Histological and Cytological Analysis of Microsporogenesis and Microgametogenesis of the Invasive Species Galinsoga Quadriradiata Ruiz & Pav

Total Page:16

File Type:pdf, Size:1020Kb

Histological and Cytological Analysis of Microsporogenesis and Microgametogenesis of the Invasive Species Galinsoga Quadriradiata Ruiz & Pav ACTA BIOLOGICA CRACOVIENSIA Series Botanica 57/2: 89–97, 2015 DOI: 10.1515/abcsb-2015-0018 HISTOLOGICAL AND CYTOLOGICAL ANALYSIS OF MICROSPOROGENESIS AND MICROGAMETOGENESIS OF THE INVASIVE SPECIES GALINSOGA QUADRIRADIATA RUIZ & PAV. (ASTERACEAE) JOLANTA KOLCZYK, MONIKA TULEJA* AND BARTOSZ JAN PŁACHNO Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland Received April 27, 2015; revision accepted May 20, 2015 Galinsoga quadriradiata Ruiz & Pav. is an annual weedy plant that can be found all over the world. It belongs to the Asteraceae family and is recognised as one of the invasive foreign plants in Poland, which are native to Central and South America. The aim of this study was to describe the reproductive features of Galinsoga quadri- radiata focusing on the changes that occur during microsporogenesis and microgametogenesis along with the morphology of its pollen. As it is typical of the eudicot clade of Angiosperms, cytokinesis of G. quadriradiata is simultaneous. The pollen grains are tricolporate with spiny outer walls and the course of the microsporogenet- ic process is fairly typical of the Echinatae group of weed plants. The high viability of the pollen grains, which mature unequally in the inflorescences, and the proper course of meiosis determine whether a plant has the invasive character of Galinsoga quadriradiata. Key words: G. quadriradiata, microgametogenesis, microsporogenesis, pollen grains, invasive kenophyte, weed plant INTRODUCTION Seeds are able to germinate immediately upon con- tact with warm and moist soil, and therefore each The main process in Angiospermae that leads to growing season the plant can achieve two to three production of pollen, which represents a male game- generations (Reinhardt et al., 2003). Seeds are dis- tophyte, is meiosis. This process containing a series persed mainly by the wind or by animals (Reinhardt of tightly controlled events, which occur in the et al., 2003). anthers, can be divided into two major processes – G. quadriradiata is a weedy and invasive plant, microsporogenesis and microgametogenesis which causes economic damage to crop cultures as (Bedinger, 1992). Microsporogenesis starts with the it is a strong competitor in weedy plant communi- beginning of the meiosis of the diploid mother cells ties. It takes up nutrients that are necessary for the and ends with the formation of haploid growth of cultivated plants and because of its rela- microspores. When the microspores are released tively large leaf surface area it may shade out the cul- from the tetrads, microgametogenesis starts and tivated plants (Reinhardt et al., 2003). Moreover, after subsequent divisions, complete male gameto- according to Huffman (2004), Galinsoga species phytes are formed. serve as alternate hosts for many insects, viruses Our studies concern the events and changes and nematodes that affect crop species. that occur during microsporogenesis and microga- The genus Galinsoga Ruiz & Pav. comprises 14 metogenesis that lead to formation of mature pollen species (Cannie, 1977), which are mainly confined grains in Galinsoga quadriradiata Ruiz & Pav. This to Mexico as well as Central and South America, species is an annual plant that flowers from June to except for G. parviflora Cav. and G. quadriradiata late autumn. An eight- to nine-week-old plant can (Gopinathan and Babu, 1982). The native range of produce 3000 flower heads and a large number of G. quadriradiata covers parts of South and Central seeds, up to 7500 (Kagima, 2000; Huffman, 2004). America from Mexico to Chile, but due to human *e-mail: [email protected] PL ISSN 0001-5296 © Polish Academy of Sciences and Jagiellonian University, Cracow 2015 - 10.1515/abcsb-2015-0018 Downloaded from PubFactory at 08/31/2016 03:47:40PM via Uniwersytet Przyrodniczy w Poznaniu 90 Kolczyk et al. activity the species has spread far from its original dine blue O (TBO) and mounted in Enthellan syn- range (Kabuce and Priede, 2010). In Poland, the thetic resin (Merck). species was first found near Wrocław in the second In order to detect insoluble polysaccharides, the half of the 20th century, while the first herbarium sections were oxidised for 30 min in 1% periodic records in Poland date back to 1876 (Tokarska- acid, rinsed in distilled water for 10 min, stained in Guzik, 2005). It is now a common crop weed and Schiff's reagent for 30 min, washed twice in 0.5% ruderal plant here. G. quadriradiata is often found potassium metabisulfite for 10 min each and rinsed on arable lands, roadsides, railways and in gardens under running water for 45 min. where it is highly competitive and spreads quickly For histological observations, the flower heads often becoming the dominant species in a field were also fixed in 96% ethanol and glacial acetic acid (Kabuce and Priede, 2010). It is adapted to a warm (v/v 1:3) and then stored in 70% alcohol at 4°C. After climate and heavy, nitrogen-rich soils (Anonymous, dehydration in an ethanol series and embedding in 1996). paraffin, the material was sectioned on a microtome Because asexual reproduction has been detect- (10 μm thick), stained with Heidenhain's hema- ed in Asteraceae species (and connected with some toxylin with alcian blue and mounted in Enthellan abnormalities in pollen development), we wanted to synthetic resin (Merck). check microsporogenesis and pollen morphology in The viability of the pollen grains was tested G. quadriradiata Ruiz & Pav., especially since using the acetocarmine test and Alexander test. For Galinsoga species were suspected in the case of both methods, young fresh inflorescences of apomixis (Pietrusiewicz et al., 2005). This seems to G. quadriradiata were fixed in 96% ethanol and gla- be valuable because of the interesting nature of this cial acetic acid (v/v 1:3). In acetocarmine (1% aceto- plant and the adaptations that support its invasive carmine) staining, the cytoplasm of viable pollen properties. This description of the development of grains stains red while it remains transparent in the male gametophyte, cytological aspects and non-viable pollen grains. Alexander's dye-stuff (a pollen morphology can constitute a compendium of mixture of malachite green that stains the cellulose the embryological events of this weedy and invasive of the pollen wall green and acid fuchsin that dyes plant together with female embryological studies the pollen grains protoplasts red) shows viable (Kolczyk et al., 2014). Moreover, to the best of our pollen grains that are red while nonviable pollen knowledge, there is lack of such studies in the liter- grains stain green (Alexander, 1969). ature and the embryological aspects are very impor- The Technovit microscopy and paraffin sections tant since Galinsoga quadriradiata propagates only were examined using a Nikon Eclipse 400 light generatively (Jursik et al., 2003). microscope and photographed with a Zeiss Axio Cam MRe digital camera. MATERIALS AND METHODS RESULTS The flower buds and flower heads of Galinsoga quadriradiata (Fig.1a) at different developmental THE MICROSPORANGIUM WALL stages were collected from plants in their natural habitats (wastelands, roadsides) in Kraków. For The flower of G. quadriradiata possessed five sta- light microscopy, the plant material (the flower mens. Each stamen had four microsporangia that buds) were fixed in 5% buffered (0.1 M phosphate were arranged in pairs in the two symmetrical lobes buffer, pH 7.2) glutaraldehyd for three hours at (Fig. 1b), which were joined by a connective tissue room temperature, washed four times in a phos- with a centrally located vascular band. The anthers phate buffer and then dehydrated in a graded were elongated in the longitudinal sections (Fig. 1c) ethanol series: 10%, 30%, 50%, 70%, 96%, 15 min and each microsporangium was surrounded by a each. Then the plant material was kept overnight in wall that consisted of four visible layers of the cells absolute ethanol and subsequently the samples were as follows: the epidermis as the external layer, a infiltrated for 1h each in 3:1, 1:1 and 1:3 (v/v) slightly deeper cell layer – the endothecium, a mid- mixture of absolute alcohol and Technovit 7100 dle layer and the innermost tapetum (Fig.1b). Only (2-hydroxyethyl-methacrylate) (Heraeus Kulzer). anticlinal divisions were observed among the epi- The samples were embedded in pure Technovit for dermal cells as well as within the endothecium cells. 12 hours, followed by polymerisation of resin with The middle layer mostly consisting of parenchyma addition of hardener. The plant material was sec- cells, was very fragile and disappeared very quickly tioned to 7 μm on a rotary microtome (Microm, during pollen development and was no longer visible Adams Instrumenten). The sections were floated on at the stage of young tetrads. The tapetum cells were water on a clean slide and dried to settle the sections much larger than the cells of the other layers of the onto a slide, then they were stained with 0.1% tolui- pollen sac wall. The histological analysis revealed - 10.1515/abcsb-2015-0018 Downloaded from PubFactory at 08/31/2016 03:47:40PM via Uniwersytet Przyrodniczy w Poznaniu Microsporogenesis of Galinsoga quadriradiata 91 Fig. 1. General outline of inflorescence and several stages of pollen development of Galinsoga quadriradiata Ruiz&Pav. (a) A view of an inflorescence with compact arrangement of individual flowers with jutting stigmas of the pistils. Bar: 0.5 cm. (b) A sample of transversal section of pollen sacs with visible archesporial tissue and microspore mother cells (MMCs) marked with arrow. (Toluidine blue staining). Bar: 20 μm. (c) A singular flower section with clear- ly viewed 2 anthers containing microspores (PAS reaction). Bar: 50 μm. (d) A longitudinal section of an anther with good visible multinucleated tapetum cells, tetrads and the presence of cytoplasmic channels between them (arrows). (Toluidine blue staining). Bar: 20 μm. (e) Two microspores with specific spiny apertured walls visible on the cross section of a singular anther and peryplasmodium among them.
Recommended publications
  • Topic: Microsporogenesis and Microgemetogenesis B.Sc. Botany (Hons.) II Paper: IV Group: B Dr
    1 Topic: Microsporogenesis and Microgemetogenesis B.Sc. Botany (Hons.) II Paper: IV Group: B Dr. Sanjeev Kumar Vidyarthi Department of Botany Dr. L.K.V.D. College, Tajpur Microsporogenesis and Microgametogenesis Microsporogenesis Microspores i.e., the pollen grains are developed inside microsporangia. The microsporangia are developed inside the corners of the 4-lobed anther. Young anthers are more or less oblong in shape in section and made up of homogeneous mass of meristematic cells without intercellular space with further development, the anther becomes 4-lobed. The outer layer of anther is called epidermis. Below the epidermis, at each corner, some cells become differentiated from others by their dense protoplasm- archesporium or archesporial cells. Each archesporial cell then divides mitotically and forms an outer primary parietal cell and an inner primary sporogenous cell. The outer primary parietal cells form primary parietal cell layer at each corner. Below the parietal cell layer, the primary sporogenous cells remain in groups i.e., the sporogenous tissue. The cells of primary parietal layer then divide both periclinally and anticlinally and form multilayered antheridial wall. The innermost layer of antheridial wall, which remains in close contact with the sporogenous tissue, functions as nutritive layer, called tapetum. The primary sporogenous cells either directly function as spore mother cells or divide mitotically into a number of cells which function as spore mother cells. The spore mother cell undergoes meiotic division and gives rise to 4 microspores arranged tetrahedrally. Structure of Microspores Dr. Sanjeev Kumar Vidyarthi, Dept. of Botany, Dr. L.K.V.D. College, Tajpur 2 Microspore i.e., the pollen grain is the first cell of the male gametophyte, which contains only one haploid nucleus.
    [Show full text]
  • Comparative Anatomy of Ovules in Galinsoga, Solidago and Ratibida (Asteraceae)
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 56/2: 115–125, 2014 DOI: 10.2478/abcsb-2014-0024 COMPARATIVE ANATOMY OF OVULES IN GALINSOGA, SOLIDAGO AND RATIBIDA (ASTERACEAE) JOLANTA KOLCZYK1, PIOTR STOLARCZYK2, AND BARTOSZ J. PŁACHNO1* 1Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland 2Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, University of Agriculture in Cracow, Al. 29 Listopada 54, 31-425 Cracow, Poland Manuscript submitted September 9, 2014; revision accepted October 22, 2014 Many Asteraceae species have been introduced into horticulture as ornamental or interesting exotic plants. Some of them, including Solidago and Galinsoga, are now aggressive weeds; others such as Ratibida are not. Special modifications of the ovule tissue and the occurrence of nutritive tissue have been described in several Asteraceae species, including invasive Taraxacum species. This study examined whether such modifications might also occur in other genera. We found that the three genera examined – Galinsoga (G. quadriradiata), Solidago (S. canadensis, S. rigida, S. gigantea) and Ratibida (R. pinnata) – differed in their nutritive tissue structure. According to changes in the integument, we identified three types of ovules in Asteraceae: “Taraxacum” type (recorded in Taraxacum, Bellis, Solidago, Chondrilla), with well-developed nutritive tissue having very swollen cell walls of spongy structure; “Galinsoga” type (in Galinsoga), in which the nutritive tissue cells have more cyto- plasm and thicker cell walls than the other integument parenchyma cells, and in which the most prominent character of the nutritive tissue cells is well-developed rough ER; and “Ratibida” type (in Ratibida), in which the nutritive tissue is only slightly developed and consists of large highly vacuolated cells.
    [Show full text]
  • Sequencing and Analysis of Chrysanthemum Carinatum Schousb and Kalimeris Indica
    molecules Article Sequencing and Analysis of Chrysanthemum carinatum Schousb and Kalimeris indica. The Complete Chloroplast Genomes Reveal Two Inversions and rbcL as Barcoding of the Vegetable Xia Liu * ID , Boyang Zhou, Hongyuan Yang, Yuan Li, Qian Yang, Yuzhuo Lu and Yu Gao State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science &Technology, Tianjin 300457, China; [email protected] (B.Z.); [email protected] (H.Y.); [email protected] (Y.L.); [email protected] (Q.Y.); [email protected] (Y.L.); [email protected] (Y.G.) * Correspondence: [email protected]; Tel.: +86-022-6091-2406 Received: 20 April 2018; Accepted: 31 May 2018; Published: 5 June 2018 Abstract: Chrysanthemum carinatum Schousb and Kalimeris indica are widely distributed edible vegetables and the sources of the Chinese medicine Asteraceae. The complete chloroplast (cp) genome of Asteraceae usually occurs in the inversions of two regions. Hence, the cp genome sequences and structures of Asteraceae species are crucial for the cp genome genetic diversity and evolutionary studies. Hence, in this paper, we have sequenced and analyzed for the first time the cp genome size of C. carinatum Schousb and K. indica, which are 149,752 bp and 152,885 bp, with a pair of inverted repeats (IRs) (24,523 bp and 25,003) separated by a large single copy (LSC) region (82,290 bp and 84,610) and a small single copy (SSC) region (18,416 bp and 18,269), respectively. In total, 79 protein-coding genes, 30 distinct transfer RNA (tRNA) genes, four distinct rRNA genes and two pseudogenes were found not only in C.
    [Show full text]
  • Flowering Plants of South Norwood Country Park
    Flowering Plants Of South Norwood Country Park Robert Spencer Introduction South Norwood Country Park relative to its size contains a wide range habitats and as a result a diverse range of plants can be found growing on site. Some of these plants are very conspicuous, growing in great abundance and filling the park with splashes of bright colour with a white period in early May largely as a result of the Cow Parsley, this is followed later in the year by a pink period consisting of mainly Willow herbs. Other plants to be observed are common easily recognisable flowers. However there are a great number of plants growing at South Norwood Country Park that are less well-known or harder to spot, and the casual observer would likely be surprised to learn that 363 species of flowering plants have so far been recorded growing in the park though this number includes invasive species and garden escapes. This report is an update of a report made in 2006, and though the site has changed in the intervening years the management and fundamental nature of the park remains the same. Some plants have diminished and some have flourished and the high level of diversity is still present. Many of these plants are important to other wildlife particularly in their relationship to invertebrate pollinators, and some of these important interactions are referenced in this report. With so many species on the plant list there is a restriction on how much information is given for each species, with some particularly rare or previously observed but now absent plants not included though they appear in the index at the back of the report including when they were last observed.
    [Show full text]
  • Anther Institute of Lifelong Learning, University of Delhi Lesson
    Anther Lesson: Anther Author Name: Dr. Bharti Chaudhry and Dr. Anjana Rustagi College/ Department: Ramjas College, Gargi College, University of Delhi Institute of Lifelong Learning, University of Delhi Anther Table of contents Chapter: Anther • Introduction • Structure • Development of Anther and Pollen • Anther wall o Epidermis o Endothecium o Middle layers o Tapetum o Amoeboid Tapetum o Secretory Tapetum o Orbicules o Functions of Orbicules o Tapetal Membrane o Functions of Tapetum • Summary • Practice Questions • Glossary • Suggested Reading Introduction Stamens are the male reproductive organs of flowering plants. They consist of an anther, the site of pollen development and dispersal. The anther is borne on a stalk- like filament that transmits water and nutrients to the anther and also positions it to aid pollen dispersal. The anther dehisces at maturity in most of the angiosperms by a longitudinal slit, the stomium to release the pollen grains. The pollen grains represent the highly reduced male gametophytes of flowering plants that are formed within the sporophytic tissues of the anther. These microgametophytes or 1 Institute of Lifelong Learning, University of Delhi Anther pollen grains are the carriers of male gametes or sperm cells that play a central role in plant reproduction during the process of double fertilization. Figure 1. Diagram to show parts of a flower of an angiosperm Source: http://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Mature_flower_diagra m.svg/2000px-Mature_flower_diagram.svg.png Figure 2 2 Institute of Lifelong Learning, University of Delhi Anther a. Hibiscus flower; b. Hibiscus stamens showing monothecous anthers; c. Lilium flower showing dithecous anthers Source: a.
    [Show full text]
  • Microsporogenesis and Male Gametogenesis in Jatropha Curcas L. (Euphorbiaceae)1 Huanfang F
    Journal of the Torrey Botanical Society 134(3), 2007, pp. 335–343 Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae)1 Huanfang F. Liu South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China, and Graduate School of Chinese Academy of Sciences, Beijing, 100039, China Bruce K. Kirchoff University of North Carolina at Greensboro, Department of Biology, 312 Eberhart, P.O. Box 26170, Greensboro, NC 27402-6170 Guojiang J. Wu and Jingping P. Liao2 South China Botanical Garden, Chinese Academy of Sciences, Key Laboratory of Digital Botanical Garden in Guangdong, Guangzhou, 510650, China LIU, H. F. (South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China, and Graduate School of Chinese Academy of Sciences, Beijing, 100039, China), B. K. KIRCHOFF (University of North Carolina at Greensboro, Department of Biology, 312 Eberhart, P.O. Box 26170, Greensboro, NC 27402-6170), G. J. WU, AND J. P. LIAO (South China Botanical Garden, Chinese Academy of Sciences, Key Laboratory of Digital Botanical Garden in Guangdong, Guangzhou, 510650, China). Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae). J. Torrey Bot. Soc. 134: 335–343. 2007.— Microsporogenesis and male gametogenesis of Jatropha curcas L. (Euphorbiaceae) was studied in order to provide additional data on this poorly studied family. Male flowers of J. curcas have ten stamens, which each bear four microsporangia. The development of the anther wall is of the dicotyledonous type, and is composed of an epidermis, endothecium, middle layer(s) and glandular tapetum. The cytokinesis following meiosis is simultaneous, producing tetrahedral tetrads. Mature pollen grains are two-celled at anthesis, with a spindle shaped generative cell.
    [Show full text]
  • The SPOROCYTELESS Gene of Arabidopsis Is Required for Initiation of Sporogenesis and Encodes a Novel Nuclear Protein
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein Wei-Cai Yang,1 De Ye,1 Jian Xu, and Venkatesan Sundaresan2 The Institute of Molecular Agrobiology, National University of Singapore, Singapore 117604 The formation of haploid spores marks the initiation of the gametophytic phase of the life cycle of all vascular plants ranging from ferns to angiosperms. In angiosperms, this process is initiated by the differentiation of a subset of floral cells into sporocytes, which then undergo meiotic divisions to form microspores and megaspores. Currently, there is little information available regarding the genes and proteins that regulate this key step in plant reproduction. We report here the identification of a mutation, SPOROCYTELESS (SPL), which blocks sporocyte formation in Arabidopsis thaliana. Analysis of the SPL mutation suggests that development of the anther walls and the tapetum and microsporocyte formation are tightly coupled, and that nucellar development may be dependent on megasporocyte formation. Molecular cloning of the SPL gene showed that it encodes a novel nuclear protein related to MADS box transcription factors and that it is expressed during microsporogenesis and megasporogenesis. These data suggest that the SPL gene product is a transcriptional regulator of sporocyte development in Arabidopsis. [Key Words: Arabidopsis mutant; sporogenesis; sporocyte; SPL; nuclear protein] Received May 12, 1999; revised version accepted July 1, 1999. The life cycle of plants consists of an alternation be- 1994), although several sporophytic mutants that affect tween a diploid, sporophytic generation and a haploid, sporogenesis have been reported (Robinson-Beers et al.
    [Show full text]
  • Astereae, Asteraceae) Using Molecular Phylogeny of ITS
    Turkish Journal of Botany Turk J Bot (2015) 39: 808-824 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1410-12 Relationships and generic delimitation of Eurasian genera of the subtribe Asterinae (Astereae, Asteraceae) using molecular phylogeny of ITS 1, 2,3 4 Elena KOROLYUK *, Alexey MAKUNIN , Tatiana MATVEEVA 1 Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 2 Institute of Molecular and Cell Biology, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia 3 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia 4 Department of Genetics & Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia Received: 12.10.2014 Accepted/Published Online: 02.04.2015 Printed: 30.09.2015 Abstract: The subtribe Asterinae (Astereae, Asteraceae) includes highly variable, often polyploid species. Recent findings based on molecular methods led to revision of its volume. However, most of these studies lacked species from Eurasia, where a lot of previous taxonomic treatments of the subtribe exist. In this study we used molecular phylogenetics methods with internal transcribed spacer (ITS) as a marker to resolve evolutionary relations between representatives of the subtribe Asterinae from Siberia, Kazakhstan, and the European part of Russia. Our reconstruction revealed that a clade including all Asterinae species is paraphyletic. Inside this clade, there are species with unresolved basal positions, for example Erigeron flaccidus and its relatives. Moreover, several well-supported groups exist: group of the genera Galatella, Crinitaria, Linosyris, and Tripolium; group of species of North American origin; and three related groups of Eurasian species: typical Eurasian asters, Heteropappus group (genera Heteropappus, Kalimeris), and Asterothamnus group (genera Asterothamnus, Rhinactinidia).
    [Show full text]
  • Index Seminum 2018-2019
    UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018-2019 In copertina / Cover “La Terrazza Carolina del Real Orto Botanico” Dedicata alla Regina Maria Carolina Bonaparte da Gioacchino Murat, Re di Napoli dal 1808 al 1815 (Photo S. Gaudino, 2018) 2 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO INDEX SEMINUM 2018 - 2019 SPORAE ET SEMINA QUAE HORTUS BOTANICUS NEAPOLITANUS PRO MUTUA COMMUTATIONE OFFERT 3 UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO ebgconsortiumindexseminum2018-2019 IPEN member ➢ CarpoSpermaTeca / Index-Seminum E- mail: [email protected] - Tel. +39/81/2533922 Via Foria, 223 - 80139 NAPOLI - ITALY http://www.ortobotanico.unina.it/OBN4/6_index/index.htm 4 Sommario / Contents Prefazione / Foreword 7 Dati geografici e climatici / Geographical and climatic data 9 Note / Notices 11 Mappa dell’Orto Botanico di Napoli / Botanical Garden map 13 Legenda dei codici e delle abbreviazioni / Key to signs and abbreviations 14 Index Seminum / Seed list: Felci / Ferns 15 Gimnosperme / Gymnosperms 18 Angiosperme / Angiosperms 21 Desiderata e condizioni di spedizione / Agreement and desiderata 55 Bibliografia e Ringraziamenti / Bibliography and Acknowledgements 57 5 INDEX SEMINUM UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II ORTO BOTANICO Prof. PAOLO CAPUTO Horti Praefectus Dr. MANUELA DE MATTEIS TORTORA Seminum curator STEFANO GAUDINO Seminum collector 6 Prefazione / Foreword L'ORTO BOTANICO dell'Università ha lo scopo di introdurre, curare e conservare specie vegetali da diffondere e proteggere,
    [Show full text]
  • Asteraceae): Evidence from Morphology, Karyotype, and ITS Sequences
    Botanical Studies (2006) 47: 191-197. PLANT BIOSYSTEMATICS Natural hybridization between Aster ageratoides var. scaberulus and Kalimeris indica (Asteraceae): evidence from morphology, karyotype, and ITS sequences Wei-PingLI* College of Life Sciences, Hunan Normal University, Changsha 410081, P. R. China (ReceivedApril14,2004;AcceptedNovember4,2005) ABSTRACT. AnewnaturalhybridfromtheHengshanMountaininHunanProvince,China,wasfound. Comparisonsofmorphology,karyotype,andITSsequencesamongthehybridanditsparentalspeciesshow thatthehybridrepresentsF1progenyfromhybridizationbetween Aster ageratoidesvar.scaberulus and Ka- limeris indica.Basedonmorphologicalandkaryotypicalobservationsofthehybrid,thisstudysuggeststhat naturalhybridizationbetweenAster and Kalimeriscouldhaveleadtotheshorteningofthepappusanda specialkaryotype(LS-type)andmakesthedelimitingofAsterand Kalimeris difficult. This study also indi- catesthatkaryotypeinvestigationsmaybeparticularlyusefulinresolvingsomeofthetaxonomicconfusion betweenAster and Kalimeris. Keywords:Aster;Kalimeris;Karyotype;Naturalhybridization;Pappus. INTRODUCTION analyses,Tarasuggestedthathybridizationhadoccurred betweenAster ovatus (Franch.etSav.)SoejimaetMot. Naturalhybridizationisafrequentphenomenonin Ito(A. ageratoidessubsp.ovatus (Franch.etSav.)Ka- plantsandplaysanimportantroleinplantevolution, tam.)andKalimeris incisa(Fisch.)DC.,andthatinfact leadinginatleastsomecasestoformationofnewspe- A. ovatuswasanamphidiploidthatoriginatedfollowing cies.Inaddition,hybridizationoftengeneratesconsider- intergenerichybridizationbetweenAsterandKalimeris.
    [Show full text]
  • Chloroplast Genome of the Conserved Aster Altaicus Var. Uchiyamae B2015-0044 As Genetic Barcode
    Journal154 of Species Research 10(2):154-158, 2021JOURNAL OF SPECIES RESEARCH Vol. 10, No. 2 Chloroplast genome of the conserved Aster altaicus var. uchiyamae B2015-0044 as genetic barcode Minjee Lee1, Jae-Sun Yi2, Jihye Park1 and Jungho Lee1,* 1Green Plant Institute, B­301, Heungdeok IT Valley, Yongin 16954, Republic of Korea 2Shingu Botanical Garden, Seongnam 13443, Republic of Korea *Correspondent: [email protected] An endemic endangered species, Aster altaicus var. uchiyamae (Danyang aster) B2015-0044, is cultivated at the Shingu Botanical Garden, which serves as the ex situ conservation institution for this species. In this work, we sequenced the chloroplast genome of A. altaicus var. uchiyamae B2015-0044. We found that the chloroplast (cp) genome of B2015-0044 was 152,457 base pairs (bps) in size: 84,247 bps of large single copy regions (LSC), 25,007 bps of inverted repeats (IRs), and 18,196 bps of small single copy regions. The B2015- 0044 cp genome contains 79 protein-coding genes (PCGs), 4 RNA genes, 29 tRNA genes, and 3 pseudo- genes. These results were identical to a previously reported cp genome (Park et al., 2017), except for two sites in introns and three in intergenic spacer (IGS) regions. For the intronic differences, we found that clpP.i1 had a 1-bp small simple repeat (SSR) (T) and petD.i had a 3-bp SSR (ATT). We found 1-bp SSRs in the IGSs of trnT_ggu~psbD and psbZ~trnG_gcc, C and A, respectively. The IGS of (ndhF)~rpl32 had a SNP. Based on our results, the cp genome of the A.
    [Show full text]
  • II (Hons.&Subs.) Paper: Ivth Topic: Microgametogenesis Lecture
    Name: Dr. Rachana Shalini Subject: Botany Class: Deg.-II (Hons.&Subs.) Paper: IVth Topic: Microgametogenesis Lecture no. 18 MICROGAMETOGENESIS: Microgametogenesis is a process by which progressive development of the unicellular microspores takes place where they get developed to mature microgametophytes containing gametes. The development phase of microspores takes place with the onset of expansion of microspore. In this phase, a single large vacuole is produced within the microspore cell. The formation of the vacuole results in the movement of the nucleus of the microspore to an eccentric position. The displacement of the nucleus occurs against the wall of the microspore cell. At this position within the cell, the nucleus undergoes mitosis. Microspore .i.e, the pollen grain is the first cell of the male gametophyte, which posses one haploid nucleus. During early stages of development, it remains within the microsporangium i.e, its germination starts within the microsporangium. The nucleus of the pollen grain undergoes unequal division and forms a large vegetative or tube cell and a small generative cell. Initially, the generative cell remains lying at one corner of the spore wall. Later it gets detached and gets suspended in the cytoplasm of the vegetative cell (forms a 2 celled stage consisting of vegetative cell and generative cell). Later on the generative cell divides and give rise to two cells that are the male gametes (forms 3 celled stage consisting of two male gametes and the vegetative cell) The process of microgametogenesis ends here and later fertilisation occurs. The division of the generative cell may either take place in the pollen grain or in the newly formed pollen tube) The nucleus of the vegetative cell is known as the tube nucleus.
    [Show full text]