Identification and Use of Plant Material for the Manufacture of New Zealand Indigenous Woven Objects Rua E

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Use of Plant Material for the Manufacture of New Zealand Indigenous Woven Objects Rua E View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ScholarSpace at University of Hawai'i at Manoa Identification and Use of Plant Material for the Manufacture of New Zealand Indigenous Woven Objects Rua E. McCallum and Debra J. Carr Research Abstract Significant collections of objects manufactured by Māori Māori are a tribal people indigenous to New Zealand hav- (the indigenous people of New Zealand) are held, prized ing migrated from various islands in Polynesia approxi- and exhibited internationally by cultural institutions includ- mately 1000 years ago. Toward the end of the eighteenth ing museums such as B.P. Bishop, British, Field and Pitt- century European whalers and sealers arrived, followed Rivers Museums; and Te Papa Tongarewa (Museum of by colonists mainly from Great Britain. A treaty was signed New Zealand). This article aims to assist with the iden- at Waitangi in 1840 between the Crown and Māori when tification of woven objects originating from New Zealand sovereign rule under Queen Victoria and protection of the and with the plant material(s) typically used to construct native population came into force. At that time intermar- them by gathering mātauranga Māori (traditional knowl- riage was not unknown between races and today there edge) and diverse interdisciplinary academic literature are very few full-blooded Māori living. Tribal lifeways were e.g., botany, textile science, anthropology, conservation assimilated into Western culture, society and government. science, museum studies. Plant descriptions, harvesting, Although, treaty grievances have mostly been addressed processing and use are discussed; thereby informing the and a cultural renaissance including the revival of Māori researcher and affording appropriate respect and repre- language has occurred, traditional Māori life will never be sentation to the plant from which the object is derived. what it once was. Today, modern Māori have a lifestyle Availability of such information informs museum collection closely resembling their Pākehā (non-Māori) counterparts and interpretation practices, and assists with material cul- under Western law, but Māori continue to adhere to core ture investigations. traditions, customary practices, lore and the spiritual val- ues of their ancestors. Introduction The primary author who writes from an auto-ethnograph- ic perspective is Ngāi Tahu, a tribal group whose bound- aries encompass much of Te Wai Pounamu (South Is- land of New Zealand). She is a contemporary practitio- Correspondence ner and researcher of Māori cultural materials and their Rua E. McCallum, Ruaimoko Productions and Consultancy Ltd., use. Some of the terminology and names used in this ar- PO Box 1388, Dunedin, NEW ZEALAND. ticle are unique to Ngāi Tahu and the southern tribes who [email protected] additionally claim a genealogical connection to Rapuwai, Hāwea, Waitaha, and Ngāti Māmoe. An insider approach Debra J. Carr, Clothing and Textile Sciences, University of Ota- has been adopted, thus emphasis has been placed on the go, Dunedin, NEW ZEALAND. [Now Department of Engineer- Māori word usage and its primary placement, as opposed ing and Applied Science, Cranfield University, Shrivenham, SN6 to English. Thus, where a Māori word appears textually 8LA, UNITEDKINGDOM.] for the first time, a parenthetical English translation will be [email protected] provided in text; furthermore, a glossary is supplied at the Ethnobotany Research & Applications 10:185-198 (2012) end of the paper. Published: May 15, 2012 www.ethnobotanyjournal.org/vol10/i1547-3465-10-185.pdf 186 Ethnobotany Research & Applications The Māori worldview is defined by a direct relationship this can raise issues of ownership as opposed to kaitiaki- through whakapapa (genealogy) with the environment tanga and possible repatriation to tribal authorities, com- which according to oral tradition was inherent at the be- munities or individuals. The term kaitiakitanga is com- ginning of the universe. Art motifs associated with their plex, it simply means guardianship, but at a deeper level material culture are rooted in the natural world as are includes trusteeship and possessing the authority over physical objects, tools, buildings and resources. their taonga. From an iwi Māori perspective, taonga held within a cultural institutional context belong to them, they It is important for iwi Māori (Māori people) to preserve are connected to the objects, and the organization that of- the past traditions of their people including both material ten understand themselves to be the legal owner, they are artifacts and the non-material knowledge system that un- holders of those artefacts. The fundamental difference is derpinns Māori beliefs and customs. All of this is at risk, the perception of ‘belonging and ownership’ which in the and has been since New Zealand became home to more Māori view is intrinsic; specific taonga may have been than one culture. There are developing strategies in New made by an ancestor and therefore analogous to a fam- Zealand for museums and Māori to achieve a level of par- ily heirloom. ticipation in the management, care, interpretation, presen- tation and preservation of taonga Māori (Māori treasures) Generally, objects are crafted from natural materials with (O’Regan 1997). It still remains that museum collections due consideration to the atua (gods) as spiritual guard- of Māori artifacts, nationally and internationally are poorly ians of the environment and accompanied by ceremonial understood by the ‘other’ cultures working with them. This practice. The craftsperson works within the restrictions of article therefore, addresses a small proportion of Māori these protocols using knowledge that has been handed cultural artifacts by exploring woven objects (including down generationally as taonga tuku iho (treasures hand- basketry, mats and clothing) and the plant material used ed down), a legacy from the atua. The customs and ritu- to manufacture them. als undertaken when producing a simple rourou (basket for eating from) are no less important than those for cre- Such items are manufactured from either strips of plant ating a precious artwork; all taonga are meaningful due material or fiber extracted from plants using the processes to their origin, the respect for the natural materials used, of raranga (weaving using leaf strips) and whatu (weav- the knowledge and craft applied in its making and the es- ing with fiber) respectively. The positive identification of sence of its new form as having been transformed from taonga and the materials used to manufacture them is im- its primal state. The ethos of these Māori values has re- portant with respect to their care and preservation within mained unchanged throughout time. cultural institutions such as museums. Further, such ap- propriately assigned knowledge using the correct linguis- Consequently, the plants discussed in this paper are sig- tic terminology provides a platform for informing employ- nificant to Māori both traditionally and in contemporary ees and visitors to cultural institutions about the material society; they are taonga species listed in the Ngāi Tahu culture of a society, and the preservation, enhancement, Claims Settlement Act 1998 (New Zealand Government maintenance and revival of traditional knowledge (Ba- 1998) which acknowledges Ngāi Tahu’s cultural and tra- lázsy & Eastop 1999, Florian et al. 1990, Hodges 1988). ditional use of native floral and faunal species. The Act identifies these species by name and acknowledges the The ability to identify plant material used to manufacture cultural, spiritual, historical and traditional association of objects is acknowledged as difficult within many cultural Ngāi Tahu with those species and the natural world. contexts and especially holders of artifacts both domes- “Taoka embody powerful forces, and represent some tic and foreign. For objects originating from New Zealand, of the genealogical identity and relationship to re- such identification is further limited by a paucity of infor- sources originating in the environment. The intercon- mation easily accessible in the international literature. nectedness of humans to the natural world occurs However, some efforts have been made to provide guides through a whakapapa relationship, whereby all things for the identification of plant material derived from New trace their origins to the atua. All taoka are imbued Zealand (Carr et al. 2009, Goulding 1971). In some in- with spiritual concepts such as mana, seen as au- stances identification of objects constructed from cultur- thority, power, prestige, and is the source of energy al materials originating from New Zealand may assist in transmitted through ancestors from the gods; tapu distinguishing tribal ownership with respect to rohe (tribal [under restriction] and rāraki kōrero [traditional sto- areas). This may provide access to lost knowledge, thus ries].” (McCallum 2008:23). enabling social inclusion by preserving, enhancing and This statement is echoed in the understandings of Māori maintaining the traditional knowledge and customs of cul- across New Zealand, indeed Kawharu relates this rela- tural resource use for future generations. However, care tionship with health. is required with respect to both cultural materials and fin- “The interconnectedness of all things means that the ished artefacts as these were widely traded nationally and welfare of any part of the environment will directly im- internationally
Recommended publications
  • Temporal Development and Regeneration Dynamics of Restored Urban Forests
    Temporal Development and Regeneration Dynamics of Restored Urban Forests By Katherine de Silva A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Masters in Ecology & Biodiversity School of Biological Sciences Faculty of Sciences Victoria University of Wellington October 2019 Supervisors: Stephen Hartley. Director of the Centre of Biodiversity & Restoration Ecology, Victoria University of Wellington Kiri Joy Wallace. Postdoctoral Fellow, Environmental Research Institute, University of Waikato. Katherine de Silva: Temporal Development and Regeneration Dynamics of Restored Urban Forests, © October 2019. 2 ABSTRACT Urban forest restoration programmes are a key tool used to initiate, re-create or accelerate the succession of forest species; improving ecosystem services, function, resilience and biodiversity. Succession is a temporal shift in species dominance driven by abiotic and biotic influences, but over decadal timescales the trajectory and success of restoration plantings in degraded urban environments can be hindered. To facilitate the successful reconstruction of forest ecosystems from scratch, an understanding of the temporal patterns in planted forest development, dynamics of seedling regeneration and dominant drivers of seedling diversity is required. Using a chronosequence approach, permanent plots were established at 44 restored urban forests aged 5 to 59 years since initial plantings took place, across five New Zealand cities between Wellington and Invercargill. Vegetation surveys were undertaken and data on micro- climate were collected. This study examined the 1) temporal dynamics of restored urban forest development and seedling regeneration and 2) dominant drivers of seedling regeneration. Data were analysed using linear regression models, breakpoint analysis and mixed-effects modelling. Early forest development (<20 years) exhibited the most changes in canopy composition and structure, forest floor dynamics, seedling community and microclimate.
    [Show full text]
  • Development of Community-Based Monitoring Methods for Coastal Dunes of the Bay of Plenty Region
    Development of community-based monitoring methods for coastal dunes of the Bay of Plenty Region David Bergin and Michael Bergin Environmental Restoration Ltd June 2018 Papamoa College students surveying vegetation cover on the foredunes along a transect, Papamoa Beach A contract report prepared for the Bay of Plenty Regional Council by Environmental Restoration Ltd. This project has been undertaken in collaboration with the Coastal Restoration Trust of New Zealand and their research partners. For the Bay of Plenty coastal dunes, monitoring methods were developed with assistance and in collaboration with Chris Ward, Shay Dean, Courtney Bell and Hamish Dean of the Bay of Plenty Regional Council. 1 Scope and content of this report The Bay of Plenty Regional Council (BOPRC) was one of the first councils to adopt a community‐ based approach to dune management in New Zealand following programmes that were initiated widely in New South Wales in the 1980s and expanded to other parts of Australia (Dahm et al. 2005). Extensive programmes now operate in many regions throughout New Zealand. In the Bay of Plenty region there are currently community Coast Care groups located from Waihi Beach in the west to Whangaparaoa on the east of the region involved in various aspects of dune restoration and management (Figure 1). They are formed by partnerships between the local community, iwi, district councils, the Department of Conservation and BOPRC working together to protect and restore beaches and coastal dunes (www.boprc.govt.nz/residents‐and‐ communities/care‐groups/coast‐care/). The Coast Care groups around the BOP region are involved in a wide range of activities to help protect the coastline, restore natural dune form and function, and are increasing awareness of coastal hazards and climate change in local communities.
    [Show full text]
  • Ficha Catalográfica Online
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA – IB SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE CAMPINAS, SÃO PAULO 2018 SUZANA MARIA DOS SANTOS COSTA SYSTEMATIC STUDIES IN CRYPTANGIEAE (CYPERACEAE) ESTUDOS FILOGENÉTICOS E SISTEMÁTICOS EM CRYPTANGIEAE Thesis presented to the Institute of Biology of the University of Campinas in partial fulfillment of the requirements for the degree of PhD in Plant Biology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do Título de Doutora em Biologia Vegetal ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA Suzana Maria dos Santos Costa E ORIENTADA PELA Profa. Maria do Carmo Estanislau do Amaral (UNICAMP) E CO- ORIENTADA pelo Prof. William Wayt Thomas (NYBG). Orientadora: Maria do Carmo Estanislau do Amaral Co-Orientador: William Wayt Thomas CAMPINAS, SÃO PAULO 2018 Agência(s) de fomento e nº(s) de processo(s): CNPq, 142322/2015-6; CAPES Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Suzana Maria dos Santos, 1987- C823s CosSystematic studies in Cryptangieae (Cyperaceae) / Suzana Maria dos Santos Costa. – Campinas, SP : [s.n.], 2018. CosOrientador: Maria do Carmo Estanislau do Amaral. CosCoorientador: William Wayt Thomas. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Savanas. 2. Campinarana. 3. Campos rupestres. 4. Filogenia - Aspectos moleculares. 5. Cyperaceae. I. Amaral, Maria do Carmo Estanislau do, 1958-. II. Thomas, William Wayt, 1951-. III. Universidade Estadual de Campinas. Instituto de Biologia. IV. Título.
    [Show full text]
  • Marlborough's East Coast
    Council Meeting 24 June 2021 Separately Circulated Attachment (as indicated this is circulated separately to the Agenda) This attachment relates to Item 6 in your Agenda Attachment 6.3 – Technical Report (Version 4, June 2021) Document Control Version Date of Report Environment Planning Finance Council Meeting Committee Meeting Community Committee Meeting Version 1 22 March 2019 30 April 2019 16 May 2019 Version 2 28 June 2019 18 July 2019 8 August 2019 Version 3 1 November 2019 29 November 2019 12 December 2019 Version 4 June 2021 24 June 2021 File Ref: L225-16-04 Record No: 1966306 Marlborough's East Coast Contents 1. Introduction ...................................................................................................... 1 1.1. Purpose .............................................................................................................................. 1 1.2. Scope ................................................................................................................................. 1 1.3. Structure ............................................................................................................................ 2 1.4. Coastline photos ............................................................................................................... 2 2. The values of Marlborough’s East Coast environment present before the 2016 Kaikōura earthquake ........................................................................ 6 2.1. Cultural Values .................................................................................................................
    [Show full text]
  • Beach Dynamics and Recreational Access Changes on an Earthquake-Uplifted Coast
    Beach dynamics and recreational access changes on an earthquake-uplifted coast Prepared for Marlborough District Council August 2020 Marine Ecology Research Group University of Canterbury Private Bag 4800 Christchurch 8140 ISBN 978-0-473-54390-7 (Print) ISBN 978-0-473-54392-1 (Online) For citation: Orchard, S., Falconer, T., Fischman, H., Schiel, D. R. (2020). Beach dynamics and recreational access changes on an earthquake-uplifted coast. Report to the Marlborough District Council, 42pp. ISBN 978-0-473-54390-7 (Print), ISBN 978-0-473-54392-1 (Online). Available online from https://hdl.handle.net/10092/101043 This work is made available under an Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. For further information please contact: [email protected] Ph: +64 3 369 4141 Disclaimer Information contained in report is provided in good faith based on the preliminary results of field studies, literature review and third party information. Assumptions relied upon in preparing this report includes information provided by third parties, some of which may not have been verified. The information is provided on the basis that readers will make their own enquiries to independently evaluate, assess and verify the information’s correctness, completeness and usefulness. By using this information you acknowledge that this information is provided by the Marine Ecology Research Group (MERG). Findings, recommendations, and opinions expressed within this document relate only to the specific locations of our study sites and may not be applicable to other sites and contexts. MERG undertakes no duty, nor accepts any responsibility, to any party who may rely upon or use this document.
    [Show full text]
  • PDF Download
    E-nEwslEttEr: no 77. April 2010 Deadline for next issue: Friday 14 May 2010 Guest message from the Treasurer It was with mixed emotions I attended the launch of the outstanding new publication “Threatened Plants of New Zealand” at the Department of Conservation national office a couple of weeks ago. Pride that the Network with its partners had supported and facilitated such a publication was tinged with sadness that the book showed that we are not making progress in the management of New Zealand’s biodiversity. This at the same time that funding for biodiversity management in general, and threatened species in particular, is under pressure both nationally and regionally. The irony is not lost in this the International Year of Biodiversity. What can we do about it? There are no easy answers but it has to start with each and every one of us and with the organisations we support and belong to. The work of the Network, and its achievements over the past 6 years, has been beyond what any of us could have imagined. Minister of Conservation The Hon. Kate Wilkinson Yet we need to do more. This work needs to speaks at the launch of Threatened Plants of New be managed in a coordinated and professional Zealand. manner. For that, we need resources and funding. Photo: Nadine Bott, Department of Conservation. One area of work that the Network supports is research into the conservation, protection and recovery of New Zealand’s threatened plant species and communities. The David Given Threatened Plant Scholarship was launched in 2008 with the first recipients being Drs Peter Heenan and Rob Smissen for their research into the conservation genetics and taxonomy of Convolvulus “glabrous”.
    [Show full text]
  • Polarised Light Microscopy: an Old Technique Casts New Light on Māori Textile Plants
    Polarised light microscopy: an old technique casts new light on Māori textile plants Rachel A. Paterson1, Bronwyn J. Lowe1*, Catherine A. Smith1, Janice M. Lord2, Roka Ngarimu-Cameron3 1Department of Applied Sciences/Te Tari Pūtaiao Whakahāngai, University of Otago/Te Whare Wānanga o Otāgo, PO Box 56, Dunedin/Ōtepoti 9054, New Zealand/Aotearoa 2Department of Botany/Te Tari Huaota o Otāgo, University of Otago/Te Whare Wānanga o Otāgo, PO Box 56, Dunedin/Ōtepoti 9054, New Zealand/Aotearoa 32806 State Highway 35, Hawai Bay, Opotiki 3197, New Zealand/Aotearoa Corresponding author: *[email protected] ABSTRACT Understanding the composition of an artefact has ramifications for advancing human history and behaviour knowledge, providing cultural information about trade, agricultural practices and adaptation to new environments. However, accurate plant identification from artefacts is problematic, since textile production, age, dirt and/or conservation treatments obscure morphological features, and specimen size and/or ethical considerations hamper modern analytical methods. This study tested the efficacy of polarised light microscopy (PLM) in the identification of New Zealand plant species commonly used in Māori textiles, and demonstrates that morphological and birefringent features observed using PLM have the potential to distinguish between- and within- plant genera. KEYWORDS Māori textiles, New Zealand flax, Phormium, Cordyline, Freycinetia, sign of elongation, modified Herzog test, plant material identification INTRODUCTION Accurate plant material identification is critical for advancing study of material culture, since an object’s composition provides an insight into its origin, additionally revealing important cultural information such as human interactions and emigration pathways (Schaffer 1981; Jakes et al. 1994). However, one of the main challenges for accurate identification of plant species in textile artefacts is the scarcity of distinct morphological features, evident from whole plants or individual leaves (e.g.
    [Show full text]
  • NZ BOT SOC Sept2014
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 117 September 2014 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Webmaster: Murray Dawson URL: www.nzbotanicalsociety.org.nz Subscriptions The 2014 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2014 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the December 2014 issue is 25 November 2014. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa 169 Tory St Wellington 6021 Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted.
    [Show full text]
  • Te Reo O Te Repo – the Voice of the Wetland Introduction 1
    TE REO O TE REPO THE VOICE OF THE WETLAND CONNECTIONS, UNDERSTANDINGS AND LEARNINGS FOR THE RESTORATION EDITED BY YVONNE TAURA CHERI VAN SCHRAVENDIJK-GOODMAN OF OUR WETLANDS AND BEVERLEY CLARKSON Te reo o te repo = The voice of the wetland: connections, understandings and learnings for the restoration of our wetlands / edited by Yvonne Taura, Cheri van Schravendijk-Goodman, Beverley Clarkson. -- Hamilton, N.Z. : Manaaki Whenua – Landcare Research and Waikato Raupatu River Trust, 2017. 1 online resource ISBN 978-0-478-34799-9 (electronic) ISBN 978-0-947525-03-3 (print) I. Taura, Y., ed. II. Manaaki Whenua – Landcare Research New Zealand Ltd. III. Waikato Raupatu River Trust. Published by Manaaki Whenua – Landcare Research Private Bag 3127, Hamilton 3216, New Zealand Waikato Raupatu River Trust PO Box 481, Hamilton 3204, New Zealand This handbook was funded mainly by the Ministry of Business, Innovation and Employment (contract C09X1002).The handbook is a collaborative project between the Waikato Raupatu River Trust and Manaaki Whenua – Landcare Research. Editors: Yvonne Taura (Ngāti Hauā, Ngāti Tūwharetoa, Ngai Te Rangi, Ngāti Rangi, Ngāti Uenuku/Waikato Raupatu River Trust and Manaaki Whenua), Cheri van Schravendijk-Goodman (Te Atihaunui a Papārangi, Ngāti Apa, Ngāti Rangi), and Beverley Clarkson (Manaaki Whenua). Peer reviewers: Anne Austin (Manaaki Whenua), Kiriwai Mangan (Waikato Raupatu Lands Trust), and Monica Peters (people+science). Design and layout: Abby Davidson (NZ Landcare Trust) This work is copyright. The copying, adaptation, or issuing of this work to the public on a non-profit basis is welcomed. No other use of this work is permitted without the prior consent of the copyright holder(s).
    [Show full text]
  • R. B. a Plant Communities of the Steepland Conifer- Broadleaved Hardwood Forests of Central Westland, South Island, New Zealand
    Sonderdrucke aus der Albert-Ludwigs-Universität Freiburg ALBERT REIF R. B. ALLEN Plant Communities of the Steepland Conifer- Broadleaved Hardwood Forests of Central Westland, South Island, New Zealand Originalbeitrag erschienen in: Phytocoenologia 16 (1988), S. 145 - 224 Phytocoenologia 16 (2) 145-224 Stuttgart-Braunschweig, May 18, 1988 Plant communities of the steepland conifer-broadleaved hardwood forests of central Westland, South Island, New Zealand by A. REIF, Bayreuth, and R. B. ALLEN, Christchurch with 8 photos, 20 figures and 5 tables Abstract. This paper presents a phytosociological classification of the conifer-broadleaved hardwood forests in central Westland, South Island, New Zealand. The analysis was made using the BRAUN-BLANQUET approach. Because this approach has rarely been applied in New Zealand, syntaxa were not named using BRAUN-BLANQUET nomenclature. The following community groups and communities were distinguished: 1. The Melicytus ramiflorus community group contained shrubland and low statured forest (c. 4-12 m tall) on disturbed sites up to c. 750 m altitude: — The Melicytus ramiflorus — Carpodetus serratus community (A) was frequently found on lower faces, on terraces, in gullies, and in canopy gaps. Soils were recent to weakly de- veloped and contained fine earth. Most relevēs were from schist and greywacke areas. — The Coriaria arborea community (B) was sampled in a few schist areas adjacent to streams. 2. The Prumnopitys ferruginea community group contained 3 communities: — The Dacrycarpus dacrydioides community (C) was c. 20-30 m tall forest. It occurred locally on poorly drained sites, usually terraces, up to c. 300 m a.s.l. (above sea level). — The Dacrydium cupressinum community (D) was c.
    [Show full text]
  • Ecology, Habitat and Growth
    Technical Article No. 7.1 - ecology, habitat and growth INTRODUCTION Spinifex (Spinifex sericeus R.Br.) is the major Spinifex often occurs with other indigenous sand indigenous sand dune grass that occurs on binding species on the foredune including pingao foredunes throughout most of the North Island (Ficinia spiralis), nihinihi (sand convolvulus, and the upper part of the South Island. Sometimes Calystegia soldanella), and hinarepe (sand referred to as silvery sand grass, or kowhangatara, tussock, Poa billardierei). it is the dominant sand binding plant on the seaward face of the foredune where its long trailing runners and vigorous growth make it an ideal sand dune stabiliser. In many North Island dunes, spinifex forms a near continuous colony for long stretches of sandy coastline. Technical Handbook Section 7: Native vegetation on foredunes Technical habitat and growth 7.1 Spinifex - ecoloogy, Article No. 7.1 - Spinifex - ecology, habitat and growth PLANT DESCRIPTION Spinifex is a stout perennial grass with strong on both surfaces (McDonald, 1983). At intervals of creeping runners or stolons. Leaves are usually 10-15 cm, new nodes are formed from which roots 5-10 mm wide and up to 38 cm long (Craig, 1984). emerge, take root and eventually a discrete plant The stolons can be up to 20 m long with internodes will form where there is sufficient space that is up to 38 cm long. Each node produces adventitious independent of the original stolon (Hesp, 1982). roots and upright, silvery green leaves that are hairy Vigorous spinifex on a foredune showing the upright silvery green leaves and long creeping runners or stolons that spread rapidly to occupy bare sand.
    [Show full text]
  • Restoration Guidelines for the Ahipara Recreation Reserve, Mapere Block
    Restoration Guidelines for the Ahipara Recreation Reserve, Mapere Block Prepared by: Laura Shaft, CoastCare Coordinator Northland Regional Council Janeen Collings, Kai Arahi Taonga Rahui ki Muriwhenua Far North Threatened Plants Ranger Department of Conservation Finalised September 2010 Restoration Guidelines for Ahipara Recreation Reserve, Mapere Block Contents Summary……………………………………………………………………..…3 1. Introduction …………………………………………………. …………....4 2. Background and scope of this report…………………………………... 5 3. Site description……………………………………………………….…... 5 4. Natural dune form and function……………………………………...…10 5. Restoration Recommendations…………………………….………..…12 6. Rules and Regulations…………………………………………….….... 23 References………………………………………………………………....... 24 Other useful resources…………………………………………..…………..24 Useful websites……………………………………………….……………... 24 Appendices Appendix 1 – Historic aerial photographs of the study site…………..25 Appendix 2 – Guidelines for collecting seed and taking cuttings……28 Appendix 3 – Managing Biosecurity risk…………………………….... 29 - 2 - Restoration Guidelines for Ahipara Recreation Reserve, Mapere Block Summary The coastal environment represents one of the most dynamic and vulnerable eco-systems in New Zealand. The Ahipara Recreation Reserve is a highly sensitive environment both culturally and ecologically and contains estuarine, riparian and coastal dune habitats. It is situated in Ahipara in the Far North where there are increasing threats to healthy, fully functioning dunes systems. In the reserve vehicle and animal damage
    [Show full text]