Sommerfeltia 32 Innmat 20081031 Fargeredigert.Indd

Total Page:16

File Type:pdf, Size:1020Kb

Sommerfeltia 32 Innmat 20081031 Fargeredigert.Indd SOMMERFELTIA 32 (2008) 3 Liu, H.Y., Økland, T., Halvorsen, R., Gao, J.X., Liu, Q.R., Eilertsen, O. & Bratli, H. 2008. Gradients analyses of forests ground vegetation and its relationships to environmental variables in five subtropical forest areas, S and SW China. – Sommerfeltia 32: 1 – 196. Oslo. ISBN 82-7420-046-2. ISSN 0800- 6865. Monitoring of ground vegetation and environmental variables in subtropical forests in China was initiated in 1999 as part of the “Integrated Monitoring Programme of Acidification of Chinese Ter- restrial Systems”. The study areas were selected to span regional gradients, in deposition of airborne pollutants and climatic conditions. All five study areas are located in the southern and south-western parts of China and consist of subtropical forests. In each study area 50 1-m2 plots were randomly chosen within each of ten 10×10 m macro plots, each in turn positioned in the centre of 30×30 m extended macro plot. All 250 1-m2 plots were subjected to vegetation analysis, using frequency in subplots as measure of species abundance. A total of 33 environmental variables were recorded for 1-m2 plots as well as 10×10 m macro plots. A major objective of this study is to identify the environ- mental variables that are most strongly related to the species composition of ground vegetation in S and SW Chinese subtropical forests, as a basis for future monitoring. Comparison among DCA, LNMDS and GNMDS ordination methods, an additional objective of the study, was achieved by using a set of different techniques: calculation of pair-wise correlation coefficients between corresponding ordination axes, Procrustes comparison, assessment of outlier influence, and split-plot GLM analysis between environmental variables and ordination axes. LNMDS and GNMDS consistently produce very similar ordinations. GNMDS ordinations are generally more similar to DCA than LNMDS to DCA. In most cases DCA, LNMDS and GNMDS extract the same main ground vegetation compositional gradients and the choice of LNMDS or GNMDS is therefore hardly decisive for the results. GNMDS was chosen for interpretation and presentation of vegetation- environment relationships. The dimensionality of GNMDS (number of reliable axes) was decided by demanding high correspondence of all axes with DCA and LNMDS axes. Three dimensions were needed to describe the variation in vegetation in two of the areas (TSP and LXH), two dimensions in the other three areas (LCG, LGS and CJT). Environmental interpretation of ordinations (identification of ecoclines; gradients in species composition and the environment) was made by split-plot GLM analysis and non-parametric cor- relation analysis. Plexus diagrams and PCA ordination were used to visualize correlations between environmental variables. Several graphical means were used to aid interpretation. Complex gradients in litter-layer depth, topography, soil pH/soil nutrient, and tree density/crown cover were found to be most strongly related to vegetation gradients. However, the five study areas differed somewhat with respect to which of the environmental variables that were most strongly related to the vegetation gradients (ordination axes). Litter-layer depth was related to vegetation gradients in four areas (TSP, LCG, CJT and LXH); topography in four study areas (TSP, LGS, CJT and LXH); soil pH in three areas (LCG, LGS and CJT); soil nutrients in one area (LGS); and tree density/crown cover in one area (LCG). The ecological processes involved in relationships between vegetation and main complex-gradi- ents in litter-layer depth, topography, soil pH/soil nutrient, and tree density/crown cover, in subtropical forests, are discussed. We find that gradient relationships of subtropical forests are complex, and that heavy pollution may increase this complexity. Furthermore, our results suggest that better knowledge of vegetation-environment relationships has potential for enhancing our understanding of subtropical forests that occupy vast areas of the S and SW China. Keywords: China, DCA, Environmental variables, Gradient, GNMDS, LNMDS, Monitoring, Ordina- tion, Subtropical forests, Ground vegetation. Hai-Ying Liu, Department of Botany, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway and Institute of Ecology, Chinese Research Academy of Environ- mental Science, Beiyuan, Anwai, 100012, Beijing, P.R. China; Tonje Økland, Norwegian Forest and Landscape Institute, P.O. Box 115, N-1431, Ås, Norway; Rune Halvorsen, Department of Botany, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway; Ji-Xi Gao, Institute of Ecology, Chinese Research Academy of Environmental Science, Beiyuan, Anwai, 100012, Beijing, P.R. China; Quan-Ru Liu, College of Life Science, Beijing Normal University, No 19, Xinjiekouwai Avenue, 100875, Beijing, P.R. China; Harald Bratli, Norwegian Forest and Landscape Institute, P.O. Box 115, N-1431, Ås, Norway;and Odd Eilertsen, Norwegian Forest and Landscape Institute, P.O. Box 115, N-1431, Ås, Norway and Institute of Ecology, Chinese Research Academy of Environmental Science, Beiyuan, Anwai, 100012, Beijing, P.R. China. Current address: Hai-Ying Liu Norweigan Institute for Air Research P.O.Box 100, NO-2027 Kjeller, Norway Phone: +47 63898040 E-mail: [email protected] SOMMERFELTIA 32 (2008) 9 INTRODUCTION The rapid economic growth in China has been accompanied by a corresponding increase in pollu- tion. During the last decades Chinese energy consumption increased more than 5% annually (Byrne et al. 1996, World Bank 1999). Coal accounts for about 75% of the commercial energy production and it is likely that coal will be the major energy carrier in the coming decades (Seip et al. 1999). Acid rain was recognized as a potential environmental problem in China in the late 1970s and early 1980s (Zhao & Sun 1986, Zhao et al. 1988, Wang et al. 1997), but it was not until mid 1990s Chinese research projects provided relevant information needed for implementing adequate control measures. There are still big gaps in the scientific knowledge of air pollution effects in China, particularly re- garding quantification of effects. In order to provide a sound scientific basis for cost-effective control measures to reduce emissions of acidifying substances, China found it beneficial to exploit foreign experience, methodologies and “State of the art” equipment through cooperation with bilateral and multilateral development agencies. One of this activities was the Sino-Norwegian project IMPACTS (The Integrated Monitoring Program on Acidification of Chinese Terrestrial System), launched in 1999 and running for five-year (Larssen et al. 2006). It included five forest monitoring areas that receive significant amounts of long-distance airborne acidifying compounds. Motivated by the sensitivity of ground vegetation to acid rain (Falkengren-Grerup 1986, Nieppola 1992, R. Økland 1995a, R. Økland & Eilertsen 1996, T. Økland et al. 2004) and the high conservation value of ground vegetation in Chi- nese subtropical forests, a ground vegetation module was included in the IMPACTS project together with monitoring of the quality of air, precipitation, soil water, surface water, and forests health. These forests represent species-rich ecosystems with many important species (endemic species, key stone species, threatened species, etc.), and the forests are also important as resource (biodiversity, food, building material, etc.) for individual residents and thus for local and national economy (Tang et al. 2004). Ground vegetation monitoring in the IMPACTS project is based upon the basic principles of monitoring developed for use in Norway, highlighting detailed studies of ground vegetation and environmental conditions in permanent plots, in ways that facilitate statistical analyses (R. Økland & Eilertsen 1993, T. Økland 1996, Lawesson et al. 2000). Five monitoring areas were selected to span local environmental gradients and regional gradients in air pollution, while other human influences were as far as possible kept at a low level. Acidification pollution has been and continues to be of major concern for management of the region (Tang et al. 2004). In order to control acidification and to better manage the ecosystems of subtropical forests, a better knowledge of relationships between environmental variables and species composition in the region is needed. The species composition in an area is known to vary along with differences in environmental conditions (Gleason 1926, Whittaker 1967). A gradual change in environmental conditions will most often produce a gradual shift in species composition. The identification of major coenoclines (gra- dients in species composition; Whittaker 1967) and the complex-gradients responsible for them are fundamental tasks of vegetation ecological research (R. Økland & Eilertsen 1993, Antoine & Niklaus 2000). For more than a century, ecologists have attempted to determine the factors that control plant species distribution and variation in vegetation composition (Glenn et al. 2002). The importance of climate for plant distributions was recognized already in the early 19th century (Humboldt & Bonpland 1807). Later, climate in combination with other environmental factors has been used to explain vegetation patterns around the world (Stott 1981, Woodward 1987, Cook & Irwin 1992). To explain relationships between species composition (variation in species abundances) and the environ- ment on finer scales, large sets of corresponding vegetation and soil data sets (i.e. data recorded
Recommended publications
  • Pollination of the Lady's Slipper Cypripedium Henryi Rolfe
    Botanical Journal of the Linnean Society, 2008, 156, 491–499. With 2 figures Pollination of the lady’s slipper Cypripedium henryi Rolfe (Orchidaceae) PENG LI2,3, YI-BO LUO1,2*, YIN-XIA DENG2,4 and YONG KOU5 1The National Orchid Conservation Centre, Shenzhen 518114, Guangdong, China 2State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 3Graduate School of the Chinese Academy of Sciences, Beijing 100049, China 4Jilin Agriculture University, Changchun 130118, Jilin, China 5Huanglong Administration of National Scenic Spots, Huanglong 623300, Sichuan, China Received 2 November 2005; accepted for publication 22 October 2007 The pollination ecology of Cypripedium henryi Rolfe, a slipper orchid endemic to west China, was investigated, and its floral shape, size, colour, and scent were analysed. Examination of the breeding system suggests that the flowers are self-compatible, but need pollen vectors for successful reproduction. The flower is rewardless; over 15 insects belonging to Araneida, Hymenoptera, Diptera, Lepidoptera, and Coleoptera were recorded as flower visitors, but most only alighted or rested on the flower. In the total 32 h of observations over 2 years, female Lasioglossum bees were found to be the most frequent visitors and the only pollinators. They showed a high visitation frequency and, surprisingly, re-visited the same flowers frequently. Cypripedium henryi probably attracts pollinators visiting the flowers through general food deception (odour components, colour, false nectar guides), as well as special structures (slippery labellum, slippery staminode). Although three Lasioglossum species visited the flowers, only L. sauterum Fan et Ebmer was found with pollen. Lasioglossum flavohirtum Ebmer was large and climbed out from the entrance.
    [Show full text]
  • Pdf of JHOS July 2013
    JJoouurrnnaall of the HHAARRDDYY OORRCCHHIIDD SSOOCCIIEETTYY Vol. 10 No. 3 (699) July 2013 JOURNAL of the HARDY ORCHID SOCIETY Vol. 10 No. 3 (69) July 2013 The Hardy Orchid Society Our aim is to promote interest in the study of Native European Orchids and those from similar temperate climates throughout the world. We cover such varied aspects as field study, cultivation and propagation, photography, taxonomy and systematics, and practical conservation. We welcome articles relating to any of these subjects, which will be considered for publication by the editorial committee. Please send your submissions to the Editor, and please structure your text according to the “Advice to Authors” (see website www.hardyorchidsociety.org.uk , January 2004 Journal, Members’ Handbook or contact the Editor). Views expressed in journal arti - cles are those of their author(s) and may not reflect those of HOS. The Hardy Orchid Society Committee President: Prof. Richard Bateman, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3DS Chairman: Celia Wright, The Windmill, Vennington, Westbury, Shrewsbury, Shropshire, SY5 9RG [email protected] Vice-Chairman: vacant Secretary: Richard Robinson, Rhiw, Church Street, Amberley, Sussex, BN18 9NF [email protected] Treasurer: John Wallington, 17, Springbank, Eversley Park Road, London, N21 1JH [email protected] Membership Secretary: Moira Tarrant, Bumbys, Fox Road, Mashbury, Chelmsford, CM1 4TJ [email protected] Plant Show Secretary: David Hughes, Linmoor Cottage, Highwood,
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • An Encyclopedia of Shade Perennials This Page Intentionally Left Blank an Encyclopedia of Shade Perennials
    An Encyclopedia of Shade Perennials This page intentionally left blank An Encyclopedia of Shade Perennials W. George Schmid Timber Press Portland • Cambridge All photographs are by the author unless otherwise noted. Copyright © 2002 by W. George Schmid. All rights reserved. Published in 2002 by Timber Press, Inc. Timber Press The Haseltine Building 2 Station Road 133 S.W. Second Avenue, Suite 450 Swavesey Portland, Oregon 97204, U.S.A. Cambridge CB4 5QJ, U.K. ISBN 0-88192-549-7 Printed in Hong Kong Library of Congress Cataloging-in-Publication Data Schmid, Wolfram George. An encyclopedia of shade perennials / W. George Schmid. p. cm. ISBN 0-88192-549-7 1. Perennials—Encyclopedias. 2. Shade-tolerant plants—Encyclopedias. I. Title. SB434 .S297 2002 635.9′32′03—dc21 2002020456 I dedicate this book to the greatest treasure in my life, my family: Hildegarde, my wife, friend, and supporter for over half a century, and my children, Michael, Henry, Hildegarde, Wilhelmina, and Siegfried, who with their mates have given us ten grandchildren whose eyes not only see but also appreciate nature’s riches. Their combined love and encouragement made this book possible. This page intentionally left blank Contents Foreword by Allan M. Armitage 9 Acknowledgments 10 Part 1. The Shady Garden 11 1. A Personal Outlook 13 2. Fated Shade 17 3. Practical Thoughts 27 4. Plants Assigned 45 Part 2. Perennials for the Shady Garden A–Z 55 Plant Sources 339 U.S. Department of Agriculture Hardiness Zone Map 342 Index of Plant Names 343 Color photographs follow page 176 7 This page intentionally left blank Foreword As I read George Schmid’s book, I am reminded that all gardeners are kindred in spirit and that— regardless of their roots or knowledge—the gardening they do and the gardens they create are always personal.
    [Show full text]
  • 112 – April 2009 Newsletter
    The Irish Garden Plant Society Newsletter No. 112 April 2009 In This Issue 1 Editorial 2 Letter from the Chairman 3 The Lismacloskey Rectory Garden & Project Irish cultivar conservation by Patrick Quigley 6 A Dangerous Walk with Bob Bradshaw 8 John Joe Costin introduces Broadleaved Evergreen Trees 15 Rae McIntyre Reminiscing 19 Worth a Read by Paddy Tobin 24 Collectors’ Corner Bulbinella hookeri Peter Milligan & Nicola Milligan 28 Details of the Annual General Meeting 31 Gail Roantree visits the 2008 Gothenburg International Garden Festival 33 Seed Exchange Report 2009 by Stephen Butler 34 Seamus O’Briens tells the story of Lilium henryi now 120 years in cultivation 37 Regional Reports 45 Looking Ahead 48 Mary Bradshaw extols ‘Ireland’s Wild Orchids a field guide’ Front cover: Moji Shan known to Augustine Henry and E.H. Wilson as “the Dome”. Henry collected Lilium henryi on its slopes during the 1880s. Lilium henryi in Glasnevin’s Double Herbaceous Borders. Séamus O’Brien Editorial Thank you to everyone who wrote or e-mailed with good wishes over the last few months. The Annual General Meeting takes place next month May 23 rd in Greenmount College Antrim. This is an important forum to discuss the future direction and work of the Society. A new Chairman will be elected as Petronilla Martin’s term of office comes to a close after a busy three years. There are also two vacancies on the National Committee as both Marco Fussy and Carsten Asherfeld have returned to Germany. Their expertise as a garden designer and landscape architect respectively contributed in many ways to the IGPS since they joined the Committee in 2006.
    [Show full text]
  • Bee-Mediated Pollen Transfer in Two Populations of Cypripedium Montanum Douglas Ex Lindley
    Journal of Pollination Ecology, 13(20), 2014, pp 188-202 BEE-MEDIATED POLLEN TRANSFER IN TWO POPULATIONS OF CYPRIPEDIUM MONTANUM DOUGLAS EX LINDLEY Peter Bernhardt*1, Retha Edens-Meier2, Eric Westhus3, Nan Vance4 1Department of Biology, Saint Louis University, St. Louis, MO 63103, USA 2Department of Educational Studies, Saint Louis University, St. Louis, MO 63103, USA 3Center for Outcomes Research, Saint Louis University, St. Louis, MO 63103, USA 4P.O. Box 282, Kooskia, ID 83539, USA Abstract—The conversion rate of flowers into fruit in C. montanum at two sites over four seasons was 52-85%, unusually high for a food mimic orchid. Comparative measurements of the trap-like labellum of C. montanum showed it was intermediate in size compared to measurements of six other Cypripedium spp. found in North America and China. While visitors to flowers of C. montanum represented three insect orders, at two sites, over four seasons only small- to medium-sized, solitary bees (5-10 mm in length) carried the pollen massulae. Bee-visitation occurred at both sites and began within 24-48 hours following labellum expansion. Female bees in the genus Lasioglossum (Halictidae) were the most common carriers of massulae. However, species of visiting bees differed between sites and years. At both sites the majority of bees entered and escaped from the labellum in less than 180 seconds and there was no significant difference between the times bees spent in the flowers at both sites. At the site on the Eastside Cascades of Central Oregon, there was no correlation between the length and width of a bee and the time it spent escaping from the basal openings.
    [Show full text]
  • Pollination Biology of the Endangered Orchid Cypripedium Japonicum in a Fragmented Forest of Japan
    bs_bs_banner Plant Species Biology (2014) 29, 294–299 doi: 10.1111/1442-1984.12016 NOTES AND COMMENTS Pollination biology of the endangered orchid Cypripedium japonicum in a fragmented forest of Japan KENJI SUETSUGU* and SHIGEKI FUKUSHIMA† *Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, and †Chiba Prefectural Agriculture and Forestry Research Center, Sanbu, Japan Abstract Pollination biology studies of the endangered orchid Cypripedium japonicum were conducted in its natural habitat using pollinator observation and hand-pollination experiments. The observed fruit set was as follows: artificial outcross-pollinated, 100%; artificial self-pollinated, 100%; pollinator-excluded, 0%; and emasculated flowers, 0%. These results show that this species, although self-compatible, is neither autogamous nor agamospermous. The fruit set for open-pollinated flowers was 14.9%, which sug- gests that the study population was subject to pollinator limitation. The nectarless flowers of C. japonicum were exclusively visited and pollinated by the queens of two bumblebee species (Bombus ardens and B. diversus diversus). It is probable that the nectarless flowers of C. japonicum attract pollinators through a generalized food decep- tive system. Keywords: Bombus, Cypripedium, deceptive pollination, pollination biology. Received 26 October 2012; revision received 25 February 2013; accepted 1 March 2013 Introduction (Li et al. 2008). As the pollinator passes through the basal orifice, it is forced to pass the stigma and under the The Orchidaceae is one of the most species-rich plant anthers where it picks up some of the pollinium (Li et al. families, and their floral diversity and pollination biology 2008). If the pollinator has already picked up pollen from have long intrigued evolutionary biologists (Cozzolino a previous visit, pollination can also occur under passing & Widmer 2005).
    [Show full text]
  • Universidade Federal De Juiz De Fora Depertamento De Ciências Biológicas Pós-Graduação Em Ciências Biológicas
    UNIVERSIDADE FEDERAL DE JUIZ DE FORA DEPERTAMENTO DE CIÊNCIAS BIOLÓGICAS PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS Shaiany Sabrina Lopes Gomes VARIAÇÃO GENÉTICA NO COMPLEXO POLIPLOIDE Zygopetalum maculatum (ORCHIDACEAE) Tese Juiz de Fora, 2017 SHAIANY SABRINA LOPES GOMES VARIAÇÃO GENÉTICA NO COMPLEXO POLIPLOIDE Zygopetalum maculatum (ORCHIDACEAE) Tese de Doutorado do Curso de Pós- Graduação em Ciências Biológicas: Área: Genética e Biotecnologia, para obtenção do Título de Doutora em Ciências Biológicas: Área: Genética e Biotecnologia. Orientador: Lyderson Facio Viccini Coorientadora: Samantha Koehler Juiz de Fora, 2017 Dedicatória Aos meus pais José Pinto Gomes (in memoriam) e Engracia Maria Lopes, exemplos de perseverança, amor infinito, incentivo e dedicação integral. Agradecimentos Minha sincera gratidão, À Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES), pela bolsa de estudo. À Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG) e à Fundação de Amparo à Pesquisa do estado de São Paulo (FAPESP) pelo apoio financeiro no projeto e eventos científicos. A Deus, presente em todos os momentos da minha vida, guiando minhas escolhas para o melhor desfecho possível. À Universidade Federal de Juiz de Fora e ao Programa de Pós-graduação em Genética e Biotecnologia, pela oportunidade de realizar o curso para obtenção do Título de doutora em Ciências Biológicas. Aos professores do Programa de Pós-Graduação, pelos ensinamentos. Ao professor doutor Lyderson Facio Viccini, pela orientação neste projeto. Por sua inteira disponibilidade traduzida em ajuda, paciência e grandes ensinamentos. Pela confiança em mim depositada e por ser um exemplo de profissional. À professora doutora Samantha Koehler pela coorientação, além de ceder o material vegetal para o estudo e mostrar-se sempre disposta a colaborações.
    [Show full text]
  • JAROSLAV SOUKUP SDB. Jaroslav SOUKUP SDB
    JAROSLAV SOUKUP SDB. JAROSlAV SOUKUP SDB. VOCABULARIO DE LOS NOMBRES VULGARES DE LA FLORA PERUANA· y CATALOGO DE LOS GENEROS EDITORIAL SALESIANA - LIMA PERU Preliminar La presente edición es la fusión corregida y aumentada del "Vocabulario" pu­ blicado en 1970 y de "Genera Peruviana", publicado en "Raymondiana" vol.3 pp.5-97, de fecha Diciembre de 1970. La primera edición del vocabulario tenía 1360 géneros con más de 4900 nombres populares. La presente edición sobre­ pasa los 2700 géneros y unos 6300 nombres vulgares. Se ha suprimido la Bibliografíay los pocos grabados pues requerfan unas 200 páginas más. Los interesados en la Bibliografía empleada la pueden encontrar casi en su totalidad en "Biota", vo/umenes /-IX. (1954-1979.) Notas En algunas familias, a continuación del nombre, hay entre paréntesis, dos nú­ meros: el primero indica el número de géneros que contiene la f ami/ia, y el otro el número de las especies conocidas. En los géneros, el primer número indica el total de especies descritas y el se­ gundo las que se han encontrado en el Perú. Si en Jugar del segundo número se encuentra un signo de interrogación, sig­ nifica que se desconoce el número de ellas en el Perú. En algunos casos, el nombre popular está seguido de una vocal entre parén­ tesis; esto indica que se pueden usar ambas formas, sin cambio de signmcado: conuca(o), Jo mismo es conuca o conuco; ckagne(i) Igual ckagne o ckagni. Para los nombres populares de la Amazonía peruana, nos fue útil el "Vocabu­ lario del Oriente Peruano" de Enrique Tovar (1888-1947) publicado en 1966.
    [Show full text]
  • Ecosystem Profile for the Lancang Watershed Submitted by Shanshui
    Ecosystem Profile for the Lancang watershed Submitted by Shanshui Conservation Center Drafted by Lei GU, Fangyi YANG, Shan SUN, Ruijuan QI 20 March 2013 1 Content 1. Introduction ............................................................................................................................... 3 2. Biological importance of the Lancang watershed ..................................................................... 4 2.1 Ecology, Climate, Geography, Geology ........................................................................ 5 2.2 Species Diversity ......................................................................................................... 12 2.3 The Protected Area system in the Lancang Watershed................................................ 19 2.4 The Ecosystem Services of the Lancang Watershed ................................................... 24 3. Socioeconomic Context of the Lancang Watershed ................................................................ 27 3.1 Population and Urbanization ....................................................................................... 27 3.2 Society ......................................................................................................................... 29 3.3 Economy ..................................................................................................................... 30 4 An Overview of Current Threats and Their Causes ................................................................ 35 4.1 An Overview of Impacts and Threats ........................................................................
    [Show full text]
  • Gametophytes and Embryo Ontogeny: Understanding the Reproductive Calendar Of
    bioRxiv preprint doi: https://doi.org/10.1101/738799; this version posted August 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Gametophytes and embryo ontogeny: understanding the reproductive calendar of Cypripedium japonicum Thunb. (Cypripedoideae, Orchidaceae) Balkrishna Ghimire, Sung Won Son, Jae Hyun Kim, Mi-Jin Jeong Division of Plant Resources, Korea National Arboretum, Yongmun, 12519, Korea BG: [email protected] (PH: +82-31-5401091) SWS: [email protected] JHK: [email protected] MJJ: [email protected] Date of submission: 17 August, 2019 Noumber of Table: 1 Number of Figures: 8 black and white (color only for online) Word count: 6060 Running title: Gametophytes and embryo ontogeny of Cypripedium japonicum Thunb. Highlight: Manual pollination, reproductive biology and seed development process in Cypripedium japonicum Thunb., a lady’s slipper orchid endemic to East Asia bioRxiv preprint doi: https://doi.org/10.1101/738799; this version posted August 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Among the flowering plants, the gametophyte development and reproductive biology of orchids is particularly poorly understood. Cypripedium japonicum is a perennial herb, native to East Asia. Due to its limited distribution, the species is included in the Endangered category of the IUCN Red List. Light microscopy and SEM methods were used to study the development of the gametes and embryo. The complete reproductive cycle was developed based on our observations.
    [Show full text]
  • Articles Website
    Familles + genres - Family + genus Acanthaceae : Nouvelles Acanthacées d'Indo-Chine Bull. Soc. Bot. Fr. 1934 Staurogyne : Staurogyne debilis in Taiwan Taiwania 44(2):306-310 1999 Strobilanthes : Notes to the flora of Bhutan : Acanthaceae with special reference to Strobilanthes Edinb. J. Bot. 51(2) 1994 Strobilanthes asiatiques Extraits de diverses flores Aceraceae : Acer : A new species of Acer from Emeishan Acta Bot. Yunnanica, 5(3) 1983 A new species of Acer from Ryukyus J. Jap. Bot., 75 2000 A new species of Acer from Yunnan Acta Bot. Yunnanica, 25(2) 2003 Acer insigne et A. van volxemi Revue horticole 1914 Acer lanceolatum, nouvelle espèce d'érable du Kouang-si Bull. Soc. Bot. Fr. 1903 Acer yangbiense, a new species from Yunnan, China Novon, 13(3) 2003 Erables japonais Revue horticole 1867 L'Acer nikoense et les érables à feuilles trifoliolées Revue horticole 1912 Les érables du Japon Bull. Soc. Bot. Fr. 1906 Local variations of Acer nipponicum J. Jap. Bot., 75 2000 New and noteworthy species of Chinese Acer Bull. Fan. Mem. Inst. Of Biol., vol.I,2 1948 Some Caucasian maples Gard. Chron. 1891 The genus Acer in Formosa and the Liukiu Islands Pacific. Sc., vol.6 1952 The geographical distribution of the genus Acer in Mt.Emei in China Guihaia, 12(1) 1992 Actinidiaceae : Actinidia : A new species of the genus Actinidia from Sichuan Bull. Bot. Res., 4(2) 1984 A revision of Actinidia kolomikta Acta Bot. Yunnan., 25(1) 2003 A revision of the genus Actinidia J. Linn. Soc. (Bot), vol.39 1911 A taxonomic review of the genus Actinidia J.
    [Show full text]