E:\Ficherosxp\1 INTRODUCCIÓN Para PDF.Wpd

Total Page:16

File Type:pdf, Size:1020Kb

E:\Ficherosxp\1 INTRODUCCIÓN Para PDF.Wpd UNIVERSIDAD AUTÓNOMA DE MADRID UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE MEDICINA FACULTAD DE FARMACIA DPTO. DE MEDICINA PREVENTIVA, DEPARTAMENTO DE PARASITOLOGÍA SALUD PÚBLICA Y MICROBIOLOGÍA CONTRIBUCIÓN A LA PREVENCIÓN DE ZOONOSIS PARASITARIAS DERIVADAS DE LA INTRODUCCIÓN Y CRÍA DE AVESTRUCES Y OTRAS RATITES EN ESPAÑA TESIS DOCTORAL Blanca Teresa Simmons Diez Madrid, 2008 UNIVERSIDAD AUTÓNOMA DE MADRID UNIVERSIDAD COMPLUTENSE DE MADRID El Dr. Rafael A. Martínez Díaz, del Departamento de Medicina Preventiva, Salud Pública y Microbiología de la Facultad de Medicina de la Universidad Autónoma de Madrid, y el Dr. Francisco Ponce Gordo, del Departamento de Parasitología de la Facultad de Farmacia de la Universidad Complutense de Madrid, HACEN CONSTAR: Que la Licenciada en Biología Dña. Blanca Teresa Simmons Díez ha realizado en los citados Departamentos y bajo su dirección conjunta, el presente trabajo titulado “Contribución a la prevención de zoonosis parasitarias derivadas de la introducción y cría de avestruces y otras ratites en España”, y autorizan la presentación de la memoria al cumplir con todos los requisitos exigidos para la exposición y defensa de la Tesis Doctoral que le permita aspirar al grado de Doctor. En Madrid, a 1 de Septiembre de 2008 Fdo. Rafael A. Martínez Díaz Fdo. Francisco Ponce Gordo Son muchas las personas sin las cuales este trabajo no se habría llevado a cabo. A mis padres Eldon y Blanca Simmons por su continuo apoyo y persistencia (las cosas que se empiezan, aunque por largo que dure, se terminan); a mi madrina Maria Caridad Gomez Diez, por su continuo apoyo moral; a mis primos, sobre todo a Alex y Eva Henrich; a Carlos Gómez Diez, por sus buenas sugerencias en la redacción; a mi amiga Elena Casañas y su familia, por su apoyo y su ayuda; y sobre todo a mis hermanos Pat y Cristina, especialmente a ella, por su comprensión y paciencia conmigo a lo largo de todo este periodo. A todas ellas: mil gracias. Y para terminar, un gracias especial a mis dos directores de tesis, Rafael y Paco, por sus consejos, su paciencia y sobre todo por su amistad. RESUMEN Durante un periodo de 6 años más de 600 avestruces y casi una docena de ñandúes mayoritariamente nacidos y criados en España han sido analizados, identificándose 19 especies de protozoos, todos menos uno (Toxoplasma) de localización intestinal. De los organismos identificados en este estudio, solo el ciliado Balantidium struthionis ha sido previamente citado como específico de ratites. De entre los demás protozoos hallados, las formas compatibles con Trichomonas gallinae y las especies Tetratrichomonas gallinarum, Chilomastix gallinarum, Spironucleus meleagridis y Pleuromonas jaculans han sido descritas por primera vez en ratites, mientras que los organismos identificados comoEntamoeba sp. del grupo de las formadoras de quistes uninucleados y Retortamonas sp. han sido descritos por primera vez en aves. El resto de los organismos encontrados sólo se han podido identificar hasta género: Cryptosporidium sp., Eimeria sp.,/Isospora sp., Entamoeba sp. del grupo de las formadoras de quistes octonucleados, Endolimax sp., Iodamoeba sp., Monocercomonas sp., Retortamonas sp., Giardia sp., Blastocystis sp., y los euglenozoos, por lo que es necesario realizar futuros estudios para completar su identificación. En cualquier caso, los datos obtenidos permiten considerar que la cría y el consumo de avestruces no significa un riesgo especial para la salud humana en lo que a enfermedades producidas por protozoos se refiere, a falta de los datos que se obtengan con estudios más detallados de algunos de los organismos encontrados. ABSTRACT During a 6 year period, more that 600 ostriches and near a dozen of rheas, allmost all of them born and raised in Spain have been analyzed. A total of 19 protozoan species have been found, all but one (Toxoplasma) in the gastrointestinal tract. From the organisms identified in this study only the ciliate Balantidium struthionis has been previously cited as ratite specific. Among the other protozoans found, Trichomonas gallinae-like organisms and the species Tetratrichomonas gallinarum, Chilomastix gallinarum, Spironucleus meleagridis and Pleuromonas jaculans are described for the first time in ratites although having been previously cited in other birds, while Entamoeba sp. of the 1-nucleate mature cyst and Retortamonas sp., have been described for the first time in birds. Other organisms have been only identified to the genus level, as Cryptosporidium sp., Eimeria sp.,/Isospora sp., Entamoeba sp. of the 8-nucleate mature cyst group, Endolimax sp., Iodamoeba sp., Monocercomonas sp., Retortamonas sp., Giardia sp., Blastocystis sp.,and the euglenozoa. Then, further studies are necessary in order to establish their taxonomical status. Anyway, the present data suggest that the farming and consumption of ostriches do not pose a significant risk for the human health in relation to parasitic protozoan diseases as yet to be confirmed by further studies on some of the organisms now found. Índice ÍNDICE 1. INTRODUCCIÓN Y OBJETIVOS ..................................1 2. REVISIÓN BIBLIOGRÁFICA .....................................3 2.1. Las ratites..............................................3 2.1.1. Taxonomía .......................................3 2.1.2. Morfología........................................5 2.1.3. Biología.........................................14 2.1.4. Distribución......................................19 2.1.5. Explotación industrial del avestruz ....................20 2.1.5.1. Historia....................................21 2.1.5.2. Instalaciones de cría .........................22 2.1.5.3. Instalaciones de sacrificio .....................24 2.1.5.4. Comercialización............................25 2.2. Parásitos considerados en este estudio ......................26 2.2.1. Posición taxonómica ...............................26 2.2.2. Amebas .........................................36 2.2.2.1. Familia Entamoebidae ........................39 2.2.3. Flagelados .......................................48 2.2.3.1. Familia Monocercomonadidae ..................55 2.2.3.2. Familia Trichomonadidae ......................64 2.2.3.3. Familia Cochlosomidae .......................75 2.2.3.4. Familia Retortamonadidae .....................79 2.2.3.5. Familia Hexamitidae ..........................85 2.2.3.6. Familia Bodonidae ...........................98 2.2.3.7. Euglenozoos ..............................100 I Índice 2.2.4. Apicomplejos................................... 101 2.2.4.1. Familia Eimeriidae ......................... 110 2.2.4.2. Familia Isosporidae ........................ 114 2.2.4.3. Familia Sarcocystidae ...................... 117 2.2.4.4. Familia Cryptosporiidae ..................... 126 2.2.5. Ciliados ....................................... 131 2.2.5.1. Familia Balantidiidae ....................... 139 2.2.6. Blastocystis .................................... 141 2.2.6.1. Familia Blastocystidae ...................... 147 3. MATERIAL Y MÉTODOS..................................... 151 3.1. Material Biológico ..................................... 151 3.1.1. Muestras de granja .............................. 151 3.1.2. Muestras de matadero ............................ 152 3.2. Procesado de las muestras .............................. 155 3.2.1. Heces (bolos fecales) ............................ 155 3.2.2. Contenido de intestino delgado y ciego ............... 156 3.2.3. Contenido de intestino grueso...................... 156 3.2.4. Sangre ........................................ 157 3.2.5. Tejidos y órganos ................................ 157 3.3. Parámetros considerados en el estudio de los protozoos ....... 157 3.4. Descripción de técnicas ................................ 159 3.4.1. Examen directo ................................. 159 3.4.2. Métodos de concentración ......................... 160 3.4.3.Técnicas de tinción............................... 161 3.4.4.Técnicas serológicas para el diagnóstico de la Toxoplasmosis.................................. 165 II Índice 4. RESULTADOS..............................................169 4.1. Relación de organismos encontrados, distribución y prevalecía...........................................169 4.2. Parásitos de localización intestinal.........................173 4.2.1. Amebas ........................................173 4.2.1.1. Género Entamoeba .........................173 4.2.1.2. Género Iodamoeba .........................181 4.2.1.3. Género Endolimax .........................183 4.2.2. Flagelados ......................................186 4.2.2.1. Género Monocercomonas ....................186 4.2.2.2. Género Histomonas .........................188 4.2.2.3. Familia Trichomonadidae .....................189 4.2.2.4. Género Retortamonas .......................194 4.2.2.5. Género Chilomastix.........................196 4.2.2.6. Género Spironucleus ........................200 4.2.2.7. Género Giardia ............................202 4.2.2.8. Género Pleuromonas .......................204 4.2.2.9. Euglenozoos ..............................206 4.2.3. Apicomplejos....................................208 4.2.3.1. Géneros Isospora/Eimeria ....................208 4.2.3.2. Género Cryptosporidium .....................209 4.2.4. Ciliados ........................................212 4.2.4.1. Género Balantidium .........................212 4.2.5. Blastocystis .....................................216 4.3. Parásitos de localización tisular ...........................218 4.3.1. Género Toxoplasma ..............................218
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • ~.. R---'------­ : KASMERA: Vol
    ~.. r---'--------------­ : KASMERA: Vol.. 9, No. 1 4,1981 Zulla. Maracaibo. Venezuela. PROTOZOOS DE VENEZUELA Carlos Diaz Ungrla· Tratamos con este trabajo de ofrecer una puesta al día de los protozoos estudiados en nuestro país. Con ello damos un anticipo de lo que será nuestra próxima obra, en la cual, además de actualizar los problemas taxonómicos, pensamos hacer énfasis en la ultraestructura, cuyo cono­ cimiento es básico hoy día para manejar los protozoos, comQ animales unicelulares que son. Igualmente tratamos de difundir en nuestro medio la clasificación ac­ tual, que difiere tanto de la que se sigue estudiando. y por último, tratamos de reunir en un solo trabajo toda la infor­ mación bibliográfica venezolana, ya que es sabido que nuestros autores se ven precisados a publicar en revistas foráneas, y esto se ha acentuado en los últimos diez (10) años. En nuestro trabajo presentaremos primero la lista alfabética de los protozoos venezolanos, después ofreceremos su clasificación, para terminar por distribuirlos de acuerdo a sus hospedadores . • Profesor de la Facultad de Ciencias Veterinarias de la Universidad del Zulia. Maracaibo-Venezuela. -147­ Con la esperanza de que nuestro trabajo sea útil anuestros colegas. En Maracaibo, abril de mil novecientos ochenta. 1 LISTA ALF ABETICA DE LOS PROTOZOOS DE VENEZUELA Babesia (Babesia) bigemina, Smith y Kilbome, 1893. Seflalada en Bos taurus por Zieman (1902). Deutsch. Med. Wochens., 20 y 21. Babesia (Babesia) caballi Nuttall y Stricldand. 1910. En Equus cabal/uso Gallo y Vogelsang (1051). Rev. Med.Vet. y Par~. 10 (1-4); 3. Babesia (Babesia) canis. Piana y Galli Valerio, 1895. En Canis ¡ami/iaris.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Primary Amoebic Meningoencephalitis Due to Naegleria Fowleri
    56 Case report Primary amoebic meningoencephalitis due to Naegleria fowleri A. Angrup, L. Chandel, A. Sood, K. Thakur, S. C. Jaryal Department of Microbiology,Dr. Rajendra Prasad Government Medical College, Kangra at Tanda, Himachal Pradesh, Pin Code- 176001, India. Correspondence to: Dr. Archana Angrup, Department of Microbiology, Dr. Rajendra Prasad Government Medical College, Kangra, Tanda, Himachal Pradesh, Pin Code-176001, India. Phone no. 09418119222, Facsimile: 01892-267115 Email: [email protected] Abstract The genus Naegleria comprises of free living ameboflagellates found in soil and fresh water. More than 30 species have been isolated but only N. fowleri has been associated with human disease. N. fowleri causes primary amoebic meningoencephalitis (PAM), an acute, often fulminant infection of CNS. Here we report a rare and first case of PAM in an immunocompetent elderly patient from this part of the country. Amoeboid and flagellate forms of N. fowleri were detected in the direct microscopic examination of CSF and confirmed by flagellation test in distilled water, demonstrating plaques /clear areas on 1.5% non nutrient agar and its survival at 42°C. Keywords: Meningitis, Naegleria fowleri, primary amoebic meningoencephalitis Introduction of our knowledge, in India, only eight cases have been reported so far .1, 5-8 Infection of the central nervous system (CNS) in human We hereby report a rare case of PAM in elderly beings with free living amoebae is uncommon. Among the immunocompetent patient from the hilly state of Himachal many different genera of amoebae, Naegleria spp, Pradesh (H.P) in Northern India. Acanthamoeba spp and Balamuthia spp are primarily pathogenic to the CNS.
    [Show full text]
  • Announcements Protists - Outline Reading: Chap
    Announcements Protists - Outline Reading: Chap. 29 • Relevant reading BEFORE lab this week: Ch. 31 I. Introduction • Bring lab atlas AND textbook to lab. A. Diversity of life styles IV. Evolutionary history • Extra credit opportunity: B. Functional classifications A. Kingdom Protista? – Salmon Summit: Wed. 11/3/10, 8-4:45 pm II. Ecological importance B. How are they related St. Luke’s Community Health Education Center to each other? A. Algae C. How did they arise? Bellingham, WA (checking on registration) B. Protozoans D. How are they related III. Life cycles to plants? A. The three basic types B. Examples Diatom I.A. Diversity of life styles Size 1. Size 10 μm 2. Morphology 3. Motility Kelp 4. Energy sources 6 orders of magnitude! 60 m Filamentous (Golden algae) Morphology Gradient in complexity Unicellular (Euglena) Colonial (Pandorina) Multicellular (kelp) 1 Crawling (pseudopodia) Cell walls – protection & support Planktonic Amoeba Diatoms Cilia Flagella Motility Fastened Amoeba Paramecium Euglena Kelp No cell wall Energy source - photoautotrophs Variation in photosynthetic pigments Energy source - heterotrophs Ingestive feeders Absorptive feeders: decomp., parasites I.B. Functional classifications Particle feeder (Stentor) Protozoans - “animal like” Parasite Algae - “plant-like”, i.e., photosynthetic (Trypanosoma) - Eukaryotic photosynthetic organisms that are not plants Decomposer Mix - simple to bizarre (slime mold Don’t necessarily relate to taxonomic Physarum) (ingestive) relationships and evolutionary history Predator (Amoeba) 2 Cellular slime mold – unicellular or multicellular? Mixotroph example - Euglena Cells (n) aggregate when food is scarce Amoebae (n) Spores germinate Amoebae (n) germinate (n) from zygote from spores SEXUAL ASEXUAL REPRODUCTION REPRODUCTION Fruiting body Stalk Giant cell Migrating individual (2n) (slug) (n) Two cells (n) in aggregation fuse, then consume other cells Fig.
    [Show full text]
  • Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Frontiers in Marine Science, 7: 1-19
    http://www.diva-portal.org This is the published version of a paper published in Frontiers in Marine Science. Citation for the original published paper (version of record): Sörenson, E., Lindehoff, E., Farnelid, H., Legrand, C. (2020) Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Frontiers in Marine Science, 7: 1-19 https://doi.org/10.3389/fmars.2020.608244 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-99520 ORIGINAL RESEARCH published: 25 November 2020 doi: 10.3389/fmars.2020.608244 Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea Eva Sörenson, Hanna Farnelid, Elin Lindehoff and Catherine Legrand* Department of Biology and Environmental Science, Linnaeus University Centre of Ecology and Evolution and Microbial Model Systems, Linnaeus University, Kalmar, Sweden Eutrophication coupled to climate change disturbs the balance between competition and coexistence in microbial communities including the partitioning of organic and inorganic nutrients between phytoplankton and bacteria. Competition for inorganic nutrients has been regarded as one of the drivers affecting the productivity of the eutrophied coastal Baltic Sea. Yet, it is unknown at the molecular expression level how resources are competed for, by phytoplankton and bacteria, and what impact this competition has on the community composition. Here we use metatranscriptomics and amplicon sequencing and compare known metabolic pathways of both phytoplankton and bacteria co-occurring during a summer bloom in the archipelago of Åland in the Baltic Sea to examine phytoplankton bacteria resource partitioning.
    [Show full text]
  • 6.5 X 11 Double Line.P65
    Cambridge University Press 978-0-521-53026-2 - The Cambridge Historical Dictionary of Disease Edited by Kenneth F. Kiple Index More information Name Index A Baillie, Matthew, 80, 113–14, 278 Abercrombie, John, 32, 178 Baillou, Guillaume de, 83, 224, 361 Abreu, Aleixo de, 336 Baker, Brenda, 333 Adams, Joseph, 140–41 Baker, George, 187 Adams, Robert, 157 Balardini, Lodovico, 243 Addison, Thomas, 22, 350 Balfour, Francis, 152 Aesculapius, 246 Balmis, Francisco Xavier, 303 Aetius of Amida, 82, 232, 248 Bancroft, Edward, 364 Afzelius, Arvid, 203 Bancroft, Joseph, 128 Ainsworth, Geoffrey C., 128–32, 132–34 Bancroft, Thomas, 87, 128 Albert, Jose, 48 Bang, Bernhard, 60 Alexander of Tralles, 135 Bannwarth, A., 203 Alibert, Jean Louis, 147, 162, 359 Bard, Samuel, 83 Ali ibn Isa, 232 Barensprung,¨ F. von, 360 Allchin, W. H., 177 Bargen, J. A., 177 Allison, A. C., 25, 300 Barker, William H., 57–58 Allison, Marvin J., 70–71, 191–92 Barthelemy,´ Eloy, 31 Alpert, S., 178 Bartlett, Elisha, 351 Altman, Roy D., 238–40 Bartoletti, Fabrizio, 103 Alzheimer, Alois, 14, 17 Barton, Alberto, 69 Ammonios, 358 Bartram, M., 328 Amos, H. L., 162 Bassereau, Leon,´ 317 Andersen, Dorothy, 84 Bateman, Thomas, 145, 162 Anderson, John, 353 Bateson, William, 141 Andral, Gabriel, 80 Battistine, T., 69 Annesley, James, 21 Baumann, Eugen, 149 Arad-Nana, 246 Beard, George, 106 Archibald, R. G., 131 Beet, E. A., 24, 25 Aretaeus the Cappadocian, 80, 82, 88, 177, 257, 324 Behring, Emil, 95–96, 325 Aristotle, 135, 248, 272, 328 Bell, Benjamin, 152 Armelagos, George, 333 Bell, J., 31 Armstrong, B.
    [Show full text]
  • PROTISTAS MARINOS Viviana A
    PROTISTAS MARINOS Viviana A. Alder INTRODUCCIÓN plantas y animales. Según este esquema básico, a las plantas les correspondían las características de En 1673, el editor de Philosophical Transac- ser organismos sésiles con pigmentos fotosinté- tions of the Royal Society of London recibió una ticos para la síntesis de las sustancias esenciales carta del anatomista Regnier de Graaf informan- para su metabolismo a partir de sustancias inor- do que un comerciante holandés, Antonie van gánicas (nutrición autótrofa), y de poseer células Leeuwenhoek, había “diseñado microscopios rodeadas por paredes de celulosa. En oposición muy superiores a aquéllos que hemos visto has- a las plantas, les correspondía a los animales los ta ahora”. Van Leeuwenhoek vendía lana, algo- atributos de tener motilidad activa y de carecer dón y otros materiales textiles, y se había visto tanto de pigmentos fotosintéticos (debiendo por en la necesidad de mejorar las lentes de aumento lo tanto procurarse su alimento a partir de sustan- que comúnmente usaba para contar el número cias orgánicas sintetizadas por otros organismos) de hebras y evaluar la calidad de fibras y tejidos. como de paredes celulósicas en sus células. Así fue que construyó su primer microscopio de Es a partir de los estudios de Georg Gol- lente única: simple, pequeño, pero con un poder dfuss (1782-1848) que estos diminutos organis- de magnificación de hasta 300 aumentos (¡diez mos, invisibles a ojo desnudo, comienzan a ser veces más que sus precursores!). Este magnífico clasificados como plantas primarias
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Cyanobacterial contribution to the genomes of the plastid-lacking protists Shinichiro Maruyama*1, Motomichi Matsuzaki1,2,3, Kazuharu Misawa1,3,3 and Hisayoshi Nozaki1 Address: 1Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan, 2Current address: Department of Biomedical Chemistry, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113- 0033, Japan and 3Current address: Research Program for Computational Science, Riken, 4-6-1 Shirokane-dai, Minato-ku, Tokyo 108-8639, Japan Email: Shinichiro Maruyama* - [email protected]; Motomichi Matsuzaki - [email protected]; Kazuharu Misawa - [email protected]; Hisayoshi Nozaki - [email protected] * Corresponding author Published: 11 August 2009 Received: 13 March 2009 Accepted: 11 August 2009 BMC Evolutionary Biology 2009, 9:197 doi:10.1186/1471-2148-9-197 This article is available from: http://www.biomedcentral.com/1471-2148/9/197 © 2009 Maruyama et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Eukaryotic genes with cyanobacterial ancestry in plastid-lacking protists have been regarded as important evolutionary markers implicating the presence of plastids in the early evolution of eukaryotes. Although recent genomic surveys demonstrated the presence of cyanobacterial and algal ancestry genes in the genomes of plastid-lacking protists, comparative analyses on the origin and distribution of those genes are still limited.
    [Show full text]