Some Chemical Constituents of the Brown Alga, Agarum Cribosum and the Effect of Electrostatic Interactions on the Stereochemistry of the S(N)2' Reaction

Total Page:16

File Type:pdf, Size:1020Kb

Some Chemical Constituents of the Brown Alga, Agarum Cribosum and the Effect of Electrostatic Interactions on the Stereochemistry of the S(N)2' Reaction University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1980 SOME CHEMICAL CONSTITUENTS OF THE BROWN ALGA, AGARUM CRIBOSUM AND THE EFFECT OF ELECTROSTATIC INTERACTIONS ON THE STEREOCHEMISTRY OF THE S(N)2' REACTION JOAN DEBORAH NEWBURGER Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation NEWBURGER, JOAN DEBORAH, "SOME CHEMICAL CONSTITUENTS OF THE BROWN ALGA, AGARUM CRIBOSUM AND THE EFFECT OF ELECTROSTATIC INTERACTIONS ON THE STEREOCHEMISTRY OF THE S(N)2' REACTION" (1980). Doctoral Dissertations. 1255. https://scholars.unh.edu/dissertation/1255 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find a good image of the page in the adjacentTrame. 3. When a map, drawing or chart, etc., is part of the material being photo­ graphed the photographer has followed a definite method in “sectioning” the material. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For any illustrations that cannot be reproduced satisfactorily by xerography, photographic prints can be purchased at additional cost and tipped into your xerographic copy. Requests can be made to our Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases we have filmed the best available copy. University Microfilms International 300 N. ZEEB ROAD, ANN ARBOR, Ml 48106 18 BEDFORD ROW, LONDON WC1 R 4EJ, ENGLAND 8027795 N e w b u r g e r, Jo a n D e b o r a h SOME CHEMICAL CONSTITUENTS OF THE BROWN ALGA, AGARUM CR1BOSUM AND THE EFFECT OF ELECTROSTATIC INTERACTIONS ON THE STEREOCHEMISTRY OF THE S(N)2’ REACTION University o f New Hampshire Ph.D. 1980 University Microfilms International300 N. Zeeb Road, Ann Arbor, MI 48106 18 Bedford Row, London WC1R 4EJ, England PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark v ' ' . 1. Glossy photographs _______ 2. Colored illustrations _______ 3. Photographs with dark background_ ______ 4. Illustrations are poor copy 5. °rint shows through as there is text on both sides of page _______ 6. Indistinct, broken or small print onseveral pages s / 7. Tightly bound copy with print lost in spine _______ 8. Computer printout pages with indistinct print _______ 9. Page(s) ____ lacking when material received, and not available from school or author 10. Page(s) _______ seem to be missing in numbering only as text follows 11. Poor carbon copy _______ 12. Not original copy, several pages with blurred type ____ 13. Appendix pages are poor copy _______ 14. Original copy with light type _______ 15. Curling and wrinkled pages ____ _ 16. Other University M icrdnims international 300 N ZEES RD.. ANN AR30B Ml 48106'31 31 761-4700 SOME CHEMICAL CONSTITUENTS OF THE BROWN ALGA, AGARUM CRIBOSUM And THE EFFECT OF ELECTROSTATIC INTERACTIONS ON THE STEREOCHEMISTRY OF THE Sn 2' REACTION By JOAN D. NEWBURGER B. A. , Grinnell College, 1974 A DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY in CHEMISTRY May, 1980 This dissertation has been examined and approved. John Uebel ;try Paul R. Jones, gzofessor of Chemistry r f c w o l $ > , _____________ Jairtes D. Morrison, Professor o£ Chemistry Alexander R. Amell, Professor of Chemistry 4 A S Miyoshi/'Ikawa, Professor of Biochemistry % m o DdEe DEDICATION This dissertation is dedicated with great love and affection to my parents, Adele and Sylvan, and to my sister, Harriet. ACKNOWLEDGMENT I wish to express my sincere gratitude and appreciation to my advisor, Dr. J. John Uebel, for his invaluable guidance and encouragement during the course of my graduate education and dissertation research. I would also like to thank Dr. Paul R. Jones and, in particular, Dr. Kenneth K. Andersen for their help during the sabbatical year of Dr. Uebel. I wish to thank Dr. Arthur Matheson and his students for their considerable assistance in the phycological aspects of my work. I wish to thank Dr. Robert Gagosian of the Woods Hole •4 Institution of Oceanography for his collaboration on the sterol research and Dr. Cathy Costello of the Massachusetts Institute of Technology for her help in the fatty acid data collection and for high resolution mass spectra. For their technical assistance, I wish to acknowledge Michael Pazdon and Kathy Gallager. In particular, Mike spent many hours helping me with the HPLC and GC/MS instru­ ments . For their help in the preparation of this manuscript, I wish to thank Diana Schuman and Dee Cardin. I am grateful to the Chemistry Department for financial support in the form of a Teaching Assistantship and to the Leslie S. and Iola Hubbard Marine Program Fund for summer financial support and funding for supplies. A very special acknowledgment is due Dr. Gene Wubbels of Grinnell College and Dr. Edward Radford of the University of Pittsburgh (formerly of Johns Hopkins University) for their advice, encouragement, and understanding during my undergraduate career. V ABSTRACT SOME CHEMICAL CONSTITUENTS OF THE BROWN ALGA, AGARUM CRIBOSUM AND THE EFFECT OF ELECTROSTATIC INTERACTIONS ON THE STEREOCHEMISTRY OF THE SN2 ' REACTION by JOAN D. NEWBURGER University of New Hampshire, May 1980 Part 1: Some Chemical Constituents of the Brown Alga, Agarum cribosum. Agarum cribosum was examined for major chemical con­ stituents. Halogenated terpenes found in red algae were not present in this seaweed. The sterol content was de­ termined by GC/MS analysis and six sterols were identi­ fied: fucosterol, 24-methylenecholesterol, cholesterol, 24-ketocholesterol, saringosterol, and desmosterol. The presence of desmosterol in brown algae had not been pre­ viously confirmed. A seventh sterol could not be identified from its mass spectrum. The fatty acid content was also determined by GC/MS analysis. The major fatty acids were ^16-0’ ^16*1’ ^ 2 0 - 4 anc* ^ 2 2 -5 ‘ suSar mannitol was isolated. Part 2: The Effect of Electrostatic Interactions on the Stereochemistry of the SN2' Reaction. The stereochemistry of the S^2' reaction was studied using (trans-6 -t-butyl-2 -cyclohexen-l-yl)trimethylammo- nium tetrafluoroborate as a substrate for nucleophilic attack. The substrate was reacted with two nucleophiles, piperidine and sodium propanethiolate. To the extent that transition state electrostatic interactions can influence the direction of nucleophilic attack, it was expected that piperidine would attack anti to the leav­ ing group while propanethiolate would attack syn. The experiments confirmed these predictions, piperidine attacking 80% anti and propanethiolate attacking 92% syn, It was concluded that transition state electro­ static interactions play a role in determining the di­ rection of nucleophilic attack. TABLE OF CONTENTS ABSTRACT ................................................ vi LIST OF TABLES (Part 1) xii LIST OF FIGURES (Part 1 ) ............................... xiii LIST OF TABLES (Part 2) xvii LIST OF FIGURES (Part 2 ) .............................. xviii PART 1: SOME CHEMICAL CONSTITUENTS OF THE BROW ALGA, Agarum Cribosum ........................ 1 I. INTRODUCTION .................................... 2 II. RESULTS AND DISCUSSION ........................... 21 1. Column Chromatography Separation ........... 21 2. Sterols of Agarum cribosum .................. 24 3. Fatty Acids of Agarum cribosum .............. 50 4. Isolation of Mannitol ...................... 67 III. EXPERIMENTAL...................................... 69 G e n e r a l .......................................... 69 Extraction of Agarum cribosum ................. 70 Open Column Chromatography of Nonpolar Constituents ............................... 70 Saponification of Crude Extract ............... 71 Separation of Non-saponifiable Lipids .......... 72 Identification of Sterol Compounds ............. 72 Isolation of Fucosterol from Ascophyllum
Recommended publications
  • Sunscreen, Antioxidant, and Bactericide Capacities of Phlorotannins from the Brown Macroalga Halidrys Siliquosa
    1 Journal Of Applied Phycology Achimer December 2016, Volume 28 Issue 6 Pages 3547-3559 http://dx.doi.org/10.1007/s10811-016-0853-0 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00366/47682/ © Springer Science+Business Media Dordrecht 2016 Sunscreen, antioxidant, and bactericide capacities of phlorotannins from the brown macroalga Halidrys siliquosa Le Lann Klervi 1, *, Surget Gwladys 1, Couteau Celine 2, Coiffard Laurence 2, Cerantola Stephane 3, Gaillard Fanny 4, Larnicol Maud 5, Zubia Mayalen 6, Guerard Fabienne 1, Poupart Nathalie 1, Stiger-Pouvreau Valerie 1 1 UBO, European Inst Marine Studies IUEM, LEMAR UMR UBO CNRS Ifremer IRD 6539, Technopole Brest Iroise, F-29280 Plouzane, France. 2 Nantes Atlant Univ, Univ Nantes, Fac Pharm, LPiC,MMS,EA2160, 9 Rue Bias,BP 53508, F-44000 Nantes, France. 3 UBO, RMN RPE MS, 6 Ave,Victor Le Gorgeu CS93837, F-29238 Brest 3, France. 4 CNRS, Plateforme Spectrometrie Masse MetaboMER, FR2424, Stn Biol, Pl Georges Teissier,BP 74, F-29682 Roscoff, France. 5 Venelle Carros, Labs Sci & Mer, CS 70002, F-29480 Le Relecq Kerhuon, France. 6 Univ Polynesie Francaise, EIO UMR 244, LabEx CORAIL, BP 6570, Faaa 98702, Tahiti, Fr Polynesia. * Corresponding author : Klervi Le Lann, email address : [email protected] Abstract : The present study focused on a brown macroalga (Halidrys siliquosa), with a particular emphasis on polyphenols and their associated biological activities. Two fractions were obtained by liquid/liquid purification from a crude hydroethanolic extract: (i) an ethyl acetate fraction and (ii) an aqueous fraction. Total phenolic contents and antioxidant activities of extract and both fractions were assessed by in vitro tests (Folin–Ciocalteu test, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power assay, superoxide anion scavenging assay, and β-carotene–linoleic acid system).
    [Show full text]
  • The Halogenated Metabolism of Brown Algae
    The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage To cite this version: Stéphane La Barre, Philippe Potin, Catherine Leblanc, Ludovic Delage. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Marine drugs, MDPI, 2010, 8, pp.988. hal-00987044 HAL Id: hal-00987044 https://hal.archives-ouvertes.fr/hal-00987044 Submitted on 5 May 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mar. Drugs 2010, 8, 988-1010; doi:10.3390/md8040988 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance Stéphane La Barre 1,2,*, Philippe Potin 1,2, Catherine Leblanc 1,2 and Ludovic Delage 1,2 1 Université Pierre et Marie Curie-Paris 6, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France; E-Mails: [email protected] (P.P.); [email protected] (C.L.); [email protected] (L.D.) 2 CNRS, UMR 7139 Végétaux marins et Biomolécules, Station Biologique F-29682, Roscoff, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-298-292-361; Fax: +33-298-292-385.
    [Show full text]
  • An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols Margaret Murray , Aimee L. Dordevic , Lisa Ryan & Maxine P. Bonham To cite this article: Margaret Murray , Aimee L. Dordevic , Lisa Ryan & Maxine P. Bonham (2016): An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2016.1259209 To link to this article: http://dx.doi.org/10.1080/10408398.2016.1259209 Accepted author version posted online: 11 Nov 2016. Published online: 11 Nov 2016. Submit your article to this journal Article views: 322 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [130.194.127.231] Date: 09 July 2017, At: 16:18 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2016.1259209 An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols Margaret Murray a, Aimee L. Dordevic b, Lisa Ryan b, and Maxine P. Bonham a aDepartment of Nutrition, Dietetics and Food, Monash University, Victoria, Australia; bDepartment of Natural Sciences, Galway-Mayo Institute of Technology, Galway, Ireland ABSTRACT KEYWORDS Marine macroalgae are gaining recognition among the scientific community as a significant source of Anti-inflammatory; functional food ingredients.
    [Show full text]
  • Brown Algae As a Source of Bioactive Compounds for Pancreatic Cancer
    Brown algae as a source of bioactive compounds for pancreatic cancer treatment Thanh Trung Dang B.Eng (Nha Trang University, Khanh Hoa, Vietnam) MSc (Nha Trang University, Khanh Hoa, Vietnam) A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Food Science School of Environmental and Life Sciences, Faculty of Science University of Newcastle Australia May 2018 STATEMENT OF ORIGINALITY I hereby certify that to the best of my knowledge and belief this thesis is my own work and contains no material previously published or written by another person except where due references and acknowledgements are made. It contains no material which has been previously submitted by me for the award of any other degree or diploma in any university or other tertiary institution. Thanh Trung Dang Date: 6/5/2018 i DECLARATION OF AUTHORSHIP I hereby certify that this thesis is in the form of a series of 8 papers. I have included as part of the thesis a written statement from each co-author, endorsed in writing by the Faculty Assistant Dean (Research Training), attesting to my contribution to any jointly authored papers. Thanh Trung Dang Date: 6/5/2018 ii ACKNOWLEDGEMENTS Firstly, I would like to give a great appreciation to my supervisors: Principal supervisor: A/Prof. Christopher J. Scarlett; Co-supervisors: A/Prof. Michael C. Bowyer and Dr. Ian A. Van Altena for their supervision and support during my PhD course. The suggestions and encouragement from the supervisor panel played an important role in my research achievements. I acknowledge the financial support from University of Newcastle; the Vietnamese Government through the Ministry of Education and Training; the Ministry of Agriculture and Rural Development for awarding a VIED-TUIT scholarship, which enabled me to study for a PhD at the University of Newcastle, with full cover for academic expenses, as well as living and travellingallowances.
    [Show full text]
  • Mutton, Robbie John
    UHI Thesis - pdf download summary The Bioactivity and Natural Products of Scottish Seaweeds Mutton, Robbie John DOCTOR OF PHILOSOPHY (AWARDED BY OU/ABERDEEN) Award date: 2012 Awarding institution: The University of Edinburgh Link URL to thesis in UHI Research Database General rights and useage policy Copyright,IP and moral rights for the publications made accessible in the UHI Research Database are retained by the author, users must recognise and abide by the legal requirements associated with these rights. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement, or without prior permission from the author. Users may download and print one copy of any thesis from the UHI Research Database for the not-for-profit purpose of private study or research on the condition that: 1) The full text is not changed in any way 2) If citing, a bibliographic link is made to the metadata record on the the UHI Research Database 3) You may not further distribute the material or use it for any profit-making activity or commercial gain 4) You may freely distribute the URL identifying the publication in the UHI Research Database Take down policy If you believe that any data within this document represents a breach of copyright, confidence or data protection please contact us at [email protected] providing details; we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 ‘The Bioactivity and Natural Products of Scottish Seaweeds’ © A thesis presented for the degree of Doctor of Philosophy (Ph.D) at the University of Aberdeen Robbie John Mutton B.Sc.
    [Show full text]
  • Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-Msn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties
    Mar. Drugs 2012, 10, 2766-2781; doi:10.3390/md10122766 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties Federico Ferreres 1,*, Graciliana Lopes 2, Angel Gil-Izquierdo 1, Paula B. Andrade 2, Carla Sousa 2, Teresa Mouga 3 and Patrícia Valentão 2,* 1 Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain; E-Mail: [email protected] 2 REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal; E-Mails: [email protected] (G.L.); [email protected] (P.B.A.); [email protected] (C.S.) 3 GIRM—Marine Resources Research Group, School of Tourism and Maritime Technology, Polytechnic Institute of Leiria, Santuário N.ª Sra. Dos Remédios, Apartado 126, 2524-909 Peniche, Portugal; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (F.F.); [email protected] (P.V.); Tel.: +34-968396324 (F.F.); Fax: +34-968396213 (F.F.); Tel.: +351-220428653 (P.V.); Fax: +351-226093390 (P.V.). Received: 3 October 2012; in revised form: 30 October 2012 / Accepted: 4 December 2012 / Published: 10 December 2012 Abstract: Purified phlorotannin extracts from four brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus), were characterized by HPLC-DAD-ESI-MSn.
    [Show full text]
  • Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins
    foods Review Effects of Phlorotannins on Organisms: Focus on the Safety, Toxicity, and Availability of Phlorotannins Bertoka Fajar Surya Perwira Negara 1,2, Jae Hak Sohn 1,3, Jin-Soo Kim 4,* and Jae-Suk Choi 1,3,* 1 Seafood Research Center, IACF, Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan 49277, Korea; [email protected] (B.F.S.P.N.); [email protected] (J.H.S.) 2 Department of Marine Science, University of Bengkulu, Jl. W.R Soepratman, Bengkulu 38371, Indonesia 3 Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700beon-gil, Sasang-gu, Busan 46958, Korea 4 Department of Seafood and Aquaculture Science, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongsangnam-do 53064, Korea * Correspondence: [email protected] (J.-S.K.); [email protected] (J.-S.C.); Tel.: +82-557-729-146 (J.-S.K.); +82-512-487-789 (J.-S.C.) Abstract: Phlorotannins are polyphenolic compounds produced via polymerization of phloroglucinol, and these compounds have varying molecular weights (up to 650 kDa). Brown seaweeds are rich in phlorotannins compounds possessing various biological activities, including algicidal, antioxidant, anti-inflammatory, antidiabetic, and anticancer activities. Many review papers on the chemical characterization and quantification of phlorotannins and their functionality have been published to date. However, although studies on the safety and toxicity of these phlorotannins have been conducted, there have been no articles reviewing this topic. In this review, the safety and toxicity of phlorotannins in different organisms are discussed. Online databases (Science Direct, PubMed, MEDLINE, and Web of Science) were searched, yielding 106 results.
    [Show full text]
  • Physiological Functions of Phlorotannins
    REVIEW COMMUNICATIONS PLANT SCIENSE Physiological functions of phlorotannins Valeriya Lemesheva1 and Elena Tarakhovskaya1,2 1Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7–9, Saint Petersburg, 199034, Russian Federation; 2Russian Academy of Sciences Library, Birzhevaia Liniia 1, Saint Petersburg, 199034, Russian Federation Address correspondence and requests for materials to Elena Tarakhovskaya, [email protected] Abstract Phlorotannins are the most abundant group of metabolites specific for brown algae. These substances contribute both to the primary and secondary metab- olism of the algal cells and have practical relevance as biologically active com- pounds. The list of their presumable physiological functions is still not exhaus- tive and includes wound healing, chelation of heavy metal ions, bioadhesion, contribution to the processes of algal early embryogenesis and sporogenesis, etc. Similar to higher plant phenolics, phlorotannins also have antioxidant prop- erties, provide chemical defense against herbivores and contribute to cell wall rigidification. The complex and diverse composition of natural phlorotannins hampers investigation of their physiological roles and leads to inconsistencies in the obtained data. Further study of the correlation between the structure of these substances and their functions is needed to take a new look at known in- formation, thus providing better performance in the fields of both fundamental algal physiology and applied phycology. Keywords: phlorotannins, brown algae, phenolic compounds, cell wall, phy- sodes, algal exudates, bioadhesion, antifouling compounds General description of phlorotannins Citation: Citation: Lemesheva, V. and Phlorotannins (phaeophycean tannins) represent a specific group of secondary Tarakhovskaya, E. 2018. Physiological metabolites of brown algae. These compounds have been known since the 1960s.
    [Show full text]
  • Marcelo Dias Catarino Florotaninos Da Alga Fucus Vesiculosus: Extração, Caracterização Estrutural E Efeitos Ao Longo Do Trato Gastrointestinal
    Universidade de Aveiro Departamento de Química 2021 Marcelo Dias Catarino Florotaninos da alga Fucus vesiculosus: Extração, caracterização estrutural e efeitos ao longo do trato gastrointestinal Fucus vesiculosus phlorotannins: Extraction, structural characterization and effects throughout the gastrointestinal tract Universidade de Aveiro Departamento de Química Ano 2021 Marcelo Dias Catarino Florotaninos da alga Fucus Vesiculosus: Extração, caracterização estrutural e efeitos ao longo do trato gastrointestinal Fucus vesiculosus phlorotannins: Extraction, structural characterization and effects throughout the gastrointestinal tract Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Química Sustentável, realizada sob a orientação científica da Doutora Susana Maria Almeida Cardoso, Investigadora Doutorada do Departamento de Química da Universidade de Aveiro, Professor Doutor Artur Manuel Soares da Silva, Professor Catedrático do Departamento de Química da Universidade de Aveiro e do Professor Doutor Nuno Filipe da Cruz Baptista Mateus, Professor Associado do Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto Estudo efetuado com apoio financeiro do projeto PTDC/BAA-AGR/31015/2017, suportado pelos orçamentos do Programa Operacional de Competitividade e Internacionalização— POCI, na sua componente FEDER, e da Fundação para a Ciência e a Tecnologia, na sua componente de Orçamento de Estado. A Universidade de Aveiro e a Fundação para a Ciência e para a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES) financiaram o Laboratório Associado para a Química Verde (LAQV) da Rede de Química e Tecnologia (REQUIMTE) (UIDB/50006/2020), através de fundos nacionais e, quando aplicável, co-financiado pela FEDER, no âmbito do Portugal 2020.
    [Show full text]
  • Fucaceae: a Source of Bioactive Phlorotannins
    International Journal of Molecular Sciences Review Fucaceae: A Source of Bioactive Phlorotannins Marcelo D. Catarino, Artur M. S. Silva and Susana M. Cardoso * Department of Chemistry & Organic Chemistry, Natural Products and Food Stuffs Research Unit (QOPNA), University of Aveiro, Aveiro 3810-193, Portugal; [email protected] (M.D.C.); [email protected] (A.M.S.S.) * Correspondence: [email protected]; Tel.: +351-234-370-360; Fax: +351-234-370-084 Received: 29 April 2017; Accepted: 15 June 2017; Published: 21 June 2017 Abstract: Fucaceae is the most dominant algae family along the intertidal areas of the Northern Hemisphere shorelines, being part of human customs for centuries with applications as a food source either for humans or animals, in agriculture and as remedies in folk medicine. These macroalgae are endowed with several phytochemicals of great industrial interest from which phlorotannins, a class of marine-exclusive polyphenols, have gathered much attention during the last few years due to their numerous possible therapeutic properties. These compounds are very abundant in brown seaweeds such as Fucaceae and have been demonstrated to possess numerous health-promoting properties, including antioxidant effects through scavenging of reactive oxygen species (ROS) or enhancement of intracellular antioxidant defenses, antidiabetic properties through their acarbose-like activity, stimulation of adipocytes glucose uptake and protection of β-pancreatic cells against high-glucose oxidative stress; anti-inflammatory effects through inhibition of several pro-inflammatory mediators; antitumor properties by activation of apoptosis on cancerous cells and metastasis inhibition, among others. These multiple health properties render phlorotannins great potential for application in numerous therapeutical approaches.
    [Show full text]
  • Extraction, Enrichment, and LC-Msn-Based Characterization of Phlorotannins and Related Phenolics from the Brown Seaweed, Ascophyllum Nodosum
    marine drugs Article Extraction, Enrichment, and LC-MSn-Based Characterization of Phlorotannins and Related Phenolics from the Brown Seaweed, Ascophyllum nodosum J. William Allwood 1 , Huw Evans 2, Ceri Austin 1 and Gordon J. McDougall 1,* 1 Plant Biochemistry and Food Quality Group, Environmental and Biochemical Sciences Department, The James Hutton Institute, Dundee DD2 5DA, UK; [email protected] (J.W.A.); [email protected] (C.A.) 2 Byotrol Ltd., Thornton Science Park, Chester CH2 4NU, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1382-568782 Received: 30 July 2020; Accepted: 24 August 2020; Published: 27 August 2020 Abstract: Phenolic components from the edible brown seaweed, Ascophyllum nodosum, have been associated with considerable antioxidant activity but also bioactivities related to human health. This study aims to select and identify the main phlorotannin components from this seaweed which have been previously associated with potential health benefits. Methods to enrich phenolic components then further select phlorotannin components from ethanolic extracts of Ascophyllum nodosum were applied. The composition and phenolic diversity of these extracts were defined using data dependent liquid chromatography mass spectroscopic (LC-MSn) techniques. A series of phlorotannin oligomers with apparent degree of polymerization (DP) from 10 to 31 were enriched by solid phase extraction and could be selected by fractionation on Sephadex LH-20. Evidence was also obtained for the presence of dibenzodioxin linked phlorotannins as well as sulphated phlorotannins and phenolic acids. As well as diversity in molecular size, there was evidence for potential isomers at each DP. MS2 fragmentation analyses strongly suggested that the phlorotannins contained ether linked phloroglucinol units and were most likely fucophlorethols and MS3 data suggested that the isomers may result from branching within the chain.
    [Show full text]
  • Phlorotannins: from Isolation and Structural Characterization, to The
    1 Phlorotannins: from Isolation and Structural Characterization, to the 2 evaluation of their Antidiabetic and Anticancer Potential 3 4 Fernanda Erpela, Raquel Mateosb, Jara Pérez‐Jiménezb, José Ricardo Pérez‐Correaa,* 5 6 a Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad 7 Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile. 8 b Department of Metabolism and Nutrition, Consejo Superior de Investigaciones Científicas (IF‐CSIC), 9 Calle José Antonio Novais, 10, Madrid 28040, Spain. 10 11 E‐mail: Fernanda Erpel, [email protected]; Raquel Mateos, [email protected]; Jara Pérez‐ 12 Jiménez, [email protected]; José Ricardo Pérez‐Correa, [email protected]. 13 14 *Corresponding author: Con formato: Inglés (Estados Unidos) 15 José Ricardo Pérez‐Correa 16 Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad 17 Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile. 18 E‐mail: [email protected]; Tel: +56 2 23544258 19 20 21 22 23 24 [Escriba aquí] 2 25 Abstract: Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only 26 constituted by phloroglucinol (1,3,5‐trihydroxybenzene). They are chain‐ and net‐like structures of 27 diverse molecular weights, and have been widely identified in Ecklonia, Eisenia and Ishige species. 28 Since the time they were discovered in the 70s, phlorotannins have been suggested as a main factor 29 responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro 30 and in vivo research evidence the diverse bioactivities of phlorotannin extracts ‐such as antidiabetic, 31 anticancer and antibacterial‐ pointing out their potential pharmacological and food applications.
    [Show full text]