On the History of the Strong Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1406.7795V2 [Hep-Ph] 24 Apr 2017 Mass Renormalization in a Toy Model with Spontaneously Broken Symmetry
UWThPh-2014-16 Mass renormalization in a toy model with spontaneously broken symmetry W. Grimus∗, P.O. Ludl† and L. Nogu´es‡ University of Vienna, Faculty of Physics Boltzmanngasse 5, A–1090 Vienna, Austria April 24, 2017 Abstract We discuss renormalization in a toy model with one fermion field and one real scalar field ϕ, featuring a spontaneously broken discrete symmetry which forbids a fermion mass term and a ϕ3 term in the Lagrangian. We employ a renormalization scheme which uses the MS scheme for the Yukawa and quartic scalar couplings and renormalizes the vacuum expectation value of ϕ by requiring that the one-point function of the shifted field is zero. In this scheme, the tadpole contributions to the fermion and scalar selfenergies are canceled by choice of the renormalization parameter δv of the vacuum expectation value. However, δv and, therefore, the tadpole contributions reenter the scheme via the mass renormalization of the scalar, in which place they are indispensable for obtaining finiteness. We emphasize that the above renormalization scheme provides a clear formulation of the hierarchy problem and allows a straightforward generalization to an arbitrary number of fermion and arXiv:1406.7795v2 [hep-ph] 24 Apr 2017 scalar fields. ∗E-mail: [email protected] †E-mail: [email protected] ‡E-mail: [email protected] 1 1 Introduction Our toy model is described by the Lagrangian 1 1 = iχ¯ γµ∂ χ + y χT C−1χ ϕ + H.c. + (∂ ϕ)(∂µϕ) V (ϕ) (1) L L µ L 2 L L 2 µ − with the scalar potential 1 1 V (ϕ)= µ2ϕ2 + λϕ4. -
A Chiral Symmetric Calculation of Pion-Nucleon Scattering
. s.-q3 4 4t' A Chiral Symmetric Calculation of Pion-Nucleon Scattering UNeOo M Sc (Rangoon University) A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy at the University of Adelaide Department of Physics and Mathematical Physics University of Adelaide South Australia February 1993 Aword""l,. ng3 Contents List of Figures v List of Tables IX Abstract xt Acknowledgements xll Declaration XIV 1 Introduction 1 2 Chiral Symmetry in Nuclear Physics 7 2.1 Introduction . 7 2.2 Pseudoscalar and Pseudovector pion-nucleon interactions 8 2.2.1 The S-wave interaction 8 2.3 Soft-pion Theorems L2 2.3.1 Partially Conserved Axial Current(PCAC) T2 2.3.2 Adler's Consistency condition l4 2.4 The Sigma Model 16 2.4.I The Linear Sigma, Mocìel 16 2.4.2 Broken Symmetry Mode 18 2.4.3 Correction to the S-wave amplitude . 19 2.4.4 The Non-linear sigma model 2.5 Summary 3 Relativistic Two-Body Propagators 3.1 Introduction . 3.2 Bethe-Salpeter Equation 3.3 Relativistic Two Particle Propagators 3.3.1 Blankenbecler-Sugar Method 3.3.2 Instantaneous-interaction approximation 3.4 Short Range Structure in the Propagators 3.5 Smooth Propagators 3.6 The One Body Limit 3.7 One Body Limit, the R factor 3.8 Application to the zr.lú system 3.9 Summary 4 The Formalisrn 4.r Introduction - 4.2 Interactions in the Cloudy Bag Model . 4.2.1 Vertex Functions 4.2.2 The Weinberg-Tomozawa Term 4.3 Higher order graphs 4.3.1 The Cross Box Interaction 4.3.2 Loop diagram 4.3.3 The Chiral Partner of the Sigma Diagram 4.3.4 Sigma like diagrams 4.3.5 The Contact Interaction 4.3.6 The Interaction for Diagram h . -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
THE STRONG INTERACTION by J
MISN-0-280 THE STRONG INTERACTION by J. R. Christman 1. Abstract . 1 2. Readings . 1 THE STRONG INTERACTION 3. Description a. General E®ects, Range, Lifetimes, Conserved Quantities . 1 b. Hadron Exchange: Exchanged Mass & Interaction Time . 1 s 0 c. Charge Exchange . 2 d L u 4. Hadron States a. Virtual Particles: Necessity, Examples . 3 - s u - S d e b. Open- and Closed-Channel States . 3 d n c. Comparison of Virtual and Real Decays . 4 d e 5. Resonance Particles L0 a. Particles as Resonances . .4 b. Overview of Resonance Particles . .5 - c. Resonance-Particle Symbols . 6 - _ e S p p- _ 6. Particle Names n T Y n e a. Baryon Names; , . 6 b. Meson Names; G-Parity, T , Y . 6 c. Evolution of Names . .7 d. The Berkeley Particle Data Group Hadron Tables . 7 7. Hadron Structure a. All Hadrons: Possible Exchange Particles . 8 b. The Excited State Hypothesis . 8 c. Quarks as Hadron Constituents . 8 Acknowledgments. .8 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-280 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Strong Interaction OF PROJECT PHYSNET Author: J. R. Christman, Dept. of Physical Science, U. S. Coast Guard The goal of our project is to assist a network of educators and scientists in Academy, New London, CT transferring physics from one person to another. We support manuscript Version: 11/8/2001 Evaluation: Stage B1 processing and distribution, along with communication and information systems. We also work with employers to identify basic scienti¯c skills Length: 2 hr; 12 pages as well as physics topics that are needed in science and technology. -
A Young Physicist's Guide to the Higgs Boson
A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with.. -
Strongly Coupled Fermions on the Lattice
Syracuse University SURFACE Dissertations - ALL SURFACE December 2019 Strongly coupled fermions on the lattice Nouman Tariq Butt Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Butt, Nouman Tariq, "Strongly coupled fermions on the lattice" (2019). Dissertations - ALL. 1113. https://surface.syr.edu/etd/1113 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract Since its inception with the pioneering work of Ken Wilson, lattice field theory has come a long way. Lattice formulations have enabled us to probe the non-perturbative structure of theories such as QCD and have also helped in exploring the phase structure and classification of phase transitions in a variety of other strongly coupled theories of interest to both high energy and condensed matter theorists. The lattice approach to QCD has led to an understanding of quark confinement, chiral sym- metry breaking and hadronic physics. Correlation functions of hadronic operators and scattering matrix of hadronic states can be calculated in terms of fundamental quark and gluon degrees of freedom. Since lat- tice QCD is the only well-understood method for studying the low-energy regime of QCD, it can provide a solid foundation for the understanding of nucleonic structure and interaction directly from QCD. Despite these successes problems remain. In particular, the study of chiral gauge theories on the lattice is an out- standing problem of great importance owing to its theoretical implications and for its relevance to the electroweak sector of the Standard Model. -
New Physics of Strong Interaction and Dark Universe
universe Review New Physics of Strong Interaction and Dark Universe Vitaly Beylin 1 , Maxim Khlopov 1,2,3,* , Vladimir Kuksa 1 and Nikolay Volchanskiy 1,4 1 Institute of Physics, Southern Federal University, Stachki 194, 344090 Rostov on Don, Russia; [email protected] (V.B.); [email protected] (V.K.); [email protected] (N.V.) 2 CNRS, Astroparticule et Cosmologie, Université de Paris, F-75013 Paris, France 3 National Research Nuclear University “MEPHI” (Moscow State Engineering Physics Institute), 31 Kashirskoe Chaussee, 115409 Moscow, Russia 4 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia * Correspondence: [email protected]; Tel.:+33-676380567 Received: 18 September 2020; Accepted: 21 October 2020; Published: 26 October 2020 Abstract: The history of dark universe physics can be traced from processes in the very early universe to the modern dominance of dark matter and energy. Here, we review the possible nontrivial role of strong interactions in cosmological effects of new physics. In the case of ordinary QCD interaction, the existence of new stable colored particles such as new stable quarks leads to new exotic forms of matter, some of which can be candidates for dark matter. New QCD-like strong interactions lead to new stable composite candidates bound by QCD-like confinement. We put special emphasis on the effects of interaction between new stable hadrons and ordinary matter, formation of anomalous forms of cosmic rays and exotic forms of matter, like stable fractionally charged particles. The possible correlation of these effects with high energy neutrino and cosmic ray signatures opens the way to study new physics of strong interactions by its indirect multi-messenger astrophysical probes. -
Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders
S S symmetry Article Optimized Probes of the CP Nature of the Top Quark Yukawa Coupling at Hadron Colliders Darius A. Faroughy 1, Blaž Bortolato 2, Jernej F. Kamenik 2,3,* , Nejc Košnik 2,3 and Aleks Smolkoviˇc 2 1 Physik-Institut, Universitat Zurich, CH-8057 Zurich, Switzerland; [email protected] 2 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; [email protected] (B.B.); [email protected] (N.K.); [email protected] (A.S.) 3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia * Correspondence: [email protected] Abstract: We summarize our recent proposals for probing the CP-odd ik˜t¯g5th interaction at the LHC and its projected upgrades directly using associated on-shell Higgs boson and top quark or top quark pair production. We first recount how to construct a CP-odd observable based on top quark polarization in Wb ! th scattering with optimal linear sensitivity to k˜. For the corresponding hadronic process pp ! thj we then present a method of extracting the phase-space dependent weight function that allows to retain close to optimal sensitivity to k˜. For the case of top quark pair production in association with the Higgs boson, pp ! tth¯ , with semileptonically decaying tops, we instead show how one can construct manifestly CP-odd observables that rely solely on measuring the momenta of the Higgs boson and the leptons and b-jets from the decaying tops without having to distinguish the charge of the b-jets. Finally, we introduce machine learning (ML) and non-ML techniques to study the phase-space optimization of such CP-odd observables. -
MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules. -
Perturbative Improvement of Fermion Operators in Strong Interaction Physics
UNIVERSITY OF CYPRUS PHYSICS DEPARTMENT Perturbative Improvement of Fermion Operators in Strong Interaction Physics M.Sc THESIS FOTOS STYLIANOU JUNE 2010 UNIVERSITY OF CYPRUS PHYSICS DEPARTMENT Perturbative Improvement of Fermion Operators in Strong Interaction Physics M.Sc Thesis Fotos Stylianou Advisor Prof. Haralambos Panagopoulos Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Physics Department at the University of Cyprus June 2010 Dedicated to my girlfriend Irene Acknowledgments The completion of this project would not have been possible without the support of family members, friends and colleagues. In this respect, I grasp this opportunity to acknowledge their contribution and to express my sincerest regards. Initially, I would like to express my deepest gratitude to my supervisor Prof. Haris Panagopoulos, for his knowledge sharing. Throughout the course of this project, his continuous guidance contributed both to my professional and personal development. I deeply appreciate his persistence in my participation in the lattice conference in China, which has been a once in a lifetime experience for me. I also take this opportunity to thank Prof. Haris Panagopoulos, for showing trust to my abilities and choosing to include me in research programs. Special thanks go to my colleague Dr. Martha Constantinou, for her uncondi- tional support, her experience and helpful ideas through difficult times. I would also like to thank my colleague Dr. Apostolos Skouroupathis, for the cooperation and his constructive calculations. For all the joyful lunch breaks as well as their meaningful advice, I would like to thank my fellow roommates Phanos, Savvas, Phillipos, Marios and Demetris. -
Advanced Information on the Nobel Prize in Physics, 5 October 2004
Advanced information on the Nobel Prize in Physics, 5 October 2004 Information Department, P.O. Box 50005, SE-104 05 Stockholm, Sweden Phone: +46 8 673 95 00, Fax: +46 8 15 56 70, E-mail: [email protected], Website: www.kva.se Asymptotic Freedom and Quantum ChromoDynamics: the Key to the Understanding of the Strong Nuclear Forces The Basic Forces in Nature We know of two fundamental forces on the macroscopic scale that we experience in daily life: the gravitational force that binds our solar system together and keeps us on earth, and the electromagnetic force between electrically charged objects. Both are mediated over a distance and the force is proportional to the inverse square of the distance between the objects. Isaac Newton described the gravitational force in his Principia in 1687, and in 1915 Albert Einstein (Nobel Prize, 1921 for the photoelectric effect) presented his General Theory of Relativity for the gravitational force, which generalized Newton’s theory. Einstein’s theory is perhaps the greatest achievement in the history of science and the most celebrated one. The laws for the electromagnetic force were formulated by James Clark Maxwell in 1873, also a great leap forward in human endeavour. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, photons. In this picture, the electromagnetic force can be thought of as a bombardment of photons, as when one object is thrown to another to transmit a force. -
Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion As Well to the Graviton Mediating the Interaction in Celestial Bodies
Hindawi Advances in Mathematical Physics Volume 2019, Article ID 6765827, 10 pages https://doi.org/10.1155/2019/6765827 Research Article Yukawa Potential Orbital Energy: Its Relation to Orbital Mean Motion as well to the Graviton Mediating the Interaction in Celestial Bodies Connor Martz,1 Sheldon Van Middelkoop,2 Ioannis Gkigkitzis,3 Ioannis Haranas ,4 and Ilias Kotsireas4 1 University of Waterloo, Department of Physics and Astronomy, Waterloo, ON, N2L-3G1, Canada 2University of Western Ontario, Department of Physics and Astronomy, London, ON N6A-3K7, Canada 3NOVA, Department of Mathematics, 8333 Little River Turnpike, Annandale, VA 22003, USA 4Wilfrid Laurier University, Department of Physics and Computer Science, Waterloo, ON, N2L-3C5, Canada Correspondence should be addressed to Ioannis Haranas; [email protected] Received 25 September 2018; Revised 25 November 2018; Accepted 4 December 2018; Published 1 January 2019 Academic Editor: Eugen Radu Copyright © 2019 Connor Martz et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Research on gravitational theories involves several contemporary modifed models that predict the existence of a non-Newtonian Yukawa-type correction to the classical gravitational potential. In this paper we consider a Yukawa potential and we calculate the time rate of change of the orbital energy as a function of the orbital mean motion for circular and elliptical orbits. In both cases we fnd that there is a logarithmic dependence of the orbital energy on the mean motion. Using that, we derive an expression for the mean motion as a function of the Yukawa orbital energy, as well as specifc Yukawa potential parameters.