Spp. (Alphaproteobacteria)

Total Page:16

File Type:pdf, Size:1020Kb

Spp. (Alphaproteobacteria) Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria) Lukasz Dziewit, Jadwiga Baj, Magdalena Szuplewska, Anna Maj, Mateusz Tabin, Anna Czyzkowska, Grazyna Skrzypczyk, Marcin Adamczuk, Tomasz Sitarek, Piotr Stawinski, Agnieszka Tudek, Katarzyna Wanasz, Ewa Wardal, Ewa Piechucka, Dariusz Bartosik* Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland Abstract Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3,IS5,IS6,IS21,IS66,IS256,IS1182,IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393,Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution. Citation: Dziewit L, Baj J, Szuplewska M, Maj A, Tabin M, et al. (2012) Insights into the Transposable Mobilome of Paracoccus spp. (Alphaproteobacteria). PLoS ONE 7(2): e32277. doi:10.1371/journal.pone.0032277 Editor: Laurence Van Melderen, Universite Libre de Bruxelles, Belgium Received October 7, 2011; Accepted January 24, 2012; Published February 16, 2012 Copyright: ß 2012 Dziewit et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the Ministry of Science and Higher Education, Poland (grant PBZ-MNiSW-04/I/2007). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction frequently occur on mobile plasmids and bacteriophages, which enhances the propagation of TEs by horizontal gene transfer Transposable elements (TEs) are components of nearly all (HGT) between various bacteria. This results in significant prokaryotic genomes. They are mobilized to change their location enrichment of the bacterial mobilome, i.e. a pool of mobile in DNA by the action of a transposase (TPase), an enzyme which DNA involved in HGT, which is considered to be the driving force catalyses transposition, i.e. recombination that does not require of bacterial evolution. sequence homology between the TE and the target site. The The simplest TEs are insertion sequences (ISs), which are highly presence and activity of TEs may lead to structural changes in abundant in bacteria. They carry only genetic information that is both the size and composition of a genome. TEs can generate (i) necessary and sufficient for transposition and its regulation. The various mutations, such as insertions, deletions, duplications, majority of ISs are composed of a single open reading frame inversions and translocations of even large DNA fragments, and (ii) (ORF), encoding a transposase, flanked by two inverted repeat replicon fusions [1]. Some elements are able to activate silent, sequences (IRs) that are recognized by the TPase during promoterless genes, when they are located in close proximity to the transposition. In most cases, the transposition of ISs causes target site of transposition [2,3]. Moreover, TEs can mobilize duplication of the target site, so that the inserted element is chromosomal genes for transposition, which results in shuffling of bordered by two short (2–15 bp) identical direct repeat sequences genetic information among various replicons present in a bacterial (DRs) [5]. cell [4]. Thus, these highly recombinogenic elements may be ISs are also able to form more complex TEs such as (i) considered as major architects responsible for shaping the composite transposons consisting of random segments of genomic structure of prokaryotic genomes. Their activity significantly DNA (core region) bordered by a pair of ISs, or (ii) transposable enhances genome variability and consequently the adaptative modules (TMos) and ISCR elements composed of one IS copy, and evolutionary capacities of their hosts. In addition, TEs very which can mobilize an adjacent DNA segment for transposition PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32277 Transposable Elements of Paracoccus spp. [3,6]. ISs are also responsible for the mobility of non-autonomous and distribution of the captured TEs, which allowed us to draw TEs (i.e. not encoding their own transposase), such as (i) mobile more general conclusions concerning their evolutionary impact, as insertion cassettes (MICs), identified in Bacillus cereus [7] and (ii) well as the direction and frequency of horizontal gene transfer in miniature inverted repeat transposable elements (MITEs), which this group of bacteria. may constitute up to 2% of a bacterial genome [8]. There is another widely distributed group of TEs called the non- Materials and Methods composite transposons, which is divided into the Tn3 and Tn7 families. Besides a transposase, the Tn3 elements contain a site- Bacterial Strains and Culture Conditions specific recombination module encoding a resolvase (an enzyme For identification of transposable elements rifampicin-resistant responsible for resolution of cointegrates, which are intermediate (Rifr) derivatives of the wild-type strains of Paracoccus spp. (listed in forms in replicative transposition), while the Tn7 elements are Table 1) were used. Escherichia coli TG1 [21] was used for plasmid known for their complex transposition machinery (they encode five construction. The majority of the strains were grown in lysogeny transposition proteins) [9,10]. These transposons often encode broth (LB) medium (Sigma) at 30uC(Paracoccus spp.) or 37uC(E. beneficial functions such as drug or heavy metal resistance, coli). P. homiensis DSM 17862 was cultivated in Marine Broth pathogenicity or the ability to utilize different carbon sources (Difco). Where necessary, the medium was supplemented with [11,12]. sucrose (10%) and with antibiotics at the following concentrations Large-scale genome sequencing projects have led to an (mg?ml21): kanamycin, 50; rifampicin, 50; tetracycline, 0.3–35 explosion in the number of annotated prokaryotic and eukaryotic (depending on the strain). TEs (for example, more than 3800 IS elements have now been isolated from over 295 prokaryotic species; ISfinder database [13]). However, in most cases their activity has not been experimentally confirmed. In 2009 we initiated a project aimed at identifying functional transposable elements harbored by bacteria belonging to the genus Table 1. Paracoccus spp. strains used in this study. Paracoccus (Alphaproteobacteria). This genus currently comprises 31 species, which have been isolated from many geographical locations and from different environments. Paracoccus spp. are Paracoccus spp. strain References physiologically among the most versatile bacteria, and are able to P. aestuarii DSM 19484 [59] perform a number of different growth modes. Many are aerobic P. alcaliphilus JCM 7364 [60] chemoorganoheterotrophs utilizing a wide variety of organic P. alkenifer DSM 11593 [61] compounds, including potential pollutants like acetone, N,N- dimethylformamide and methylamine [14]. Some strains of P. aminophilus JCM 7686 [62] Paracoccus spp. are facultative chemolithoautotrophs utilizing P. aminovorans JCM 7685 [62] reduced sulfur compounds, molecular hydrogen and Fe(II) as P. bengalensis DSM 17099 [63] energy sources [14,15]. Because of their versatile metabolism, P. denitrificans LMD 22.21 [64] these bacteria can play an important role in the cycling of P. ferrooxidans NCCB 1300066 [15] chemical elements in the environment. In addition, these P. haeundaensis LMG P-21903 [65] physiological properties raise the possibility of employing para- cocci in bioremediation systems, particularly since many species P. halophilus
Recommended publications
  • A Salt Lake Extremophile, Paracoccus Bogoriensis Sp. Nov., Efficiently Produces Xanthophyll Carotenoids
    African Journal of Microbiology Research Vol. 3(8) pp. 426-433 August, 2009 Available online http://www.academicjournals.org/ajmr ISSN 1996-0808 ©2009 Academic Journals Full Length Research Paper A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids George O. Osanjo1*, Elizabeth W. Muthike2, Leah Tsuma3, Michael W. Okoth2, Wallace D. Bulimo3, Heinrich Lünsdorf4, Wolf-Rainer Abraham4, Michel Dion5, Kenneth N. Timmis4 , Peter N. Golyshin4 and Francis J. Mulaa3 1School of Pharmacy, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 2Department of Food Science, Technology and Nutrition, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya. 3Department of Biochemistry, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya. 4Division of Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. 5Université de Nantes, UMR CNRS 6204, Biotechnologie, Biocatalyse, Biorégulation, Faculté des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, Nantes, F- 44322, France. Accepted 27 July, 2009 A Gram-negative obligate alkaliphilic bacterium (BOG6T) that secretes carotenoids was isolated from the outflow of Lake Bogoria hot spring located in the Kenyan Rift Valley. The bacterium is motile by means of a polar flagellum, and forms red colonies due to the production of xanthophyll carotenoid pigments. 16S rRNA gene sequence analysis showed this strain to cluster phylogenetically within the genus Paracoccus. Strain BOG6T is aerobic, positive for both catalase and oxidase, and non- methylotrophic. The major fatty acid of the isolate is C18: 1ω7c. It accumulated polyhydroxybutyrate granules. Strain BOG6T gave astaxanthin yield of 0.4 mg/g of wet cells indicating a potential for application in commercial production of carotenoids.
    [Show full text]
  • Identification and Distribution of Insertion Sequences of Paracoccus
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Dec. 2003, p. 7002–7008 Vol. 69, No. 12 0099-2240/03/$08.00ϩ0 DOI: 10.1128/AEM.69.12.7002–7008.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Identification and Distribution of Insertion Sequences of Paracoccus solventivorans Dariusz Bartosik,* Michal Szymanik, and Jadwiga Baj Department of Bacterial Genetics, Institute of Microbiology, Warsaw University, 02-096 Warsaw, Poland Received 15 July 2003/Accepted 18 September 2003 Three novel insertion sequences (ISs) (ISPso1,ISPso2, and ISPso3) of the soil bacterium Paracoccus solventivorans DSM 11592 were identified by transposition into entrapment vector pMEC1. ISPso1 (1,400 bp) carries one large open reading frame (ORF) encoding a putative basic protein (with a DDE motif conserved among transposases [Tnps] of elements belonging to the IS256 family) with the highest levels of similarity with the hypothetical Tnps of Rhodospirillum rubrum and Sphingopyxis macrogoltabida.ISPso2 (832 bp) appeared to be closely related to ISPpa2 of Paracoccus pantotrophus DSM 11072 and IS1248 of Paracoccus denitrificans PdX22, both of which belong to the IS427 group (IS5 family). These elements contain two overlapping ORFs and a putative frameshift motif (AAAAG) responsible for production of a putative transframe Tnp. ISPso3 (1,286 bp) contains a single ORF, whose putative product showed homology with Tnps of ISs classified as members of a distinct subgroup of the IS5 group of the IS5 family. The highest levels of similarity were observed with ISSsp126 of Sphingomonas sp. and IS1169 of Bacteroides fragilis. Analysis of the distribution of ISs of P. solventivorans revealed that ISPso2-like elements are the most widely spread of the elements in nine species of the genus Paracoccus.ISPso1 and ISPso3 are present in only a few paracoccal strains, which suggests that they were acquired by lateral transfer.
    [Show full text]
  • 81) Designated States (Unless Otherwise Indicated, for Every C12N 15/63 (2006.0 1) C12R 1/01 (2006.0 1) Kind of National Protection Av Ailable
    ) ( (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/63 (2006.0 1) C12R 1/01 (2006.0 1) kind of national protection av ailable) . AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, PCT/EP20 19/0597 15 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (22) International Filing Date: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, 15 April 2019 (15.04.2019) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 18167406.0 15 April 2018 (15.04.2018) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available) . ARIPO (BW, GH, (71) Applicant: MAX-PLANCK-GESELLSCHAFT ZUR GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, FORDERUNG DER WISSENSCHAFTEN E.V. UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [DE/DE]; Hofgartenstrasse 8, 80539 Munich (DE). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventors: VON BORZYSKOWSKI, Lennart Schada; EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Pfarracker 5, 35043 Marburg (DE).
    [Show full text]
  • 1 Two Pathways for Thiosulfate Oxidation in The
    bioRxiv preprint doi: https://doi.org/10.1101/683490; this version posted June 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Two pathways for thiosulfate oxidation in the alphaproteobacterial chemolithotroph Paracoccus thiocyanatus SST Moidu Jameela Rameez1, Prosenjit Pyne1,$, Subhrangshu Mandal1, Sumit Chatterjee1, Masrure 5 Alam1,#, Sabyasachi Bhattacharya1, Nibendu Mondal1, Jagannath Sarkar1 and Wriddhiman Ghosh1* Addresses: Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, India. 10 Present address: $National Institute of Cholera and Enteric Diseases, P-33, C. I. T Road, Scheme XM, Beliaghata, Kolkata 700 010, India. #Department of Biological Sciences, Aliah University, IIA/27, New Town, Kolkata-700160, India. *Correspondence: [email protected] 15 Running title: Thiosulfate oxidation via tetrathionate in an alphaproteobacterium Keywords: sulfur-chemolithotrophy, Sox multienzyme system, Alphaproteobacteria, thiosulfate oxidation via tetrathionate-intermediate, thiosulfate 20 dehydrogenase, tetrathionate oxidation Abstract Chemolithotrophic bacteria oxidize various sulfur species for energy and electrons, thereby 25 operationalizing biogeochemical sulfur cycles in nature. The best-studied pathway of bacterial sulfur-chemolithotrophy, involving direct oxidation of thiosulfate to sulfate (without any free intermediate) by the SoxXAYZBCD multienzyme system, is apparently the exclusive
    [Show full text]
  • Characterization of the Virome of Paracoccus Spp. (Alphaproteobacteria) by Combined in Silico and in Vivo Approaches
    www.nature.com/scientificreports OPEN Characterization of the virome of Paracoccus spp. (Alphaproteobacteria) by combined Received: 11 February 2019 Accepted: 17 May 2019 in silico and in vivo approaches Published: xx xx xxxx Przemyslaw Decewicz 1, Lukasz Dziewit 1, Piotr Golec 1, Patrycja Kozlowska2, Dariusz Bartosik1 & Monika Radlinska2 Bacteria of the genus Paracoccus inhabit various pristine and anthropologically-shaped environments. Many Paracoccus spp. have biotechnological value and several are opportunistic human pathogens. Despite extensive knowledge of their metabolic potential and genome architecture, little is known about viruses of Paracoccus spp. So far, only three active phages infecting these bacteria have been identifed. In this study, 16 Paracoccus strains were screened for the presence of active temperate phages, which resulted in the identifcation of fve novel viruses. Mitomycin C-induced prophages were isolated, visualized and their genomes sequenced and thoroughly analyzed, including functional validation of their toxin-antitoxin systems. This led to the identifcation of the frst active Myoviridae phage in Paracoccus spp. and four novel Siphoviridae phages. In addition, another 53 prophages were distinguished in silico within genomic sequences of Paracoccus spp. available in public databases. Thus, the Paracoccus virome was defned as being composed of 66 (pro)phages. Comparative analyses revealed the diversity and mosaicism of the (pro)phage genomes. Moreover, similarity networking analysis highlighted the uniqueness of Paracoccus (pro)phages among known bacterial viruses. Paracoccus spp. (Alphaproteobacteria) are metabolically versatile bacteria, that have been isolated from a wide range of environments in various geographical locations, e.g.: bioflters for the treatment of waste gases from an animal rendering plant in Germany (P.
    [Show full text]
  • Alphaproteobacteria) - Structure, Diversity and Evolution
    Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution Anna Maj, Lukasz Dziewit, Jakub Czarnecki, Miroslawa Wlodarczyk, Jadwiga Baj, Grazyna Skrzypczyk, Dorota Giersz, Dariusz Bartosik* Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland Abstract Plasmids are components of many bacterial genomes. They enable the spread of a large pool of genetic information via lateral gene transfer. Many bacterial strains contain mega-sized replicons and these are particularly common in Alphaproteobacteria. Considerably less is known about smaller alphaproteobacterial plasmids. We analyzed the genomes of 14 such plasmids residing in 4 multireplicon carotenoid-producing strains of the genus Paracoccus (Alphaproteobacteria): P. aestuarii DSM 19484, P. haeundaensis LG P-21903, P. marcusii DSM 11574 and P. marcusii OS22. Comparative analyses revealed mosaic structures of the plasmids and recombinational shuffling of diverse genetic modules involved in (i) plasmid replication, (ii) stabilization (including toxin-antitoxin systems of the relBE/parDE, tad-ata, higBA, mazEF and toxBA families) and (iii) mobilization for conjugal transfer (encoding relaxases of the MobQ, MobP or MobV families). A common feature of the majority of the plasmids is the presence of AT-rich sequence islets (located downstream of exc1-like genes) containing genes, whose homologs are conserved in the chromosomes of many bacteria (encoding e.g. RelA/SpoT, SMC-like proteins and a retron-type reverse transcriptase). The results of this study have provided insight into the diversity and plasticity of plasmids of Paracoccus spp., and of the entire Alphaproteobacteria. Some of the identified plasmids contain replication systems not described previously in this class of bacteria.
    [Show full text]
  • Paracoccus Niistensis Sp Nov., Isolated from Forest Soil, India
    Author version: Antonie van Leeuwenhoek, vol.99(3); 2011; 501-506 Paracoccus niistensis sp nov., isolated from forest soil, India Syed G.Dastager1,2, Deepa C.K2, Wen-Jun Li3, Shu-Kun Tang3 and Ashok Pandey2 Present Address: 2Biological Oceanography Division, National Institute of Oceanography (CSIR), Dona Paula-403004, Goa, India 1National Institute for Interdisciplinary Science and technology (CSIR), Trivandrum-695019, India. 3Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China Author for correspondence: Dr.Syed G Dastager Tel: 832-2450446, 447; Fax: +91-832- 2450606 Email: [email protected], [email protected], Running title: Paracoccus niistensis sp.nov. Abstract A Gram-negative, non-motile, catalase-positive and oxidase-positive, aerobic bacterium designated as NII-0918T was isolated from soil sample in Western ghat forest, India. 16S rRNA gene sequence analysis showed that strain NII-0918T was belongs to the subclass α-Proteobacteria, being related to genus Paracoccus, and sharing highest sequence similarity with Paracoccus chinensis NBRC 104937T(99.4%), Paracoccus marinus NBRC 100640T (97.3%), Paracoccus koreensis Ch05T (97.1%) and Paracoccus kondratievae GBT(97.0%). Other members of Paracoccus showing below 97.0% similarity. The DNA–DNA hybridization values between these four strains and NII-0918T were 44.7, 28, T 32 and 41% respectively. The major fatty acids of strain NII-0918 were summed feature 7 (C18:1 ω7c/ ω 9t/ ω 12t) (83.0 %) and C18:0 (12.5 %). Ubiquinone Q-10 was detected as the major respiratory quinone. The G+C content of genomic DNA of NII-0918T was 66.6 mol%.
    [Show full text]
  • Architecture and Functions of a Multipartite Genome of The
    Dziewit et al. BMC Genomics 2014, 15:124 http://www.biomedcentral.com/1471-2164/15/124 RESEARCH ARTICLE Open Access Architecture and functions of a multipartite genome of the methylotrophic bacterium Paracoccus aminophilus JCM 7686, containing primary and secondary chromids Lukasz Dziewit1*, Jakub Czarnecki1, Daniel Wibberg2, Monika Radlinska3, Paulina Mrozek3, Michal Szymczak1, Andreas Schlüter2, Alfred Pühler2 and Dariusz Bartosik1 Abstract Background: Paracoccus aminophilus JCM 7686 is a methylotrophic α-Proteobacterium capable of utilizing reduced one-carbon compounds as sole carbon and energy source for growth, including toxic N,N-dimethylformamide, formamide, methanol, and methylamines, which are widely used in the industry. P. aminophilus JCM 7686, as many other Paracoccus spp., possesses a genome representing a multipartite structure, in which the genomic information is split between various replicons, including chromids, essential plasmid-like replicons, with properties of both chromosomes and plasmids. In this study, whole-genome sequencing and functional genomics approaches were applied to investigate P. aminophilus genome information. Results: The P. aminophilus JCM 7686 genome has a multipartite structure, composed of a single circular chromosome and eight additional replicons ranging in size between 5.6 and 438.1 kb. Functional analyses revealed that two of the replicons, pAMI5 and pAMI6, are essential for host viability, therefore they should be considered as chromids. Both replicons carry housekeeping genes, e.g. responsible for de novo NAD biosynthesis and ammonium transport. Other mobile genetic elements have also been identified, including 20 insertion sequences, 4 transposons and 10 prophage regions, one of which represents a novel, functional serine recombinase-encoding bacteriophage, ϕPam-6. Moreover, in silico analyses allowed us to predict the transcription regulatory network of the JCM 7686 strain, as well as components of the stress response, recombination, repair and methylation machineries.
    [Show full text]
  • Bibliography
    Bibliography Aa, K. and R.A. Olsen. 1996. The use of various substrates and substrate caulis Poindexter by a polyphasic analysis. Int. J. Syst. Evol. Microbiol. concentrations by a Hyphomicrobium sp. isolated from soil: effect on 51: 27–34. growth rate and growth yield. Microb. Ecol. 31: 67–76. Abram, D., J. Castro e Melo and D. Chou. 1974. Penetration of Bdellovibrio Aalen, R.B. and W.B. Gundersen. 1985. Polypeptides encoded by cryptic bacteriovorus into host cells. J. Bacteriol. 118: 663–680. plasmids from Neisseria gonorrhoeae. Plasmid 14: 209–216. Abramochkina, F.N., L.V. Bezrukova, A.V. Koshelev, V.F. Gal’chenko and Aamand, J., T. Ahl and E. Spieck. 1996. Monoclonal antibodies recog- M.V. Ivanov. 1987. Microbial methane oxidation in a fresh-water res- nizing nitrite oxidoreductase of Nitrobacter hamburgensis, N. winograd- ervoir. Mikrobiologiya 56: 464–471. skyi, and N. vulgaris. Appl. Environ. Microbiol. 62: 2352–2355. Achenbach, L.A., U. Michaelidou, R.A. Bruce, J. Fryman and J.D. Coates. Aarestrup, F.M., E.M. Nielsen, M. Madsen and J. Engberg. 1997. Anti- 2001. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum microbial susceptibility patterns of thermophilic Campylobacter spp. gen. nov., sp. nov., two novel environmentally dominant from humans, pigs, cattle, and broilers in Denmark. Antimicrob. (per)chlorate-reducing bacteria and their phylogenetic position. Int. Agents Chemother. 41: 2244–2250. J. Syst. Evol. Microbiol. 51: 527–533. Abadie, M. 1967. Formations intracytoplasmique du type “me´some” chez Achouak, W., R. Christen, M. Barakat, M.H. Martel and T. Heulin. 1999. Chondromyces crocatus Berkeley et Curtis.
    [Show full text]
  • N2 Fixation Dominates Nitrogen Cycling in a Mangrove Fiddler Crab Holobiont
    www.nature.com/scientificreports OPEN N2 fxation dominates nitrogen cycling in a mangrove fddler crab holobiont Mindaugas Zilius1,2*, Stefano Bonaglia1,3,4, Elias Broman3,5, Vitor Gonsalez Chiozzini6, Aurelija Samuiloviene1, Francisco J. A. Nascimento3,5, Ulisse Cardini1,7 & Marco Bartoli1,8 Mangrove forests are among the most productive and diverse ecosystems on the planet, despite limited nitrogen (N) availability. Under such conditions, animal-microbe associations (holobionts) are often key to ecosystem functioning. Here, we investigated the role of fddler crabs and their carapace- associated microbial bioflm as hotspots of microbial N transformations and sources of N within the mangrove ecosystem. 16S rRNA gene and metagenomic sequencing provided evidence of a microbial bioflm dominated by Cyanobacteria, Alphaproteobacteria, Actinobacteria, and Bacteroidota with a community encoding both aerobic and anaerobic pathways of the N cycle. Dinitrogen (N2) fxation was among the most commonly predicted process. Net N fuxes between the bioflm-covered crabs and the water and microbial N transformation rates in suspended bioflm slurries portray these holobionts as a net N2 sink, with N2 fxation exceeding N losses, and as a signifcant source of ammonium and dissolved organic N to the surrounding environment. N stable isotope natural abundances of fddler crab carapace-associated bioflms were within the range expected for fxed N, further suggesting active microbial N2 fxation. These results extend our knowledge on the diversity of invertebrate- microbe associations, and provide a clear example of how animal microbiota can mediate a plethora of essential biogeochemical processes in mangrove ecosystems. Among coastal ecosystems, mangrove forests are of great importance as they account for three quarters of the tropical coastline and provide diferent ecosystem services1,2.
    [Show full text]
  • Microbial Interactions in the Fish Gut
    Microbial interactions in the fish gut Christos Giatsis Thesis committee Promotor Prof. Dr Johan A.J. Verreth Professor of Aquaculture and Fisheries Wageningen University Co-promotors Dr Marc C.J. Verdegem Associate professor, Aquaculture and Fisheries Group Wageningen University Dr Detmer Sipkema Assistant professor, Laboratory of Microbiology Wageningen University Other members Prof. Dr Jerry Wells, Wageningen University Dr Kari J.K. Attramadal, NTNU, Trondheim, Norway Prof. Dr Peter Bossier, Gent University, Belgium Dr Walter J.J. Gerrits, Wageningen University This research was conducted under the auspices of the Graduate School WIAS (Wageningen Institute of Animal Sciences). Microbial interactions in the fish gut Christos Giatsis Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 21 October 2016 at 4 p.m. in the Aula. Christos Giatsis Microbial interactions in the fish gut 198 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in English ISBN: 978-94-6257-877-7 DOI: 10.18174/387232 Fiat justitia - ruat caelum -Ancient Roman proverb- Contents Chapter 1 9 Introduction and thesis outline Chapter 2 15 The colonization dynamics of the gut microbiota in tilapia larvae Chapter 3 39 The impact of rearing environment on the development of gut microbiota in tilapia larvae Chapter 4
    [Show full text]
  • Standard Document Template Microsoft Word Versi 7 Untuk Jurnal
    Bulletin of Environmental Science and Management, 2014, Vol 2, No 1, 12-16 12 BULLETIN OF ENVIRONMENTAL SCIENCE AND MANAGEMENT Website: http://journal.hibiscuspublisher.com Characterization of carbazole degrading marine bacterium strain OC6S isolated from seawater of Kobe, Japan, a probable novel species and genus from‘Alphaproteobacteria’class Azham Zulkharnain1, Hiroyuki Fuse2, Rintaro Maeda2, Shintaro Oba2 and Toshio Omori2 1Dept. of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia 2College of Graduate School of Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, 337-8570 Saitama, Japan. Corresponding author; Azham Zulkharnain, E-mail: [email protected] History Abstract Received: 29 April 2014 T Received in revised form: 8 May 2014 The carbazole-degrading marine bacterium OC6S was isolated from seawater collected off the Accepted: 1 July 2014 coast of Kobe, Japan. Phylogenetic analysis of 16S rRNA revealed that this strain is distinct Available online: 25 July 2014 from other known orders of class ‘Alphaproteobacteria’. The closest related bacterium was Keyword T Carbazole; Kordiimonas gwangyangensis GW14-5 , although 16S rRNA similarity was only 90.1%. Strain T Marine bacterium; OC6S was Gram-negative, motile, rod-shaped, catalase-positive, oxidase-positive, nitrate- Alphaproteobacteria reducing, and mesophilic. Respiratory quinone was Q-10 for both aerobic and anaerobic growth, and the DNA G+C content was 58.3 mol%. Optimal cell growth was observed at 16-37 °C, pH 5.5-10, and at NaCl concentrations up to 5%. The dominant fatty acids were C18 : 1 ω7c (41.54%), C14 : 0 2-OH (14.21%), and C17 : 1 ω6c (10.10%).
    [Show full text]