Tamilnadu Board Class 11 Bio-Botany Chapter 5

Total Page:16

File Type:pdf, Size:1020Kb

Tamilnadu Board Class 11 Bio-Botany Chapter 5 Chapter Taxonomy and 5 Systematic Botany Plants are the prime companions of Learning Objectives human beings in this universe. Plants The learner will be able to, are the source of food, energy, shelter, clothing, drugs, beverages, oxygen and • Differentiate systematic botany from taxonomy. the aesthetic environment. Taxonomic • Explain the ICN principles and to activity of human is not restricted to discuss the codes of nomenclature. living organisms alone. Human beings • Compare the national and learn to identify, describe, name and international herbaria. classify food, clothes, books, games, • Appreciate the role of morphology, vehicles and other objects that they come anatomy, cytology, DNA sequencing across in their life. Every human being in relation to Taxonomy, thus is a taxonomist from the cradle to • Describe diagnostic features of the grave. families Fabaceae, Solanaceae, and Taxonomy has witnessed various Liliaceae. phases in its early history to the present day modernization. The need for knowledge Chapter Outline on plants had been realized since human existence, a man started utilizing plants 5.1 Taxonomy and Systematics for food, shelter and as curative agent for 5.2 Taxonomic Hierarchy ailments. 5.3 Concept of species – Morphological, Biological and Phylogenetic Theophrastus (372 – 287 BC), the 5.4 International Code of Botanical Greek Philosopher known as “Father of Nomenclature Botany”. He named and described some 500 5.5 Type concept plants in his “De Historia Plantarum”. Later 5.6 Taxonomic Aids Dioscorides (62 – 127 AD), Greek physician, 5.7 Botanical Gardens described and illustrated in his famous 5.8 Herbarium – Preparation and uses “Materia medica” and described about 600 th 5.9 Classification of Plants medicinal plants. From 16 century onwards 5.10 Types of classification Europe has witnessed a major developments 5.11 Modern trends in taxonomy in the field of Taxonomy. Some of the key 5.12 Cladistics contributors include Andrea Caesalpino, John 5.13 Selected Families of Angiosperms Ray, Tournefort, Jean Bauhin and Gaspard Bauhin. Linnaeus ‘Species Plantarum' (1753) 124 TN_GOVT_BOTANY_XI_Page 124-166 CH05.indd 124 02-06-2018 15:18:56 laid strong foundation for the binomial 5.1 Taxonomy and Systematics nomenclature. The word taxonomy is derived from Greek Taxonomy is no more classical words “taxis” (arrangement) and “nomos” morphology based discipline but (rules or laws). Davis and Heywood (1963) become a dynamic and transdisciplinary defined taxonomy as “the science dealing subject, making use of many branches of with the study of classification including botany such as Cell Biology, Physiology, the bases, principles, rules and procedures”. Biochemistry, Ecology, Pharmacology and Though there were earlier usages of also Modern Biotechnology, Molecular the term ‘systematics’, only during the Biology and Bioinformatics. It helps latter half of 20th century ‘Systematics’ to understand Biodiversity, Wildlife, was recognized as a formal field of study. Forest Management of natural resources Simpson (1961) defined systematics as for sustainable use of plants and eco “Scientific study of the kinds and diversity restoration. Differences between Taxonomy and Systematics Taxonomy Systematics • Discipline of classifying organisms into • Broad field of biology that studies the taxa. diversification of species. • Governs the practices of naming, • Governs the evolutionary history and describing, identifying and specimen phylogenetic relationship in addition to preservation. taxonomy. • Classification + Nomenclature = • Taxonomy + Phylogeny = Systematics Taxonomy of organisms and all relationships among tuberosus. These two species differ in their them”. Though there are two terms are morphology. Both of them are herbs but used in an interchangeable way, they differ Helianthus tuberosus is a perennial herb. from each other. Genus consist of multiple species which have similar characters but differ 5.2 Taxonomic Hierarchy from the species of another genus. Taxonomic hierarchy was introduced by Example: Helianthus, Tridax. Carolus Linnaeus. It is the arrangement Family comprises a number of genera of various taxonomic levels in descending which share some similarities among order starting from kingdom up to them. Example: Asteraceae. species. Order includes group of families Species is the lowest of classification which show less similarities among them. and shows the high level of similarities Class consists of group of orders which among the organisms. For example, share few similarities. Helianthus annuus and Helianthus 125 TN_GOVT_BOTANY_XI_Page 124-166 CH05.indd 125 02-06-2018 15:18:56 Division is the next level of classification Kingdom is the highest level or rank that consists of number of classes. of the classification. Example: Plantae Example: Magnoliophyta. Rank Ending Example Kingdom - Plantae Phylum = Division -phyta Magnoliophyta Subphylum = Sub division -phytina Magnoliophytina Class -opsida Asteropsida Sub class -idea Asteridea Order -ales Asterales Suborder -ineae Asterineae Family -aceae Asteraceae Sub family -oideae Asteroideae Tribe -eae Heliantheae Genus - Helianthus Sub genus - Helianthus subg. Helianthus Series - Helianthus ser. Helianthus Species - Helianthus annuus 5.3 Concept of species-Morphological, 3. In sexually reproducing organisms, Biological and Phylogenetic they interbreed freely in nature, Species is the fundamental unit of taxonomic producing fertile offspring. classification. Greek philosopher Plato 4. In asexually reproducing organisms, proposed concept of “eidos” or species and they are identified by their believed that all objects are shadows of the morphological resemblance. “eidos”. According to Stebbins (1977) species 5. In case of fossil organisms, they are is the basic unit of evolutionary process. identified by the morphological and Species is a group of individual organisms anatomical resemblance. which have the following characters. Species concepts can be classified into 1. A population of organisms which two general groups. Concept emphasizing closely resemble each other more than process of evolution that maintains the the other population. species as a unit and that can result in 2. They descend from a common evolutionary divergence and speciation. ancestor. 126 TN_GOVT_BOTANY_XI_Page 124-166 CH05.indd 126 02-06-2018 15:18:56 Another concept emphasises the product and recommendations of the International of evolution in defining a species. Code of Botanical Nomenclature. ICBN deals with the names of existing (living) Types of Species and extinct (fossil) organisms. The There are different types of species and elementary rule of naming of plants they are as follows: was first proposed by Linnaeus in 1737 1. Process of evolution - Biological Species and 1751 in his Philosophia Botanica. 2. Product of evolution - Morphological In 1813 a detailed set of rules regarding Species and Phylogenetic Species plant nomenclature was given by A.P.de Candolle in his famous work “Theorie Morphological Species (Taxonomic elementaire de la botanique”. Then the species) present ICBN was evolved by following the same rules of Linnaeus, A.P. de Candolle When the individuals are similar to one and his son Alphonse de Candolle. another in one or more features and different from other such groups, they are called morphological species. These ICBN due to specific reasons and in species are defined and categorized with order to separate plant kingdom from no knowledge of phylogenetic history, gene other organisms, is redesignated as flow or detailed reproductive mechanisms. ICN. The International Botanical Congress held in Melbourne in July Biological Species (Isolation Species) 2011 brought this change. The ICN According to Ernest Mayr 1963,“ these stands for International Code of are groups of populations that interbreed Nomenclature for Algae, Fungi and and are reproductively isolated from other Plants. such groups in nature”. ICN Principles Phylogenetic Species International Code of Nomenclature is This concept was developed by Meglitsch based on the following six principles. (1954), Simpson (1961) and Wiley (1978). Wiley defined phylogenetic species as “an 1. Botanical nomenclature is independent of zoological and bacteriological evolutionary species is a single lineage of nomenclature. ancestor descendent populations which maintains its identity from other such 2. Application of names of taxonomic group is determined by means of lineages which has its own evolutionary nomenclatural types. tendencies and historical fate”. 3. Nomenclature of a taxonomic group is based on priority of publication. 5.4 International Code of Botanical 4. Each taxonomic group with a particular Nomenclature circumscription, position and rank can bear only one correct name, the Assigning name for a plant is known as earliest that is in accordance with the Nomenclature. This is based on the rules rules except in specified cases. 127 TN_GOVT_BOTANY_XI_Page 124-166 CH05.indd 127 02-06-2018 15:18:56 5. Scientific names of taxonomic groups require the use of an identifier from are treated as Latin regardless of their a “recognized repository”. There are derivation. two recognized repositories Index 6. The rules of nomenclature are fungorum and Myco Bank. retroactive unless expressly limited. 19th International Botanical Congress was held in Shenzhen in China in 2017. Codes of Nomenclature Changes accepted by International ICN has formulated a set of rules and Botanical Congress are yet to be published.
Recommended publications
  • Glossary - Cellbiology
    1 Glossary - Cellbiology Blotting: (Blot Analysis) Widely used biochemical technique for detecting the presence of specific macromolecules (proteins, mRNAs, or DNA sequences) in a mixture. A sample first is separated on an agarose or polyacrylamide gel usually under denaturing conditions; the separated components are transferred (blotting) to a nitrocellulose sheet, which is exposed to a radiolabeled molecule that specifically binds to the macromolecule of interest, and then subjected to autoradiography. Northern B.: mRNAs are detected with a complementary DNA; Southern B.: DNA restriction fragments are detected with complementary nucleotide sequences; Western B.: Proteins are detected by specific antibodies. Cell: The fundamental unit of living organisms. Cells are bounded by a lipid-containing plasma membrane, containing the central nucleus, and the cytoplasm. Cells are generally capable of independent reproduction. More complex cells like Eukaryotes have various compartments (organelles) where special tasks essential for the survival of the cell take place. Cytoplasm: Viscous contents of a cell that are contained within the plasma membrane but, in eukaryotic cells, outside the nucleus. The part of the cytoplasm not contained in any organelle is called the Cytosol. Cytoskeleton: (Gk. ) Three dimensional network of fibrous elements, allowing precisely regulated movements of cell parts, transport organelles, and help to maintain a cell’s shape. • Actin filament: (Microfilaments) Ubiquitous eukaryotic cytoskeletal proteins (one end is attached to the cell-cortex) of two “twisted“ actin monomers; are important in the structural support and movement of cells. Each actin filament (F-actin) consists of two strands of globular subunits (G-Actin) wrapped around each other to form a polarized unit (high ionic cytoplasm lead to the formation of AF, whereas low ion-concentration disassembles AF).
    [Show full text]
  • Liliaceae S.L. (Lily Family)
    Liliaceae s.l. (Lily family) Photo: Ben Legler Photo: Hannah Marx Photo: Hannah Marx Lilium columbianum Xerophyllum tenax Trillium ovatum Liliaceae s.l. (Lily family) Photo: Yaowu Yuan Fritillaria lanceolata Ref.1 Textbook DVD KRR&DLN Erythronium americanum Allium vineale Liliaceae s.l. (Lily family) Herbs; Ref.2 Stems often modified as underground rhizomes, corms, or bulbs; Flowers actinomorphic; 3 sepals and 3 petals or 6 tepals, 6 stamens, 3 carpels, ovary superior (or inferior). Tulipa gesneriana Liliaceae s.l. (Lily family) “Liliaceae” s.l. (sensu lato: “in the broad sense”) - Lily family; 288 genera/4950 species, including Lilium, Allium, Trillium, Tulipa; This family is treated in a very broad sense in this class, as in the Flora of the Pacific Northwest. The “Liliaceae” s.l. taught in this class is not monophyletic. It is apparent now that the family should be treated in a narrower sense and some of the members should form their own families. Judd et al. recognize 15+ families: Agavaceae, Alliaceae, Amarylidaceae, Asparagaceae, Asphodelaceae, Colchicaceae, Dracaenaceae (Nolinaceae), Hyacinthaceae, Liliaceae, Melanthiaceae, Ruscaceae, Smilacaceae, Themidaceae, Trilliaceae, Uvulariaceae and more!!! (see web reading “Consider the Lilies”) Iridaceae (Iris family) Photo: Hannah Marx Photo: Hannah Marx Iris pseudacorus Iridaceae (Iris family) Photo: Yaowu Yuan Photo: Yaowu Yuan Sisyrinchium douglasii Sisyrinchium sp. Iridaceae (Iris family) Iridaceae - 78 genera/1750 species, Including Iris, Gladiolus, Sisyrinchium. Herbs, aquatic or terrestrial; Underground stems as rhizomes, bulbs, or corms; Leaves alternate, 2-ranked and equitant Ref.3 (oriented edgewise to the stem; Gladiolus italicus Flowers actinomorphic or zygomorphic; 3 sepals and 3 petals or 6 tepals; Stamens 3; Ovary of 3 fused carpels, inferior.
    [Show full text]
  • Food Microbiology Significance of Aspergillus Niger Aggregate
    Food Microbiology 82 (2019) 240–248 Contents lists available at ScienceDirect Food Microbiology journal homepage: www.elsevier.com/locate/fm Significance of Aspergillus niger aggregate species as contaminants of food products in Spain regarding their occurrence and their ability to produce T mycotoxins ∗ Jéssica Gil-Serna , Marta García-Díaz, Covadonga Vázquez, María Teresa González-Jaén, Belén Patiño Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid. Jose Antonio Nováis 12, 28040, Madrid, Spain ARTICLE INFO ABSTRACT Keywords: The Aspergillus niger aggregate contains 15 morphologically indistinguishable species which presence is related Ochratoxin A to ochratoxin A (OTA) and fumonisin B2 (FB2) contamination of foodstuffs. The taxonomy of this group was Fumonisins recently reevaluated and there is a need of new studies regarding the risk that these species might pose to food Food safety security. 258 isolates of A. niger aggregate obtained from a variety of products from Spain were classified by Section Nigri molecular methods being A. tubingensis the most frequently occurring (67.5%) followed by A. welwitschiae (19.4%) and A. niger (11.7%). Their potential ability to produce mycotoxins was evaluated by PCR protocols which allow a rapid detection of OTA and FB2 biosynthetic genes in their genomes. OTA production is not widespread in A. niger aggregate since only 17% of A. niger and 6% of A. welwitschiae isolates presented the complete biosynthetic cluster whereas the lack of the cluster was confirmed in all A. tubingensis isolates. On the other hand, A. niger and A. welwitschiae seem to be important FB2 producers with 97% and 29% of the isolates, respectively, presenting the complete cluster.
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Plant Science Today (2017) 4(1): 1-11 1
    Plant Science Today (2017) 4(1): 1-11 1 http://dx.doi.org/10.14719/pst.2017.4.1.268 ISSN: 2348-1900 Plant Science Today http://horizonepublishing.com/journals/index.php/PST Research Article Ethnobotanical plants of Veligonda Hills, Southern Eastern Ghats, Andhra Pradesh, India S K M Basha1* and P Siva Kumar Reddy2 1NBKR Medicinal Plant Research Institute, Vidya Nagar, SPSR Nellore, Andhra Pradesh, India 2Research and Development Centre, Bharathiyar University, Coimbatore, Tamil Nadu, India Article history Abstract Received: 04 September 2016 The Veligonda range which separates the Nellore district from Kadapa and Kurnool is Accepted: 16 October 2016 the back bone of the Eastern Ghats, starting from Nagari promontory in Chittoor Published: 01 January 2017 district. It runs in a northerly direction along the western boarders of the Nellore © Basha & Siva Kumar Reddy (2017) district, raising elevation of 3,626 feet at Penchalakona in Rapur thaluk. Veligonda hill ranges have high alttudinal and deep valley. These hills have rich biodiversity and Editor many rare, endangered, endemic and threatned plants are habituated in these hills. K. K. Sabu The present paper mainly deals with the ethanobotanical plants used by local people. Publisher Keywords Horizon e-Publishing Group Ethnobotany; Threatened; Endangered; Endemic; Veligonda hill range Corresponding Author S K M Basha Basha, S. K. M., and P. Siva Kumar Reddy. 2017. Ethnobotanical plants of Veligonda Hills, Southern Eastern Ghats, Andhra Pradesh, India. Plant Science Today 4(1): 1-11. [email protected] http://dx.doi.org/10.14719/pst.2017.4.1.268 Introduction communities in every ecosystem from the Trans The World Health Organization (WHO) estimated Himalayas down to the coastal plains have that 80% of the population of developing countries discovered the medical uses of thousands of plants relies on traditional medicines, mostly plant drugs, found locally in their ecosystem.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Sarsaparilla (Smilax Glabra Rhizome) Extract Inhibits Cancer Cell Growth by S Phase
    Author Manuscript Published OnlineFirst on March 2, 2015; DOI: 10.1158/1940-6207.CAPR-14-0372 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Sarsaparilla (Smilax Glabra Rhizome) Extract Inhibits Cancer Cell Growth by S Phase Arrest, Apoptosis and Autophagy via Redox-dependent ERK1/2 Pathway Tiantian She 1, Like Qu 1,*, Lixin Wang 1, Xingxin Yang 2, Shuo Xu 3, Junnan Feng 1, Yujing Gao 4, Chuanke Zhao 1, Yong Han 1, Shaoqing Cai 2 and Chengchao Shou 1,* 1 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China; 2 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; 3 Department of Pharmaceutical Science, Beijing Hospital, 1 Dahua Road, Beijing 100730, China; 4 Key laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan 750004, China. Running title: Anti-cancer effect of sarsaparilla extract Key words: Sarsaparilla, cancer, growth inhibition, oxidative stress, ERK1/2. Financial support: National Basic Research Program of China (2015CB553906 to C. Shou, 2013CB910504 to L. Qu). * Corresponding authors: Chengchao Shou and Like Qu, Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, 52 Fucheng Road, Beijing 100142, China. Phone: 0086-10-88196766; Fax: 0086-10-88122437; E-mail: [email protected] (Chengchao Shou) and [email protected] (Like Qu). Disclosure of Potential Conflicts of Interest: No potential conflicts of interest were disclosed.
    [Show full text]
  • Ethnobotanical Study on Wild Edible Plants Used by Three Trans-Boundary Ethnic Groups in Jiangcheng County, Pu’Er, Southwest China
    Ethnobotanical study on wild edible plants used by three trans-boundary ethnic groups in Jiangcheng County, Pu’er, Southwest China Yilin Cao Agriculture Service Center, Zhengdong Township, Pu'er City, Yunnan China ren li ( [email protected] ) Xishuangbanna Tropical Botanical Garden https://orcid.org/0000-0003-0810-0359 Shishun Zhou Shoutheast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Liang Song Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Intergrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Ruichang Quan Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Huabin Hu CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Research Keywords: wild edible plants, trans-boundary ethnic groups, traditional knowledge, conservation and sustainable use, Jiangcheng County Posted Date: September 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-40805/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on October 27th, 2020. See the published version at https://doi.org/10.1186/s13002-020-00420-1. Page 1/35 Abstract Background: Dai, Hani, and Yao people, in the trans-boundary region between China, Laos, and Vietnam, have gathered plentiful traditional knowledge about wild edible plants during their long history of understanding and using natural resources. The ecologically rich environment and the multi-ethnic integration provide a valuable foundation and driving force for high biodiversity and cultural diversity in this region.
    [Show full text]
  • Baccharis Malibuensis (Asteraceae): a New Species from the Santa Monica Mountains, California R
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 14 | Issue 3 Article 32 1995 Baccharis Malibuensis (Asteraceae): A New Species from the Santa Monica Mountains, California R. Mitchell Beauchamp Pacific Southwest Biological Services, Inc. James Henrickson California State University, Los Angeles Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Beauchamp, R. Mitchell and Henrickson, James (1995) "Baccharis Malibuensis (Asteraceae): A New Species from the Santa Monica Mountains, California," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 14: Iss. 3, Article 32. Available at: http://scholarship.claremont.edu/aliso/vol14/iss3/32 Aliso, 14(3), pp. 197-203 © 1996, by The Rancho Santa Ana Botanic Garden, Claremont, CA 91711-3157 BACCHARIS MALIBUENSIS (ASTERACEAE): A NEW SPECIES FROM THE SANTA MONICA MOUNTAINS, CALIFORNIA R. MITCHEL BEAUCHAMP Pacific Southwest Biological Services, Inc. P.O. Box 985 National City, California 91951 AND JAMES HENRICKSON Department of Biology California State University Los Angeles, California 90032 ABSTRACT Baccharis malibuensis is described from the Malibu Lake region of the Santa Monica Mountains, Los Angeles County, California. It is closely related to Baccharis plummerae subsp. plummerae but differs in having narrow, subentire, typically conduplicate, sparsely villous to mostly glabrous leaves with glands occurring in depressions on the adaxial surface, more cylindrical inflorescences, and a distribution in open chaparral vegetation. The new taxon shares some characteristics with B. plum­ merae subsp. glabrata of northwestern San Luis Obispo County, e.g., smaller leaves, reduced vestiture, and occurrence in scrub habitat, but the two taxa appear to have developed independently from B.
    [Show full text]