Stamen Development

Total Page:16

File Type:pdf, Size:1020Kb

Stamen Development STAMEN DEVELOPMENT Lfo^ n Promotoren: dr.M.T.M .Willems e hoogleraari nd eplantkund e dr.J.L .va nWen t hoogleraari nd eplantkund e tJfiJO??o\l (0% C.J.Keijzer STAMEN DEVELOPMENT Proefschrift ter verkrijgingva n de graad van doctor in deLandbouwwetenschappen , op gezag van de rector magnificus, dr. C.C.Oosterlee , inhe t openbaar te verdedigen opvrijda g 17oktobe r 1986 des namiddags tevie r uur in de aula van deLandbouwuniversitei tt e Wageningen sW l^lb^l tAiliiisOi: .VKOGESCHOOL WAGENINGIM <• /^N0P2Q\, 10^^ Stellingen 1. Voor het anthere-openingsproces in diverse plantesoorten dienen de 0- vormig verdikte endotheciumcelwanden de loculus niet alleen open, doch in een vroegere fase ook dicht te buigen. Dit proefschrift. 2. Het is onjuist te veronderstellen dat recente wetenschappelijke literatuur de kennis van alle voorafgaande omvat. Bij herhaald refereren blijkt informatie verloren te gaan. Dit proefschrift. 3. De vraag vanuit de veredelingspraktijk naar mannelijke steriliteit in diverse gewassen rechtvaardigt een intensivering van het onderzoek naar de belnvloedbaarheid van het anthere-openingsproces. Dit proefschrift. 4. Ten onrechte zijn de bij micro- en macrogametogenese aan elkaar grenzende genetisch identieke haploide cellen tot voor kort niet met een snelle productie van inteeltlijnen in verband gebracht. C.J. Keijzer (1984). Landbouwkundig Tijdschrift 7/8: 21-26. 5. Mede door het gebruik de ogen te sluiten wanneer men de neus in een bos bloemen steekt, zijn diverse eenvoudig waarneembare fasen van het plantaardige voortplantingsproces slechts bij een relatief klein publiek bekend. 6. De mate waarin de Wageningse promovendus erin slaagt in het kwartier voorafgaand aan de openbare verdediging van haar of zijn proefschrift de inhoud ervan aan een ondeskundig publiek duidelijk te maken, dient mee te wegen in de beoordeling. 7. Wie een Van Leeuwenhoek-microscoop namaakt volgens de reconstructie van Walter en Via, kan onvoldoende nagaan waarom onze Delftenaar een betere kijk op de zaken had dan zijn tijdgenoten. W.G. Walter and H. Via (1968). The American Biology Teacher 8: 537-539. 8.Doo rbi jd etenorbanjo ,naas td ereed sbekend eaanpassingen ,d esnaar -e n velspanning tebenutte no m deklankbode m tegen dekete lt e spannen, ontstaat een instrument dat zelfs de koperblazers van beginnende Dixieland-orkestjeska noverstemmen . 9.Voo rhe toptimalisere nva nd esnelwandeltechnie kka nee nanalys eva n zoweld ebiped eal squadruped evoortbewegin gva nsommig eamfibiee ne n reptielenva nbelan gzijn . R.McNeil lAlexande r (1975).Th eChordates .Cambridg eUniversit yPress . 10.D einvoerin gva nelectronisch ehulpmiddele nvoo rscheidsrechterlijk e beslissingenkom td etennisspor tal sspektake lnie tte ngoede . F.L.M.Vossenaa re nC.J .Keijze r (1983)in :D eideee nligge no pstraat . J.W.Thompson ,Amsterdam ,p.37 . 11.D e gewoonte vanhe tAN P om eenkruispun t tegenwoordigal sknooppun tt e betitelen/ maakthe tverde roverbodi gme et edele nda td ezaa kdaa rwee r eensvas tzit . 12.He ti see nbeleef d gebaarva nhe tIO Co mbelangrijk ebeslissinge npa st e nemennada tee ndaari ngeinteresseer dpromovendu sd everdedigin gva nzij n proefschrifti nall erus theef tkunne nvoorbereiden . Wageningen, 17oktobe r198 6 C.J.Keijze r In herinnering aan mijn vader Dankwoord Gaarne maak ik van de gelegenheid gebruik on eenieder te bedanken die bijgedragen heeft aan het tot stand komen van dit proefschrift. Vrijwel alle medewerkers van de vakgroep Plantencytologie en -morfologie werden meerdere malen geraadpleegd om mij met hun uiteenlopende kundigheden advies of daadwerkeli jke hulp te geven. Ik wil hen alien vanaf deze bladzijde bedanken, slechts een momentopname uit een voortdurende samenwerking die ook in de toekomst de voornaamste pijler van een enthousiaste en productieve vakgroep dient te zijn. Slechts enkelen treft het lot hier bijzonderheden over hun relatie met ondergetekende gepubliceerd te zien. Hooggeleerde Willemse, mijn promotor, ik dank U allereerst voor het mij aanbieden van de betrekking waardoor dit proefschrift mogelijk werd. De verplichte contacten tussen een bioloog en een plantenveredelaar werden, na een gewenningsproces, een uiterst leerzame periode. Dankzij dit fundamentele proefschrift is een meer toegepast vervolg nog slechts een kwestie van fantasie gebruiken en invullen. Hooggeleerde Van Went, mijn co-promotor, ik dank U voor de mogelijkheid die U mij bood om enige tijd in Italie te kunnen werken. Ook waren de vele uren op Uw kamer tijdens de afifonding van dit proefschrift onmisbaar. Carmen Reinders, jouw - nog relatief korte - medewerking betrof de moeilijkste aspecten van ons onderzoek. Dankzij je enthousiasme en doorzettingsvermogen sloeg je je door vele negatieve, bruine resultaten van in-vitro experimenten heen. Het is geen toeval dat onze samenwerking pas in het laatste hoofdstuk naar voren komt. Het geeft daarmee het accent voor de toekomst aan. Professor Cresti, il loro modo di lavorare e organizzare e stato piu istruttivo per me di quello que pensavo possibile in tre mesi. Anche il loro corso "Palio per Olandesi e Americani" era benissimo. Dr. ir. H.J. Wilms, His, onze toegenomen samenwerking in zowel onderzoek als onderwijs heeft ons vakgebied voor de directe oplossing van landbouwkundige problemen toegankelijker gemaakt. Ir. A.H. Bouma ben ik erkentelijk omdat hij zonder aarzeling beaamde dat de aanwezigheid van een deskundig oud-01 tijdens de openbare verdediging van een proefschrift onontbeerlijk is. Contents Introduction 1 1.Hydratio n changes during anther development 3 C.J. Keijzer (1983). In: Pollen, biology and implications for plant breeding,edite d by D.L.Mulcah y and E.Ottaviano ,pp .197 - 201. Elsevier Biomedical,Ne w York, (changed). 2. Theprocesse s of anther dehiscence andpolle n dispersal. 1. The opening mechanism of longitudinally dehiscing anthers 9 C.J. Keijzer (1986). TheNe w Phytologist (inpress) . 3.Th eprocesse s of anther dehiscence andpolle n dispersal. 2. The formation and the transfer mechanism ofpollenkitt , cell wall development inth e locule tissues and a function of the orbicules inpolle n dispersal 31 C.J. Keijzer (1986).Th eNe w Phytologist (in press). 4. A comparison of anther development inmal e sterileAlo e vera and male fertileAlo e ciliaris 49 /, C.J. Keijzer andM . Cresti (1986). Annals of Botany (in press). 5.Functiona l morphological relationships inth e developing locule of Gasteria verrucosa 63 C.J. Keijzer and M.T.M. Willemse (1987). Submitted for publication. 6. The filament development of Gasteria verrucosa 89 C.J. Keijzer, I.H.S.Hoe k andM.T.M . Willemse (1987). Submitted forpublication . 7. Theprocesse s of anther dehiscence andpolle n dispersal. 3. The dehydration of the filament tip and the anther in some monocotylous species 107 C.J. Keijzer, I.H.S. Hoek andM.T.M .Willems e (1987). Submitted forpublication . 8.I n vitro culturean dintraspecifi ctransplantatio n of tetrads intoolde ranther s 123 M.C.Reinder san dC.J .Keijzer . Generalconclusion san ddiscussio n 135 Summary 145 Samenvatting 149 References 153 Curriculumvita e 165 Ifa chapte r ofthi sthesi s isuse d asa referenc e inth e text,th e abbrevation "ch."i s oftenused . Introduction A detailed knowledge of the development and dispersal of angiosperm pollen is important for both biologists and plant breeders. The first reports on this topic appeared as early as in the 17th century in the letters of Van Leeuwenhoek and the work of Grew. During the second half of the last century, the different stages of pollen development were discovered. Besides, the importance for plant breeders became evident after the (re-)discovery of the Mendel laws. Around the turn of the century French and German biologists published many works on the different steps of the anther dehiscence process, with a strong teleological approach. These works concerned light microscopical observations of living tissues together with simple, but ingenious micromanipulations. After 1930 the attention on the dehiscence process faded, whereas the light microscopical investigations on the generative reproduction processes continued. From the early 1960's the electron microscope and modern physiological techniques revealed many of the processes of microsporo- and microgametogenesis in great detail. These works mainly focussed on the pollen and tapetum development and were summarized in some excellent reviews. The mechanical processes in the stamen still received less attention in these years and most of the older works seemed to be forgotten, given the flaws and the call for research on this topic in some botanical standard works. Accordingly, detailed work on the entire stamen did not exist. In this thesis the classical and modern techniques were combined to investigate the stamen as a functional unit for pollen production and dispersal respectively. Chapter 1 HYDRATION CHANGES DURING ANTHER DEVELOPMENT C.J. Keijzer Summary The hydration changes of the anther tissues of Gasteria verrucosa are followed from meiosis to dehiscence. The water percentage of the locule wall is about constant during this development, in spite of remarkable histological changes. The water percentage of the locule contents is about constant during the microspore stages. Shortly before maturation the pollen grains take up water from the surrounding tissues. The water percentage of the locule wall decreases strongly at anthesis, that of the locule contents at dehiscence. Ventilation inside the flower bud leads to desiccation of the anthers by evaporation. Shortly before anthesis
Recommended publications
  • Topic: Microsporogenesis and Microgemetogenesis B.Sc. Botany (Hons.) II Paper: IV Group: B Dr
    1 Topic: Microsporogenesis and Microgemetogenesis B.Sc. Botany (Hons.) II Paper: IV Group: B Dr. Sanjeev Kumar Vidyarthi Department of Botany Dr. L.K.V.D. College, Tajpur Microsporogenesis and Microgametogenesis Microsporogenesis Microspores i.e., the pollen grains are developed inside microsporangia. The microsporangia are developed inside the corners of the 4-lobed anther. Young anthers are more or less oblong in shape in section and made up of homogeneous mass of meristematic cells without intercellular space with further development, the anther becomes 4-lobed. The outer layer of anther is called epidermis. Below the epidermis, at each corner, some cells become differentiated from others by their dense protoplasm- archesporium or archesporial cells. Each archesporial cell then divides mitotically and forms an outer primary parietal cell and an inner primary sporogenous cell. The outer primary parietal cells form primary parietal cell layer at each corner. Below the parietal cell layer, the primary sporogenous cells remain in groups i.e., the sporogenous tissue. The cells of primary parietal layer then divide both periclinally and anticlinally and form multilayered antheridial wall. The innermost layer of antheridial wall, which remains in close contact with the sporogenous tissue, functions as nutritive layer, called tapetum. The primary sporogenous cells either directly function as spore mother cells or divide mitotically into a number of cells which function as spore mother cells. The spore mother cell undergoes meiotic division and gives rise to 4 microspores arranged tetrahedrally. Structure of Microspores Dr. Sanjeev Kumar Vidyarthi, Dept. of Botany, Dr. L.K.V.D. College, Tajpur 2 Microspore i.e., the pollen grain is the first cell of the male gametophyte, which contains only one haploid nucleus.
    [Show full text]
  • Anther Institute of Lifelong Learning, University of Delhi Lesson
    Anther Lesson: Anther Author Name: Dr. Bharti Chaudhry and Dr. Anjana Rustagi College/ Department: Ramjas College, Gargi College, University of Delhi Institute of Lifelong Learning, University of Delhi Anther Table of contents Chapter: Anther • Introduction • Structure • Development of Anther and Pollen • Anther wall o Epidermis o Endothecium o Middle layers o Tapetum o Amoeboid Tapetum o Secretory Tapetum o Orbicules o Functions of Orbicules o Tapetal Membrane o Functions of Tapetum • Summary • Practice Questions • Glossary • Suggested Reading Introduction Stamens are the male reproductive organs of flowering plants. They consist of an anther, the site of pollen development and dispersal. The anther is borne on a stalk- like filament that transmits water and nutrients to the anther and also positions it to aid pollen dispersal. The anther dehisces at maturity in most of the angiosperms by a longitudinal slit, the stomium to release the pollen grains. The pollen grains represent the highly reduced male gametophytes of flowering plants that are formed within the sporophytic tissues of the anther. These microgametophytes or 1 Institute of Lifelong Learning, University of Delhi Anther pollen grains are the carriers of male gametes or sperm cells that play a central role in plant reproduction during the process of double fertilization. Figure 1. Diagram to show parts of a flower of an angiosperm Source: http://upload.wikimedia.org/wikipedia/commons/thumb/7/7f/Mature_flower_diagra m.svg/2000px-Mature_flower_diagram.svg.png Figure 2 2 Institute of Lifelong Learning, University of Delhi Anther a. Hibiscus flower; b. Hibiscus stamens showing monothecous anthers; c. Lilium flower showing dithecous anthers Source: a.
    [Show full text]
  • Microsporogenesis and Male Gametogenesis in Jatropha Curcas L. (Euphorbiaceae)1 Huanfang F
    Journal of the Torrey Botanical Society 134(3), 2007, pp. 335–343 Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae)1 Huanfang F. Liu South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China, and Graduate School of Chinese Academy of Sciences, Beijing, 100039, China Bruce K. Kirchoff University of North Carolina at Greensboro, Department of Biology, 312 Eberhart, P.O. Box 26170, Greensboro, NC 27402-6170 Guojiang J. Wu and Jingping P. Liao2 South China Botanical Garden, Chinese Academy of Sciences, Key Laboratory of Digital Botanical Garden in Guangdong, Guangzhou, 510650, China LIU, H. F. (South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China, and Graduate School of Chinese Academy of Sciences, Beijing, 100039, China), B. K. KIRCHOFF (University of North Carolina at Greensboro, Department of Biology, 312 Eberhart, P.O. Box 26170, Greensboro, NC 27402-6170), G. J. WU, AND J. P. LIAO (South China Botanical Garden, Chinese Academy of Sciences, Key Laboratory of Digital Botanical Garden in Guangdong, Guangzhou, 510650, China). Microsporogenesis and male gametogenesis in Jatropha curcas L. (Euphorbiaceae). J. Torrey Bot. Soc. 134: 335–343. 2007.— Microsporogenesis and male gametogenesis of Jatropha curcas L. (Euphorbiaceae) was studied in order to provide additional data on this poorly studied family. Male flowers of J. curcas have ten stamens, which each bear four microsporangia. The development of the anther wall is of the dicotyledonous type, and is composed of an epidermis, endothecium, middle layer(s) and glandular tapetum. The cytokinesis following meiosis is simultaneous, producing tetrahedral tetrads. Mature pollen grains are two-celled at anthesis, with a spindle shaped generative cell.
    [Show full text]
  • The SPOROCYTELESS Gene of Arabidopsis Is Required for Initiation of Sporogenesis and Encodes a Novel Nuclear Protein
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein Wei-Cai Yang,1 De Ye,1 Jian Xu, and Venkatesan Sundaresan2 The Institute of Molecular Agrobiology, National University of Singapore, Singapore 117604 The formation of haploid spores marks the initiation of the gametophytic phase of the life cycle of all vascular plants ranging from ferns to angiosperms. In angiosperms, this process is initiated by the differentiation of a subset of floral cells into sporocytes, which then undergo meiotic divisions to form microspores and megaspores. Currently, there is little information available regarding the genes and proteins that regulate this key step in plant reproduction. We report here the identification of a mutation, SPOROCYTELESS (SPL), which blocks sporocyte formation in Arabidopsis thaliana. Analysis of the SPL mutation suggests that development of the anther walls and the tapetum and microsporocyte formation are tightly coupled, and that nucellar development may be dependent on megasporocyte formation. Molecular cloning of the SPL gene showed that it encodes a novel nuclear protein related to MADS box transcription factors and that it is expressed during microsporogenesis and megasporogenesis. These data suggest that the SPL gene product is a transcriptional regulator of sporocyte development in Arabidopsis. [Key Words: Arabidopsis mutant; sporogenesis; sporocyte; SPL; nuclear protein] Received May 12, 1999; revised version accepted July 1, 1999. The life cycle of plants consists of an alternation be- 1994), although several sporophytic mutants that affect tween a diploid, sporophytic generation and a haploid, sporogenesis have been reported (Robinson-Beers et al.
    [Show full text]
  • II (Hons.&Subs.) Paper: Ivth Topic: Microgametogenesis Lecture
    Name: Dr. Rachana Shalini Subject: Botany Class: Deg.-II (Hons.&Subs.) Paper: IVth Topic: Microgametogenesis Lecture no. 18 MICROGAMETOGENESIS: Microgametogenesis is a process by which progressive development of the unicellular microspores takes place where they get developed to mature microgametophytes containing gametes. The development phase of microspores takes place with the onset of expansion of microspore. In this phase, a single large vacuole is produced within the microspore cell. The formation of the vacuole results in the movement of the nucleus of the microspore to an eccentric position. The displacement of the nucleus occurs against the wall of the microspore cell. At this position within the cell, the nucleus undergoes mitosis. Microspore .i.e, the pollen grain is the first cell of the male gametophyte, which posses one haploid nucleus. During early stages of development, it remains within the microsporangium i.e, its germination starts within the microsporangium. The nucleus of the pollen grain undergoes unequal division and forms a large vegetative or tube cell and a small generative cell. Initially, the generative cell remains lying at one corner of the spore wall. Later it gets detached and gets suspended in the cytoplasm of the vegetative cell (forms a 2 celled stage consisting of vegetative cell and generative cell). Later on the generative cell divides and give rise to two cells that are the male gametes (forms 3 celled stage consisting of two male gametes and the vegetative cell) The process of microgametogenesis ends here and later fertilisation occurs. The division of the generative cell may either take place in the pollen grain or in the newly formed pollen tube) The nucleus of the vegetative cell is known as the tube nucleus.
    [Show full text]
  • Structure of Staminate Flowers, Microsporogenesis, and Microgametogenesis in Helosis Cayennensis Var. Cayennensis (Balanophoraceae)
    2362 helosis.af.qxp:Anales 70(2).qxd 29/05/14 9:17 Página 113 Anales del Jardín Botánico de Madrid 70(2): 113-121, julio-diciembre 2013. ISSN: 0211-1322. doi: 10.3989/ajbm. 2362 Structure of staminate flowers, microsporogenesis, and microgametogenesis in Helosis cayennensis var. cayennensis (Balanophoraceae) Ana María González*, Orlando Fabián Popoff & Cristina Salgado Laurenti Instituto de Botánica del Nordeste-IBONE-(UNNE-CONICET), Facultad de Ciencias Agrarias, Sarg. Cabral 2131, Corrientes, Argentina, CP 3400; [email protected]; [email protected]; [email protected] Abstract Resumen González, A.M., Popoff, O.F. & Salgado Laurenti, C. 2013. Structure of González, A.M., Popoff, O.F. & Salgado Laurenti, C. 2013. Estructura de staminate flowers, microsporogenesis, and microgametogenesis in Helosis las flores estaminadas, microsporogénesis y microgametogénesis en Helo- cayennensis var. cayennensis (Balanophoraceae). Anales Jard. Bot. Madrid sis cayennensis var. cayennensis (Balanophoraceae). Anales Jard. Bot. 70(2): 113-121. Madrid 70(2): 113-121 (en inglés). We analyzed the microgametogenesis and microsporogenesis of the male Se analizó la estructura de las flores masculinas de Helosis cayennensis flowers of the holoparasitic Helosis cayennensis (Sw.) Spreng. var. cayen- (Sw.) Spreng. var. cayennensis con microscopía óptica y electrónica de ba- nensis using optical and scanning electron microscopy. The unisexual rrido y se estudió la microesporogénesis y la microgametogénesis. Las flo- flowers are embedded in a dense mass of uniseriate trichomes (filariae). res funcionalmente unisexuales se encuentran embebidas en una densa Male flowers have a tubular 3-lobed perianth, with bilayered and non vas- capa de tricomas uniseriados. Las flores estaminadas presentan un perian- cularized tepals.
    [Show full text]
  • Structure of Staminate Flowers, Microsporogenesis, and Microgametogenesis in Helosis Cayennensis Var
    2362 helosis.af.qxp:Anales 70(2).qxd 24/06/14 10:09 Página 113 Anales del Jardín Botánico de Madrid 70(2): 113-121, julio-diciembre 2013. ISSN: 0211-1322. doi: 10.3989/ajbm. 2362 Structure of staminate flowers, microsporogenesis, and microgametogenesis in Helosis cayennensis var. cayennensis (Balanophoraceae) Ana María González*, Orlando Fabián Popoff & Cristina Salgado Laurenti Instituto de Botánica del Nordeste-IBONE-(UNNE-CONICET), Facultad de Ciencias Agrarias, Sarg. Cabral 2131, Corrientes, Argentina, CP 3400; [email protected]; [email protected]; [email protected] Abstract Resumen González, A.M., Popoff, O.F. & Salgado Laurenti, C. 2013. Structure of González, A.M., Popoff, O.F. & Salgado Laurenti, C. 2013. Estructura de staminate flowers, microsporogenesis, and microgametogenesis in Helosis las flores estaminadas, microsporogénesis y microgametogénesis en Helo- cayennensis var. cayennensis (Balanophoraceae). Anales Jard. Bot. Madrid sis cayennensis var. cayennensis (Balanophoraceae). Anales Jard. Bot. 70(2): 113-121. Madrid 70(2): 113-121 (en inglés). We analyzed the microgametogenesis and microsporogenesis of the male Se analizó la estructura de las flores masculinas de Helosis cayennensis flowers of the holoparasitic Helosis cayennensis (Sw.) Spreng. var. cayen- (Sw.) Spreng. var. cayennensis con microscopía óptica y electrónica de ba- nensis using optical and scanning electron microscopy. The unisexual rrido y se estudió la microesporogénesis y la microgametogénesis. Las flo- flowers are embedded in a dense mass of uniseriate trichomes (filariae). res funcionalmente unisexuales se encuentran embebidas en una densa Male flowers have a tubular 3-lobed perianth, with bilayered and non vas- capa de tricomas uniseriados. Las flores estaminadas presentan un perian- cularized tepals.
    [Show full text]
  • Vol41n3p131-137
    reeTl CERVANTESET AL.: EMBRYOLOGYOF CHAMAEDOREAELEGANS I3l Principes, 4l(3), 1997, pp. 13I-137 Embryologyof Chamaedoreaelegans (Arecaceae):Microsporangium, Microsporogenesis,' and Microgametogenesis ErvntgunreGoi,+zAraz-CtRVANTES,T AruJel,ttRo Menrit'lnz MENA,T HrRuIro J. Qunnor2 ANDJuDrrH MAnqunz-GuzmArul rlaboratorio de Citologia, Facultad, il'e Ciencias, Uniaersidad.Nacional Autdnoma de Mdxico .Jard,fuBotdnico del Instituto dn Biolog{a, Uniuersid'adNacional Autdnoma de Mdxico AnsrRecr moni 1970, Takhtajan 1980). Male flowersare yel- low and 2 mm long; they have six stamenswith Chamaedorea elegans is a dioecious palm of great economic importance and is an endangered species. Annually, the male short filaments and antherswhich are scarcelyvis- palm produces 2-3 inflorescences, each with a great number ible under the pistillode (Hodel 1992). The only of tiny yellow flowers. During anthesis, flowers produce a drop previouswork about embryologyof the genusCha- of nectar that is obserued over the apex of the pistillode that m,aedoreais from Mahabal6 and Biradar (1968), stands out from the triangular opening formed by the petals. The male flower has six stamens. The anther wall is formed by where the investigationsof Sussenguth(192f) and six cellular strata: an epidermis, a monosiratified endothecium, Schnarf (1931) are cited. The type of division of a middle layer formed by three cellular strata, and the glan- the microsporemother cells in different speciesis dular tapetum. The microspore mother cells begin meiosis and described. fom tetrads of tetrahedral and tetragonal microspores. The mature anther wall consists of an epidermis and an endothe- When the need for efficient reproduction of this cium. Mature pollen grains are two-celled and monosulcate, species was brought to our attention, we decided semitectate-reticulate.
    [Show full text]
  • Transcriptome Profile Analysis Reveals the Regulation Mechanism
    Article Transcriptome Profile Analysis Reveals the Regulation Mechanism of Stamen Abortion in Handeliodendron bodinieri Xiatong Liu 1,2,†, Tianfeng Liu 3,†, Chong Zhang 2, Xiaorui Guo 2, Song Guo 3, Hai Lu 1,2 , Hui Li 1,2,* and Zailiu Li 3,* 1 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; [email protected] (X.L.); [email protected] (H.L.) 2 College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; [email protected] (C.Z.); [email protected] (X.G.) 3 Forestry College, Guangxi University, Nanning 530004, China; ltfltfl[email protected] (T.L.); [email protected] (S.G.) * Correspondence: [email protected] (H.L.); [email protected] (Z.L.) † These authors contributed equally to this work. Abstract: Handeliodendron bodinieri has unisexual flowers with aborted stamens in female trees, which can be used to study unisexual flower development in tree species. To elucidate the molecular mechanism of stamen abortion underlying sex differentiation, the stage of stamen abortion was determined by semi-thin sections; results showed that stamen abortion occurred in stage 6 during anther development. In addition, differentially expressed transcripts regulating stamen abortion were identified by comparing the transcriptome of female flowers and male flowers with RNA-seq technique. The results showed that 14 genes related to anther development and meiosis such as HbGPAT, HbAMS, HbLAP5, HbLAP3, and HbTES were down-regulated, and HbML5 was up- regulated. Therefore, this information will provide a theoretical foundation for the conservation, Citation: Liu, X.; Liu, T.; Zhang, C.; breeding, scientific research, and application of Handeliodendron bodinieri.
    [Show full text]
  • Callose in Sporogenesis: Novel Composition of the Inner Spore Wall in Hornworts
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339085007 Callose in sporogenesis: novel composition of the inner spore wall in hornworts Article in Plant Systematics and Evolution · April 2020 DOI: 10.1007/s00606-020-01631-5 CITATION READS 1 134 5 authors, including: Karen S Renzaglia Renee Lopez-Smith Southern Illinois University Carbondale Southern Illinois University Carbondale 152 PUBLICATIONS 3,894 CITATIONS 9 PUBLICATIONS 61 CITATIONS SEE PROFILE SEE PROFILE Amelia Merced International Institute of Tropical Forestry 22 PUBLICATIONS 163 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Evolution of land plants View project Induction of stress response and toxicity threshold of Azolla caroliniana in response to AgNP View project All content following this page was uploaded by Renee Lopez-Smith on 27 April 2020. The user has requested enhancement of the downloaded file. Plant Systematics and Evolution (2020) 306:16 https://doi.org/10.1007/s00606-020-01631-5 ORIGINAL ARTICLE Callose in sporogenesis: novel composition of the inner spore wall in hornworts Karen S. Renzaglia1 · Renee A. Lopez1 · Ryan D. Welsh1 · Heather A. Owen2 · Amelia Merced3 Received: 27 September 2019 / Accepted: 8 January 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020 Abstract Sporogenesis is a developmental process that defnes embryophytes and involves callose, especially in the production of the highly protective and recalcitrant spore/pollen wall. Until now, hornworts, leptosporangiate ferns and homosporous lycophytes are the only major plant groups in which the involvement of callose in spore development is equivocal.
    [Show full text]
  • AN OVERVIEW of POLLEN and ANTHER WALL DEVELOPMENT in Catalpa Bignonioides Walter (BIGNONIACEAE)
    http://dergipark.gov.tr/trkjnat Trakya University Journal of Natural Sciences, 18(2): 123-132, 2017 ISSN 2147-0294, e-ISSN 2528-9691 Research Article/Araştırma Makalesi DOI: 10.23902/trkjnat.309718 AN OVERVIEW OF POLLEN AND ANTHER WALL DEVELOPMENT IN Catalpa bignonioides Walter (BIGNONIACEAE) Sevil TÜTÜNCÜ KONYAR Trakya University, Faculty of Science, Department of Biology, 22030, Edirne, Turkey. e-mail: [email protected] Received (Alınış): 29 Apr 2017, Accepted (Kabul): 17 Sep 2017, Online First (Erken Görünüm): 27 Sep 2017, Published (Basım): 15 Dec 2017 Abstract: Anther development in Catalpa bignonioides Walter was investigated from the sporogenous cell to the mature pollen grain stages to determine whether the pollen and anther wall development follows the basic scheme in angiosperms. In order to follow pollen ontogeny through successive stages of pollen development, anthers at different developmental stages were embedded in epon according to the usual method, and semi-thin sections, taken from the epon embedded anthers, were stained with toluidine blue for general histological observations under light microscopy. The young anther wall of C. bignonioides consists of four layers; from the exterior, the epidermis, endothecium, middle layer, and a secretory tapetum. The tapetum is dual in origin and dimorphic. Ubisch bodies were observed on the inner tangential walls of the tapetal cells. The number of the anther wall layers changes depending on the developmental stage and region of the anther. In contrast to the other anther wall layers, epidermis and endothecium layers remain intact until anthesis. Endothecial cells enlarge and develop thickenings at maturity. During microspore development, meiocytes undergo meiosis and simultaneous cytokinesis leading to the formation of permanent tetrahedral, isobilateral and rarely linear tetrads.
    [Show full text]
  • Pollen Wall Development in Flowering Plants
    Review Blackwell Publishing Ltd Tansley review Pollen wall development in flowering plants Author for correspondence: 1 1 2 S. Blackmore Stephen Blackmore , Alexandra H. Wortley , John J. Skvarla Tel: +44 131248 2930 and John R. Rowley3 Fax: +44 131248 2903 1Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh EH3 5LR, UK; Email: [email protected] 2Department of Botany – Microbiology, University of Oklahoma, Norman, OK 73019–0245, USA; Received: 18 October 2006 3 Accepted: 2 February 2007 Botany Department, University of Stockholm, SE-106 91, Stockholm, Sweden Contents Summary 483 V. The origins of the exine during the tetrad stage 490 I. Introduction 483 VI. The free microspore stage to pollen maturation 495 II. Progress of research on pollen wall development 485 VII. Conclusions 495 III. The developmental role of the special cell wall 487 Acknowledgements 496 IV. Meiosis and the establishment of microspore symmetry 489 References 496 Summary Key words: Compositae, exine, exine The outer pollen wall, or exine, is more structurally complex than any other plant cell stratification, exine substructure, wall, comprising several distinct layers, each with its own organizational pattern. microsporogenesis, pollen development, Since elucidation of the basic events of pollen wall ontogeny using electron micros- primexine, self-assembly. copy in the 1970s, knowledge of their developmental genetics has increased enor- mously. However, self-assembly processes that are not under direct genetic control also play an important role in pollen wall patterning. This review integrates ultrastructural and developmental findings with recent models for self-assembly in an attempt to understand the origins of the morphological complexity and diversity that underpin the science of palynology.
    [Show full text]