On the Genetics of Hypodontia and Microdontia: Synergism Or Allelism of Major Genes in a Family with Six Affected Members
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary for Narrative Writing
Periodontal Assessment and Treatment Planning Gingival description Color: o pink o erythematous o cyanotic o racial pigmentation o metallic pigmentation o uniformity Contour: o recession o clefts o enlarged papillae o cratered papillae o blunted papillae o highly rolled o bulbous o knife-edged o scalloped o stippled Consistency: o firm o edematous o hyperplastic o fibrotic Band of gingiva: o amount o quality o location o treatability Bleeding tendency: o sulcus base, lining o gingival margins Suppuration Sinus tract formation Pocket depths Pseudopockets Frena Pain Other pathology Dental Description Defective restorations: o overhangs o open contacts o poor contours Fractured cusps 1 ww.links2success.biz [email protected] 914-303-6464 Caries Deposits: o Type . plaque . calculus . stain . matera alba o Location . supragingival . subgingival o Severity . mild . moderate . severe Wear facets Percussion sensitivity Tooth vitality Attrition, erosion, abrasion Occlusal plane level Occlusion findings Furcations Mobility Fremitus Radiographic findings Film dates Crown:root ratio Amount of bone loss o horizontal; vertical o localized; generalized Root length and shape Overhangs Bulbous crowns Fenestrations Dehiscences Tooth resorption Retained root tips Impacted teeth Root proximities Tilted teeth Radiolucencies/opacities Etiologic factors Local: o plaque o calculus o overhangs 2 ww.links2success.biz [email protected] 914-303-6464 o orthodontic apparatus o open margins o open contacts o improper -
Oral Health in Prevalent Types of Ehlers–Danlos Syndromes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography J Oral Pathol Med (2005) 34: 298–307 ª Blackwell Munksgaard 2005 Æ All rights reserved www.blackwellmunksgaard.com/jopm Oral health in prevalent types of Ehlers–Danlos syndromes Peter J. De Coster1, Luc C. Martens1, Anne De Paepe2 1Department of Paediatric Dentistry, Centre for Special Care, Paecamed Research, Ghent University, Ghent; 2Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium BACKGROUND: The Ehlers–Danlos syndromes (EDS) Introduction comprise a heterogenous group of heritable disorders of connective tissue, characterized by joint hypermobility, The Ehlers–Danlos syndromes (EDS) comprise a het- skin hyperextensibility and tissue fragility. Most EDS erogenous group of heritable disorders of connective types are caused by mutations in genes encoding different tissue, largely characterized by joint hypermobility, skin types of collagen or enzymes, essential for normal pro- hyperextensibility and tissue fragility (1) (Fig. 1). The cessing of collagen. clinical features, modes of inheritance and molecular METHODS: Oral health was assessed in 31 subjects with bases differ according to the type. EDS are caused by a EDS (16 with hypermobility EDS, nine with classical EDS genetic defect causing an error in the synthesis or and six with vascular EDS), including signs and symptoms processing of collagen types I, III or V. The distribution of temporomandibular disorders (TMD), alterations of and function of these collagen types are displayed in dental hard tissues, oral mucosa and periodontium, and Table 1. At present, two classifications of EDS are was compared with matched controls. -
Benign Fibro-Osseous Lesions Plus…
“Vision is the art of seeing things invisible.” Jonathan Swift 1667 - 1745 Benign Fibro-osseous Lesions Plus… Steven R. Singer, DDS [email protected] 212.305.5674 Benign Fibro-osseous Lesions Fibrous Dysplasia A group of lesions in which normal bone is Localized change in bone metabolism replaced initially by fibrous connective tissue Normal cancellous bone is replaced by Over time, the lesion is infiltrated by osteoid fibrous connective tissue and cementoid tissue The connective tissue contains varying amounts of abnormal bone with irregular This is a benign and idiopathic process trabeculae Trabeculae are randomly oriented. (Remember that normal trabeculae are aligned to respond to stress) Fibrous Dysplasia Fibrous Dysplasia Lesions may be solitary (monostotic) or Fibrous dysplasia is non-hereditary involve more than one bone (polyostotic) Caused by a mutation in a somatic cell. Monostotic form accounts for 70% of all Extent of lesions depends on the timing of cases the mutation. Polyostotic form is more common in the first If the mutation occurs earlier, the disease decade will be more widespread throughout the M=F except in McCune-Albright syndrome, body. An example is McCune-Albright which is almost exclusively found in females Syndrome 1 Fibrous Dysplasia Fibrous Dysplasia McCune-Albright Syndrome • Monostotic and polyostotic forms usually -Almost exclusively begins in the second decade of life females -Polyostotic fibrous • Slow, painless expansion of the jaws dysplasia • Patients may complain of swelling or have -
2021 Follow-Up After Emergency Department Visits for Non-Traumatic Dental Conditions in Adults
DQA Measure EDF-A-A Effective January 1, 2021 **Please read the DQA Measures User Guide prior to implementing this measure.** DQA Measure Specifications: Administrative Claims-Based Measures Follow-up after Emergency Department Visits for Non-Traumatic Dental Conditions in Adults Description: The percentage of ambulatory care sensitive non-traumatic dental condition emergency department visits among adults aged 18 years and older in the reporting period for which the member visited a dentist within (a) 7 days and (b) 30 days of the ED visit Numerators: Number of ambulatory care sensitive non-traumatic dental condition ED visits in the reporting period for which the member visited a dentist within (a) 7 days (NUM1) and (b) 30 days (NUM2) of the ED visit Denominator: Number of ambulatory care sensitive non-traumatic dental condition ED visits in the reporting period Rates: NUM1/DEN and NUM2/DEN Rationale: The use of emergency departments (EDs) for non-traumatic dental conditions has been a growing public health concern across the United States (US)1,2,3,4,5,6,7,8 with over 2 million visits occurring in 2015.9 The majority of ED visits are semi-urgent (53.8%) or non-urgent (23.9%)10, which can be better managed in an ambulatory care setting. Dental care in an ED setting is not definitive with limited care continuity that ultimately leads to poor oral health outcomes.11,12,13 This process of care measure can be used to assess if the patient had timely follow-up with a dentist for more definitive care. References: 1. -
Non-Syndromic Occurrence of True Generalized Microdontia with Mandibular Mesiodens - a Rare Case Seema D Bargale* and Shital DP Kiran
Bargale and Kiran Head & Face Medicine 2011, 7:19 http://www.head-face-med.com/content/7/1/19 HEAD & FACE MEDICINE CASEREPORT Open Access Non-syndromic occurrence of true generalized microdontia with mandibular mesiodens - a rare case Seema D Bargale* and Shital DP Kiran Abstract Abnormalities in size of teeth and number of teeth are occasionally recorded in clinical cases. True generalized microdontia is rare case in which all the teeth are smaller than normal. Mesiodens is commonly located in maxilary central incisor region and uncommon in the mandible. In the present case a 12 year-old boy was healthy; normal in appearance and the medical history was noncontributory. The patient was examined and found to have permanent teeth that were smaller than those of the average adult teeth. The true generalized microdontia was accompanied by mandibular mesiodens. This is a unique case report of non-syndromic association of mandibular hyperdontia with true generalized microdontia. Keywords: Generalised microdontia, Hyperdontia, Permanent dentition, Mandibular supernumerary tooth Introduction [Ullrich-Turner syndrome], Chromosome 13[trisomy 13], Microdontia is a rare phenomenon. The term microdontia Rothmund-Thomson syndrome, Hallermann-Streiff, Oro- (microdentism, microdontism) is defined as the condition faciodigital syndrome (type 3), Oculo-mandibulo-facial of having abnormally small teeth [1]. According to Boyle, syndrome, Tricho-Rhino-Phalangeal, type1 Branchio- “in general microdontia, the teeth are small, the crowns oculo-facial syndrome. short, and normal contact areas between the teeth are fre- Supernumerary teeth are defined as any supplementary quently missing” [2] Shafer, Hine, and Levy [3] divided tooth or tooth substance in addition to usual configuration microdontia into three types: (1) Microdontia involving of twenty deciduous and thirty two permanent teeth [7]. -
Phenotypic and Genotypic Characterisation of Noonan-Like
1of5 ELECTRONIC LETTER J Med Genet: first published as 10.1136/jmg.2004.024091 on 2 February 2005. Downloaded from Phenotypic and genotypic characterisation of Noonan-like/ multiple giant cell lesion syndrome J S Lee, M Tartaglia, B D Gelb, K Fridrich, S Sachs, C A Stratakis, M Muenke, P G Robey, M T Collins, A Slavotinek ............................................................................................................................... J Med Genet 2005;42:e11 (http://www.jmedgenet.com/cgi/content/full/42/2/e11). doi: 10.1136/jmg.2004.024091 oonan-like/multiple giant cell lesion syndrome (NL/ MGCLS; OMIM 163955) is a rare condition1–3 with Key points Nphenotypic overlap with Noonan’s syndrome (OMIM 163950) and cherubism (OMIM 118400) (table 1). N Noonan-like/multiple giant cell lesion syndrome (NL/ Recently, missense mutations in the PTPN11 gene on MGCLS) has clinical similarities with Noonan’s syn- chromosome 12q24.1 have been identified as the cause of drome and cherubism. It is unclear whether it is a Noonan’s syndrome in 45% of familial and sporadic cases,45 distinct entity or a variant of Noonan’s syndrome or indicating genetic heterogeneity within the syndrome. In the cherubism. 5 study by Tartaglia et al, there was a family in which three N Three unrelated patients with NL/MGCLS were char- members had features of Noonan’s syndrome; two of these acterised, two of whom were found to have mutations had incidental mandibular giant cell lesions.3 All three in the PTPN11 gene, the mutation found in 45% of members were found to have a PTPN11 mutation known to patients with Noonan’s syndrome. -
Cherubism As a Systemic Skeletal Disease
Morice et al. BMC Musculoskeletal Disorders (2020) 21:564 https://doi.org/10.1186/s12891-020-03580-z CASE REPORT Open Access Cherubism as a systemic skeletal disease: evidence from an aggressive case Anne Morice1,2,3,4*, Aline Joly3,4, Manon Ricquebourg5,6, Gérard Maruani2,7,8, Emmanuel Durand9, Louise Galmiche2,10, Jeanne Amiel2,11, Yoann Vial12,13, Hélène Cavé12,13, Kahina Belhous14, Marie Piketty15, Martine Cohen-Solal6, Ariane Berdal1,16, Corinne Collet5,6, Arnaud Picard1,2,3,4, Amelie E. Coudert1,6,16† and Natacha Kadlub1,2,3,4† Abstract Background: Cherubism is a rare autosomal dominant genetic condition caused by mutations in the SH3BP2 gene. This disease is characterized by osteolysis of the jaws, with the bone replaced by soft tissue rich in fibroblasts and multinuclear giant cells. SH3BP2 is a ubiquitous adaptor protein yet the consequences of SH3BP2 mutation have so far been described as impacting only face. Cherubism mouse models have been generated and unlike human patients, the knock-in mice exhibit systemic bone loss together with a systemic inflammation. Case presentation: In light of these observations, we decided to search for a systemic cherubism phenotype in a 6-year-old girl with an aggressive cherubism. We report here the first case of cherubism with systemic manifestations. Bone densitometry showed low overall bone density (total body Z-score = − 4.6 SD). Several markers of bone remodelling (CTx,BALP,P1NP)aswellasinflammation(TNFα and IL-1) were elevated. A causative second-site mutation in other genes known to influence bone density was ruled out by sequencing a panel of such genes. -
Prevalence and Incidence of Rare Diseases: Bibliographic Data
Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct. -
Jaffe–Campanacci Syndrome, Revisited
ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Jaffe–Campanacci syndrome, revisited: detailed clinical and molecular analyses determine whether patients have neurofibromatosis type 1, coincidental manifestations, or a distinct disorder Douglas R. Stewart, MD1, Hilde Brems, PhD2,3, Alicia G. Gomes, MS, CGC4, Sarah L. Ruppert, MS, CGC5, Tom Callens, BSc4, Jennifer Williams, MS4, Kathleen Claes, PhD6, Michael B. Bober, MD, PhD7, Rachel Hachen, MD, MPH8, Leonard B. Kaban, MD, DDS9, Hua Li, PhD10, Angela Lin, MD11, Marie McDonald, MD, MBBCh12,13, Serge Melancon, MD14,15, June Ortenberg, MDCM, FRCPC14,15, Heather B. Radtke, MS, CGC16, Ignace Samson, MD17, Robert A. Saul, MD18, Joseph Shen, MD, PhD19, Elizabeth Siqveland, RN, CNP20, Tomi L. Toler, MS, CGC21, Merel van Maarle, MD, PhD22, Margaret Wallace, PhD10, Misti Williams, PhD23, Eric Legius, MD, PhD2,3 and Ludwine Messiaen, PhD4 Purpose: “Jaffe–Campanacci syndrome” describes the complex of diagnostic criteria for neurofibromatosis type 1. Somatic NF1 muta- multiple nonossifying fibromas of the long bones, mandibular giant tions were detected in two giant cell lesions but not in two nonos- cell lesions, and café-au-lait macules in individuals without neuro- sifying fibromas. No SPRED1 or GNAS1 (exon 8) mutations were fibromas. We sought to determine whether Jaffe–Campanacci syn- detected in the seven NF1-negative patients with Jaffe–Campanacci drome is a distinct genetic entity or a variant of neurofibromatosis syndrome, nonossifying fibromas, or giant cell lesions. type 1. Conclusion: In this study, the majority of patients with café-au-lait Methods: We performed germline NF1, SPRED1, and GNAS1 (exon macules and nonossifying fibromas or giant cell lesions harbored a 8) mutation testing on patients with Jaffe–Campanacci syndrome or pathogenic germline NF1 mutation, suggesting that many Jaffe–Cam- Jaffe–Campanacci syndrome–related features. -
Ovarian Cancer
113th AAO Annual Session OVERVIEW Unraveling an Association between Hypodontia and OUTLINE Epithelial Ovarian Cancer 1. Introduction Anna N Vu, DMD, MS 2. Background 3. Purpose Division of Orthodontics 4. Materials and Methods May 2013 5. Results 6. Discussion 7. Conclusion U N I V E R S I T Y O F K E N T U C K Y C O L L E G E O F D E N T I S T R Y HYPODONTIA HYPODONTIA REVIEW & CANCER • Over 300 genes are involved in odontogenesis including MSX1, PAX9, and AXIN2 HYPODONTIA • Genes involved in dental development also have roles in other organs of the body Defined as the developmental absence of one or more teeth as well as variations in size, • Mutation in several genes governing tooth development have already been associated with shape, rate of dental development and eruption time. cancer • Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer7 Hypodontia is the agenesis of 6 or less teeth. • AXIN2 gene is highly expressed in ovarian tissue so may play a role in epithelial ovarian cancer (EOC)8 Oligodontia is the agenesis of 6 or more teeth. Anodontia is the agenesis of all teeth. • Reduced expression of PAX9 can lead to hypodontia and has been correlated with increased malignancy of dysplastic and cancerous esophageal epithelium9 2.6-11.3% reported prevelance worldwide. 78 • RUNX transcription factor family (RUNX1, 2, and 3) are involved in odontogenesis and has been Women are affected more than males at a ratio of 3:2. the most targeted genes in acute myeloid leukemia and acute lymphoblastic leukemia10 Both genetic and environmental explanations for hypodontia have been reported. -
Blueprint Genetics Comprehensive Growth Disorders / Skeletal
Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel Test code: MA4301 Is a 374 gene panel that includes assessment of non-coding variants. This panel covers the majority of the genes listed in the Nosology 2015 (PMID: 26394607) and all genes in our Malformation category that cause growth retardation, short stature or skeletal dysplasia and is therefore a powerful diagnostic tool. It is ideal for patients suspected to have a syndromic or an isolated growth disorder or a skeletal dysplasia. About Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders This panel covers a broad spectrum of diseases associated with growth retardation, short stature or skeletal dysplasia. Many of these conditions have overlapping features which can make clinical diagnosis a challenge. Genetic diagnostics is therefore the most efficient way to subtype the diseases and enable individualized treatment and management decisions. Moreover, detection of causative mutations establishes the mode of inheritance in the family which is essential for informed genetic counseling. For additional information regarding the conditions tested on this panel, please refer to the National Organization for Rare Disorders and / or GeneReviews. Availability 4 weeks Gene Set Description Genes in the Comprehensive Growth Disorders / Skeletal Dysplasias and Disorders Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ACAN# Spondyloepimetaphyseal dysplasia, aggrecan type, AD/AR 20 56 Spondyloepiphyseal dysplasia, Kimberley -
Blueprint Genetics Comprehensive Skeletal Dysplasias and Disorders
Comprehensive Skeletal Dysplasias and Disorders Panel Test code: MA3301 Is a 251 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of disorders involving the skeletal system. About Comprehensive Skeletal Dysplasias and Disorders This panel covers a broad spectrum of skeletal disorders including common and rare skeletal dysplasias (eg. achondroplasia, COL2A1 related dysplasias, diastrophic dysplasia, various types of spondylo-metaphyseal dysplasias), various ciliopathies with skeletal involvement (eg. short rib-polydactylies, asphyxiating thoracic dysplasia dysplasias and Ellis-van Creveld syndrome), various subtypes of osteogenesis imperfecta, campomelic dysplasia, slender bone dysplasias, dysplasias with multiple joint dislocations, chondrodysplasia punctata group of disorders, neonatal osteosclerotic dysplasias, osteopetrosis and related disorders, abnormal mineralization group of disorders (eg hypopohosphatasia), osteolysis group of disorders, disorders with disorganized development of skeletal components, overgrowth syndromes with skeletal involvement, craniosynostosis syndromes, dysostoses with predominant craniofacial involvement, dysostoses with predominant vertebral involvement, patellar dysostoses, brachydactylies, some disorders with limb hypoplasia-reduction defects, ectrodactyly with and without other manifestations, polydactyly-syndactyly-triphalangism group of disorders, and disorders with defects in joint formation and synostoses. Availability 4 weeks Gene Set Description