (1988) 3.29 — Kolthoff and Elving (1959) HONO Formic acid 5530 Khan et al. (1992) 3.77 — Braude et al. (1955) HCOOH Acetic acid 5471 Khan et al. (1992) 4.76 — Haynes (1958) CH3COOH Glycolic acid 2.83·104 Ip et al.
    [Show full text]
  • William Albert Noyes
    NATIONAL ACADEMY OF SCIENCES WILLIAM ALBERT NOYES 1857—1941 A Biographical Memoir by ROGER ADAMS Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1952 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. WILLIAM ALBERT NOYES1 BY ROGER ADAMS William Albert Noyes was born November 6, 1857 on a farm near Independence, Iowa. He was the seventh generation of the Noyes family in America, being descended from Nicholas Noyes who came with his elder brother, James, from Choulder- ton, Wiltshire, in 1633. Their father had been a clergyman but had died before the sons left England. The two brothers settled first in Medford, Massachusetts but in 1655 moved to Newbury. Samuel, of the third generation in this direct line, moved to Abington about 1713 and there he and the succeeding generations lived for over one hundred and forty years. Spencer W. Noyes, the great grandson of Samuel, was ad- mitted as a student to Phillips Academy at Andover, Massachu- setts, March 21, 1837. He married Mary Packard-related to the famous family of shoe manufacturers-and they had three children when they left: Abington and migrated to Iowa in 185j. When the father with his family went west to open up a home- stead, he found conditions typical of the prairies and life was necessarily primitive. In the east he had been a cobbler by trade so had had little experience working the land. The early years were difficult ones because of the hard work in establishing a farm home, getting land into cultivation, raising food and storing sufficient for winter needs.
    [Show full text]
  • Derivatives of Isocamphoric Acid, Decomposition of Isodihydroaminocampholytic Acid with Nitrous Acid
    THE UNIVERSITY OF ILLINOIS LIBRARY DERIVATIVES OF ISOCAMPHORIC ACID, DECOMPOSI- TION OF ISODIHYDROAMINOCAMPHOLYTIC ACID WITH NITROUS ACID BY LLOYD FRANCIS NICKELL A. B. University of Illinois, 1909. A. M. University of Illinois, 1911. THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN CHEMISTRY IN THE GRADUATE SCHOOL OF THE UNIVERSITY OF ILLINOIS 1913 UNIVERSITY OF ILLINOIS THE GRADUATE SCHOOL May 17, i9$3, I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Lloyd Franois Niakell ENTITLED Derivatives of Iaooamphoris Asid, Decomposition of Isodihydro- a~ino3anpholyti3 Aoid with Nitrous Aoid, BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF Dootor of Philosophy. In Charge of Maj or Work Head of DepartmentI Recommendation concurred in: Committee on Final Examination 247428 Digitized by the Internet Archive in 2013 http://archive.org/details/derivativesofisoOOnick DERIVATIVES OF ISOCAMPHORIG ACID DECOMPOSITION OF ISODIHYDROAIvIINOCAMPHOLYTIC ACID WITH NITROUS ACID UlUC This investigation was carried on during the academic year 1912 - 1913. It was undertaken at the suggestion of Profe33or William A . Noyes, ani. carried cut under his direction. The writer wishes to express his deep appreciation not only for the helpful suggestions which Professor Noyes has always teen so ready and so willing to give, but more especially for the point of view and the lasting inspiration for a life work which only close contact with a sincere, sympa- thetic teacher can give. In addition the writer wishes to ac- knowledge the kindness of Mr. R. S. Potter and of Mr. P. S. Woodward in giving him samples of desired materials.
    [Show full text]
  • Analysis of Camphor and Camphoric Acid
    Philosophical Magazine Series 2 ISSN: 1941-5850 (Print) 1941-5869 (Online) Journal homepage: http://www.tandfonline.com/loi/tphm13 Analysis of camphor and camphoric acid M. Liebig To cite this article: M. Liebig (1832) Analysis of camphor and camphoric acid, Philosophical Magazine Series 2, 11:62, 149-150, DOI: 10.1080/14786443208647703 To link to this article: http://dx.doi.org/10.1080/14786443208647703 Published online: 25 Jun 2009. Submit your article to this journal Article views: 2 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tphm13 Download by: [RMIT University Library] Date: 05 April 2016, At: 02:22 Intelligence and Miscellaneous Articles. 149 lain furnace. More lately Gmelin attributed this reduetion loerse to the presence of gaseous oxide of carbon in the furnace, and assigned the same cause for the reduction of oxide of iron in a porcelain furnace observed by Proust. In tact, it appears con- tradictory that a metal which oxidizes so readily as nickel, by cal- cination in the air, which burns in oxygen gas with disengagement of light, and is even susceptible of spontaneous combustion at corn- man temperatures when it is much divided, should be reduced from its oxide merely by the action of a strong heat. Nevertheless, it does not appear that direct experiments have been made on this subject, although it has often been remarked that during the re. duction of nickel in porcelain furnaces, without the use of charcoal, less metal was always obtained when the crucible was well closed.
    [Show full text]