Resolving Nomenclatural Ambiguity in South American Tephrosia (Leguminosae, Papilionoideae, Millettieae), Including the Description of a New Species

Total Page:16

File Type:pdf, Size:1020Kb

Resolving Nomenclatural Ambiguity in South American Tephrosia (Leguminosae, Papilionoideae, Millettieae), Including the Description of a New Species CSIRO PUBLISHING Australian Systematic Botany, 2019, 32, 555–563 https://doi.org/10.1071/SB19011 Resolving nomenclatural ambiguity in South American Tephrosia (Leguminosae, Papilionoideae, Millettieae), including the description of a new species R. T. de Queiroz A,F, T. M. de Moura B,C, R. E. Gereau C, G. P. Lewis D and A. M. G. de Azevedo Tozzi E ADepartamento de Sistemática e Ecologia, Centro de Ciências Exatas da Natureza, Universidade Federal da Paraíba (UFPB), Cidade Universitária, João Pessoa, PB, 58051-090, Brazil. BDepartamento Ciências Biológicas, Instituto Federal Goiano (IF Goiano), Rodovia Geraldo Silva Nascimento, quilômetro 2.5, Urutaí, GO, 75790-000, Brazil. CMissouri Botanical Garden, 4344 Shaw Boulevard, Saint Louis, MO 63110, USA. DComparative Plantand Fungal Biology Department,Royal BotanicGardens, Kew, Richmond, Surrey,TW9 3AB, UK. EDepartamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, 13083-862, Brazil. FCorresponding author. Email: [email protected] Abstract. Taxonomic studies of Tephrosia Pers. (Leguminosae, Papilionoideae, Millettieae) in South America have highlighted the need to resolve some nomenclatural issues. Five new synonyms are proposed and a new species is described. Nine lectotypes of accepted names and synonyms, and one neotype, are here designated. An identification key to the taxa occurring in South America is also presented. Additional keywords: Fabaceae, lectotypification, synonymy, systematics, taxonomy. Received 20 February 2019, accepted 31 July 2019, published online 7 October 2019 Introduction T. egregia Sandwith, T. fertilis R.T.Queiroz & A.M.G. Tephrosia Pers. (Leguminosae–Papilionoideae) comprises Azevedo, T. guaranitica Chodat & Hassl., T. hassleri Chodat, ~350 pantropically distributed species, occurring mainly in T. macbrideana R.T.Queiroz, G.P.Lewis & A.M.G.Azevedo, seasonally dry tropical woodlands, bushlands, thickets and T. marginata Hassl., T. noctiflora Bojer ex Baker, T. purpurea grasslands, often in open and disturbed sandy or rocky areas (L.) Pers. subsp. purpurea, T. senna Kunth, T. sessiliflora (Poir.) (Schrire 2005). It comprises two subgenera, namely, Tephrosia Hassl., and the new species described here, T. chaquenha subgenus Barbistyla Brummitt and Tephrosia subgenus R.T.Queiroz & A.M.G.Azevedo). Tephrosia. Tephrosia subg. Barbistyla has a pubescent style The species of Tephrosia in South America are shrubs and a glabrous stigma, whereas T. subg. Tephrosia has a or subshrubs with imparipinnate, multifoliolate, trifoliolate or pubescent stigma (Brummitt 1980). According to Schrire unifoliolate leaves. Inflorescences are terminal, axillary or (2005), the highest diversity for this genus is in Africa and leaf-opposed pseudoracemes; the calyx is campanulate; the Madagascar (~170 species), Australia (~90 spp.), Central and corolla is red, pinkish, purple, yellow, or white; and the ovary Tropical North America (~45 spp.) and Asia (~40 spp.). In South has 2–13 ovules. The fruit is a typical legume (Queiroz 2012). America, 18 taxa are recognised (Queiroz 2012). Bentham (1862) and Burkart (1952) noted that Tephrosia can be Most treatments of the species of Tephrosia in South easily recognised by its linear, elliptical, oblong or obovate America are in regional floras, e.g. Argentina (Burkart 1952), leaflets with numerous, parallel, oblique secondary veins. Brazil (Bentham 1862; Queiroz and Tozzi 2009, 2011; Brazilian Several species of Tephrosia are reported to have economic Flora Group 2015), Paraguay (Hassler 1919), Peru (Macbride importance. According to Forbes (1948), ~22 species have been 1943), Suriname (Amshoff 1939), and Venezuela (Pittier 1944). recorded as fish-poison plants. Wood (1949) noted that many Queiroz (2012) produced the only complete account of this genus species of this genus produce rotenone, a substance used to in South America, where Tephrosia subgenus Barbistyla is produce insecticides that are poisonous to invertebrates but not to represented by four species (Tephrosia candida DC., T. nitens most vertebrates, and Dzenda et al.(2007) reviewed the Benth., T. sinapou (Buc’hoz) A.Chev., and T. vogelii Hook.f.), ethnomedical and veterinary uses of T. vogelii, and mentioned and Tephrosia subg. Tephrosia comprises 14 taxa (T. adunca eight other species of Tephrosia with therapeutic properties. Benth., T. cinerea (L.) Pers., T. domingensis (Willd.) Pers., Compounds isolated from this genus include deguelin, rotenone, Journal compilation Ó CSIRO 2019 Open Access CC BY-NC-ND www.publish.csiro.au/journals/asb 556 Australian Systematic Botany R. T. de Queiroz et al. tephrosin, quercetin and rutin, which are reported as 3. Branches smooth, indumentum greyish; lenticels present on the antimicrobial and potentially able to kill molluscs, fish, branches; stipules 7–10-veined; leaflets oblanceolate; insects and helminths (Dzenda et al. 2007). pseudoracemes laxly flowered .....................................T. nitens During his revision of Tephrosia in South America, the first 3: Branches striate, indumentum rusty brown; lenticels absent on author analysed more than 3000 accessions in North American, the branches; stipules 5-veined; leaflets oblong, elliptic to Brazilian and European herbaria. Materials from the following narrowly elliptic; pseudoracemes with flowers congested........4 herbaria were studied: B, BAB, BHCB, BM, BR, C, CEN, 4. Leaflets elliptic to narrowly elliptic; bracts ovate, caducous; CGMS, COL, E, EAC, EAN, ESA, F, FHI, G, GH, GOET, calyx 4-lobed, calyx tube shorter than the lobes; standard 2.5–2.6 Â 3.0–3.2 cm, indumentum present on its abaxial HAL, HAS, HB, HEPH, HNBU, HRB, HRCB, HRJ, HST, – HUEFS, HUFMS, HUFU, IAC, IBGE, ICN, INPA, IPA, JPB, surface; legumes 10 20 mm wide, lanate ..............T. vogelii fl K,L,LP,M,MA,MBM,MG,MICH,MO,MOSS,NX,OUPR, 4: Lea ets narrowly oblong to oblong; bracts subulate to narrowly triangular, persistent; calyx with 5 lobes, calyx OXF, NY, P, PH, PAMG, PEUFR, RB, S, SI, SING, SP, SPF, tube longer than the lobes; standard 1.1–2.3 Â 1–2.4 cm, SPFR, TCD, TEPB, UB, UC, UEC, UFG, UFMT, UFRJ, UFRN, indumentum absent on its abaxial surface; legumes 3–10 mm UFP, UPCB, U, US, W and WU (codes follow Index Herbariorum, wide, strigose to sparsely velutinous ..................................5 ’ New York Botanical Garden s Virtual Herbarium, see http:// 5. Leaves with 13–21 leaflets; these acute at the apex, and sweetgum.nybg.org/science/ih, accessed 22 February 2017). abaxially pubescent; inflorescence axis always longer This work has brought several nomenclatural issues to light. than the leaf length; pseudoraceme with up to As a result, we are here describing one new species, proposing 50 flowers; pedicel 0.8–1.5 cm long; calyx lobes nine lectotypes, one neotype, and five new synonyms. In rounded at apex; style apex straight; fruits laterally addition, an identification key to the taxa occurring in South flattened, 0.8–1 cm wide ................................T. candida America is presented. 5: Leaves with 27–39 leaflets; these retuse at the apex, and pubescent on both surfaces; inflorescence axis shorter than the leaf length; pseudoraceme with more than 50 Nomenclatural novelties flowers; pedicel 0.3–0.6 cm long; calyx lobes acute Tephrosia Pers., Syn. pl. 2(2): 328 (1807), nom. cons. at apex; style apex curved; fruits cylindrical, 4–5mm wide ..................................................................T. sinapou Type: Tephrosia villosa (L.) Pers. 2: Branches slender; strigilose, hirsute, sericeous, sparsely sericeous, Cracca L., Sp. pl. 2: 752 (1753), nom. rej., non Hill (1756), nec Medik. pilose, or glabrescent; style and stigma glabrous; aril absent on (1787), nec Benth. (1853). seed ................................................................................................... 6 Type: Cracca virginiana L. 6. Branches with a greyish indumentum or glabrescent ...............7 Colinil Adans., Fam. Pl. 2: 327 (1763). 7. Branches sparsely sericeous to glabrescent; calyx lobes the Type: none. same length as the calyx tube .............................................8 fl – Erebinthus Mitch., Diss. Brev. Bot. Zool. 32 (1769), nom. rej. 8. Pseudoraceme laxly owered; calyx 4 5 mm long; corolla with dots; wings narrowly elliptic; leaflets rounded to Type: Tephrosia spicata (Walter) Torr. & A. Gray (fide acute at apex ........................................... T. domingensis C.Wood, Rhodora 51: 292 (1949)). 8: Pseudoraceme with flowers congested; calyx 5–7 mm long; Needhamia Scop., Intr. Hist. Nat. 310 (1777), nom. rej. corolla without dots; wings elliptic, falcate or obovate; fl Type: Vicia littoralis Jacq. lea ets retuse at apex ...........................................................9 9. Rachis 5 mm long; bracts over 3 mm long; wings Reineria Moench, Suppl. Meth. 44 (1802), nom. rej. 3-veined, claw over mm long; leaflets inserted Type: Reineria reflexa Moench. 1.5–2.2 cm apart, secondary veins salient on the Kiesera Reinw. ex Blume, Catalogus, 93 (1823). abaxial surface ............................................ T. senna – Type: Kiesera sericea Reinw. 9: Rachis 10 80 mm long; bracts up to 3 mm long; wings 2-veined, claw under 3 mm long; leaflets inserted Xiphocarpus C.Presl, Symb. Bot. 1: 13 (1830). 0.6–1 cm apart, secondary veins not salient on the Type: Xiphocarpus martinicensis C.Presl. abaxial surface............................. T. purpurea subsp. Apodynomene E.Mey., Comm. Pl. Afr. Austr.
Recommended publications
  • Endosamara Racemosa (Roxb.) Geesink and Callerya Vasta (Kosterm.) Schot
    Taiwania, 48(2): 118-128, 2003 Two New Members of the Callerya Group (Fabaceae) Based on Phylogenetic Analysis of rbcL Sequences: Endosamara racemosa (Roxb.) Geesink and Callerya vasta (Kosterm.) Schot (1,3) (1,2) Jer-Ming Hu and Shih-Pai Chang (Manuscript received 2 May, 2003; accepted 29 May, 2003) ABSTRACT: Two new members of Callerya group in Fabaceae, Endosamara racemosa (Roxb.) Geesink and Callerya vasta (Kosterm.) Schot, are identified based on phylogenetic analyses of chloroplast rbcL sequences. These taxa joined with other previously identified taxa in the Callerya group: Afgekia, Callerya, and Wisteria. These genera are resolved as a basal subclade in the Inverted Repeat Lacking Clade (IRLC), which is a large legume group that includes many temperate and herbaceous legumes in the subfamily Papilionoideae, such as Astragalus, Medicago and Pisum, and is not close to other Millettieae. Endosamara is sister to Millettia japonica (Siebold & Zucc.) A. Gray, but only weakly linked with Wisteria and Afgekia. KEY WORDS: Endosamara, Callerya, Millettieae, Millettia, rbcL, Phylogenetic analysis. INTRODUCTION Recent molecular phylogenetic studies of the tribe Millettieae have revealed that the tribe is polyphyletic and several taxa are needed to be segregated from the core Millettieae group. One of the major segregates from Millettieae is the Callerya group, comprising species from Callerya, Wisteria, Afgekia, and Millettia japonica (Siebold & Zucc.) A. Gray. The group is considered to be part of the Inverted-Repeat-Lacking Clade (IRLC; Wojciechowski et al., 1999) including many temperate herbaceous legumes. Such result is consistent and supported by chloroplast inverted repeat surveys (Lavin et al., 1990; Liston, 1995) and phylogenetic studies of the phytochrome gene family (Lavin et al., 1998), chloroplast rbcL (Doyle et al., 1997; Kajita et al., 2001), trnK/matK (Hu et al., 2000), and nuclear ribosomal ITS regions (Hu et al., 2002).
    [Show full text]
  • PESTICIDAL PLANT LEAFLET Aloe Ferox Mill
    PESTICIDAL PLANT LEAFLET Aloe ferox Mill. ROYAL BOTANIC GARDENS Taxonomy and nomenclature Family: Xanthorrhoeaceae (formerly Asphodelaceae) Synonym(s): Aloe candelabrum A. Berger (1906) Vernacular/ common names : (English): Red aloe, bitter aloe, cape aloe (French): Aloes du Cap Distribution and habitat A. ferox is indigenous to South Africa and Lesotho, growing in the semi-arid open plains to rocky mountain slopes. In Kenya it is commonly cultivated in Nairobi gardens and its environs. It is distributed throughout the tropics and sub tropics where it grows as an ornamental or medicinal plant. It grows in a wide range of climatic conditions, but abundant on arid, rocky hillsides up to 1000 mo altitude, where mean temperature ranges from Botanical description 27-31 C and annual rainfall is 50-300 mm. A. ferox is a single-stemmed plant growing up to 2-5 m tall. The crown is a dense rosette of green to red-brown succulent leaves up to 1 m long and the stem is covered Uses in persistent dried leaves. Each leaf has brown spines There are two main useful products obtained from A. along the margins and often on the surfaces. The flowers ferox. Aloe gel comes from the leaf parenchyma, the are bisexual, about 10 cylindrical racemes on a branched white inner fleshy part. It drains from the leaf when cut panicle, long with dark orange stamens protruding from and is used for its cleansing, antiseptic, moisturizing the mouth. Some forms can have bright red, yellow or and anti-inflamatory properties. Aloe bitters, the dark white flowers. sap comes from between the green peel and the white jelly and are used as a laxative and to treat arthritis.
    [Show full text]
  • The Toxicity of Extracts of Tephrosia Virginiana (Fabaceae) in Oklahoma
    54 Oklahoma Native Plant Record Volume 10, December 2010 THE TOXICITY OF EXTRACTS OF TEPHROSIA VIRGINIANA (FABACEAE) IN OKLAHOMA Mary Gard Oklahoma State University Department of Botany Stillwater, OK 74078-3013 Email: [email protected] Keywords: fishkill, rotenone, piscicide, ethnobotany ABSTRACT Historical usage of the roots of the legume Tephrosia virginiana as a piscicide by Native Americans has been documented. Due to questions about geographic variation in toxicity, an examination of the toxicity of six Oklahoma populations of the species was conducted. Rootstock extracts of plants in all populations exhibited acute toxicity in a standard laboratory bioassay using larval fathead minnows (Pimephales promelas). Isolation and identification of the compound or compounds responsible were not undertaken, however, toxicity is generally thought to be due to the presence of rotenone and related compounds. Although considerable variation in LC50 values exists among the six populations, this study produced few statistically significant differences. Correlations between plant toxicity and edaphic factors were not seen. INTRODUCTION Throughout most of its natural range, toxic compounds are absent in T. virginiana Commonly known as hoary pea (Sievers et al. 1938), but in some (Ibrahim 2000), goat‟s rue, catgut (Tyrl et al. populations, the roots contain the 2008), and devil‟s shoestring (Swanton isoflavenoids rotenone, tephrosin, toxicarol, 1928), Tephrosia virginiana (Figure 1) is a and other chemically similar compounds member of the Fabaceae, or pea family. A (Little et al. 1931). Rotenone is a well- native, perennial herb from woody known piscicide, exerting its toxic effects by rootstocks, it is distributed throughout the blocking the oxidation of NADH and eastern half of the United States and preventing ATP from being converted into extends westward to Iowa, and eastern usable cellular energy (Lindahl & Oberg Kansas, Oklahoma, and Texas (USDA- 1961).
    [Show full text]
  • TESE Ana Rafaela Da Silva Oliveira.Pdf
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE BIOCIÊNCIAS DEPARTAMENTO DE GENÉTICA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ANA RAFAELA DA SILVA OLIVEIRA ANÁLISES DE MACROSSINTENIA ENTRE ESPÉCIES DE VIGNA SAVI E DE PHASEOLUS L. MEDIANTE MAPEAMENTO CITOGENÉTICO Recife 2018 2 ANA RAFAELA DA SILVA OLIVEIRA ANÁLISES DE MACROSSINTENIA ENTRE ESPÉCIES DE VIGNA SAVI E DE PHASEOLUS L. MEDIANTE MAPEAMENTO CITOGENÉTICO Tese apresentada ao Programa de Pós-Graduação em Genética da Universidade Federal de Pernambuco como requisito parcial para obtenção do título de Doutora em Genética. Área de concentração: Genética Orientadora: Ana Christina Brasileiro-Vidal Coorientadoras: Ana Maria Benko-Iseppon Andrea Pedrosa-Harand Recife 2018 Catalogação na fonte: Bibliotecária Claudina Queiroz, CRB4/1752 Oliveira, Ana Rafaela da Silva Análises de macrossintenia entre espécies de Vigna savi e de Phaseolus L. Mediante mapeamento citogenético / Ana Rafaela da Silva Oliveira - 2019. 123 folhas: il., fig., tab. Orientadora: Ana Christina Brasileiro Vidal Coorientadoras: Ana Maria Benko Iseppon Andrea Pedrosa Harand Tese (doutorado) – Universidade Federal de Pernambuco. Centro de Biociências. Programa de Pós-Graduação em Genética. Recife, 2019. Inclui referências e anexo 1. Vigna savi 2. Phaseolus L. 3. Mapa cromossômico I. Vidal, Ana Christina Brasileiro (orient.) II. Iseppon, Ana Maria Benko (coorient.) III. Harand, Andrea Pedrosa (coorient.) IV. Título 583.74 CDD (22.ed.) UFPE/CB-2019-096 ANA RAFAELA DA SILVA OLIVEIRA ANÁLISES DE MACROSSINTENIA ENTRE ESPÉCIES DE VIGNA SAVI E DE PHASEOLUS L. MEDIANTE MAPEAMENTO CITOGENÉTICO Tese apresentada ao Programa de Pós- Graduação em Genética da Universidade Federal de Pernambuco, como requisito parcial para a obtenção do título de Doutora em genética. Aprovada em 27/02/2018 BANCA EXAMINADORA: ____________________________________________ Profa.
    [Show full text]
  • Tephrosia Vogelii: a Pesticide of the Future for African Farming
    Tephrosia vogelii: a pesticide of the future for African farming Philip C Stevenson1 and Steven R Belmain2 1Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS . [email protected] 2Natural Resources Institute, University of Greenwich, Kent, ME4 4TB. INTRODUCTION Global population is expected to reach 9 billion by 2050, residues, putting consumers at risk. Negative environmental increasing pressure on food production (Godfray et al., 2010). impacts against beneficial insects are also common, with Constraintson crop production areparticularly acute in Africa over and under application exacerbating the development of where population growth is greatest and where 80% of all food insecticide resistance. For all these reasons, less harmful and is produced by small holder farmers on farm sizes of less than simpler alternatives need to be sought (de Bon et al., 2014; one hectare (Stevenson and Belmain, 2016). Crop losses caused Stevenson and Belmain, 2016). by pests and diseases are two major barriers to agriculture Alternatives exist for small holder farmers in Africa including that will have major impacts on global food security (Poppy biological control agents and botanically active substances et al., 2014). They are particularly pertinent to small holders (Moshi and Matoju, 2017). Indeed the use of pesticidal who consider insect pests to be the most significant problem plants has been a major component of pest management in over which they can have some control. Current pest control sub-Saharan Africa for generations, and their use continues to technologies are dependent on synthetic pesticides, but this day (Kamanula et al., 2011). One of their great advantages small holders in Africa may overlook them due to cost (Sola is they can be propagated locally and self-harvested (Grzywacz et al., 2014) or poor efficacy (Midega et al., 2016).
    [Show full text]
  • NEW COMBINATIONS in COURSETIA DNA Sequence
    ORE Open Research Exeter TITLE DNA Sequence Variation among Conspecific Accessions of the Legume Coursetia caribaea Reveals Geographically Localized Clades Here Ranked as Species AUTHORS Pennington, T; Lavin, M; Hughes, CE; et al. JOURNAL Systematic Botany DEPOSITED IN ORE 03 December 2018 This version available at http://hdl.handle.net/10871/34959 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Lavin et al. 1 LAVIN ET AL.: NEW COMBINATIONS IN COURSETIA DNA Sequence Variation among Conspecific Accessions of the Legume Coursetia caribaea Reveal Geographically Localized Clades Here Ranked as Species Matt Lavin,1,10 R. Toby Pennington,2 Colin E. Hughes,3 Gwilym P. Lewis,4 Alfonso Delgado-Salinas,5 Rodrigo Duno de Stefano,6 Luciano P. de Queiroz,7 Domingos Cardoso,8 and Martin F. Wojciechowski9 1Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717, USA. 2Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, Scotland, EH3 5LR, UK. 3University of Zurich, Department of Systematic and Evolutionary Botany, Zollikerstrasse 107, 8008 Zurich, Switzerland. 4Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK. 5Universidad Nacional Autónoma de México, Instituto de Biología, Departamento de Botánica, Apartado Postal 70- 233, 04510 Ciudad de México, México. 6Herbarium, Centro de Investigación Científica de Yucatán, A. C., Calle 43. No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, México.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Impact of Fishing with Tephrosia Candida (Fabaceae) on Diversity
    Impact of fishing with Tephrosia candida (Fabaceae) on diversity and abundance of fish in the streams at the boundary of Sinharaja Man and Biosphere Forest Reserve, Sri Lanka Udaya Priyantha Kankanamge Epa & Chamari Ruvandika Waniga Chinthamanie Mohotti Department of Zoology & Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya 11600, Sri Lanka; [email protected], [email protected] Received 07-V-2015. Corrected 04-III-2016. Accepted 31-III-2016. Abstract: Local communities in some Asian, African and American countries, use plant toxins in fish poisoning for fishing activities; however, the effects of this practice on the particular wild fish assemblages is unknown. This study was conducted with the aim to investigate the effects of fish poisoning using Tephrosia candida, on freshwater fish diversity and abundance in streams at the boundary of the World Natural Heritage site, Sinharaja Forest Reserve, Sri Lanka. A total of seven field trips were undertaken on a bimonthly basis, from May 2013 to June 2014. We surveyed five streams with similar environmental and climatological conditions at the boundary of Sinharaja forest. We selected three streams with active fish poisoning practices as treatments, and two streams with no fish poisoning as controls. Physico-chemical parameters and flow rate of water in selected streams were also measured at bimonthly intervals. Fish were sampled by electrofishing and nets in three randomly selected confined locations (6 x 2 m stretch) along every stream. Fish species were identified, their abundances were recorded, and Shannon-Weiner diversity index was calculated for each stream. Streams were clustered based on the Bray-Curtis similarity matrix for fish composition and abundance.
    [Show full text]
  • Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences In
    Systematic Botany (2002), 27(4): pp. 722±733 q Copyright 2002 by the American Society of Plant Taxonomists Phylogenetic Analysis of Nuclear Ribosomal ITS/5.8S Sequences in the Tribe Millettieae (Fabaceae): Poecilanthe-Cyclolobium, the core Millettieae, and the Callerya Group JER-MING HU,1,5 MATT LAVIN,2 MARTIN F. W OJCIECHOWSKI,3 and MICHAEL J. SANDERSON4 1Department of Botany, National Taiwan University, Taipei, Taiwan; 2Department of Plant Sciences, Montana State University, Bozeman, Montana 59717; 3Department of Plant Biology, Arizona State University, Tempe, Arizona 85287; 4Section of Evolution and Ecology, University of California, Davis, California 95616 5Author for correspondence ([email protected]) Communicating Editor: Jerrold I. Davis ABSTRACT. The taxonomic composition of three principal and distantly related groups of the former tribe Millettieae, which were ®rst identi®ed from nuclear phytochrome and chloroplast trnK/matK sequences, was more extensively investi- gated with a phylogenetic analysis of nuclear ribosomal DNA ITS/5.8S sequences. The ®rst of these groups includes the neotropical genera Poecilanthe and Cyclolobium, which are resolved as basal lineages in a clade that otherwise includes the neotropical genera Brongniartia and Harpalyce and the Australian Templetonia and Hovea. The second group includes the large millettioid genera, Millettia, Lonchocarpus, Derris,andTephrosia, which are referred to as the ``core Millettieae'' group. Phy- logenetic analysis of nuclear ribosomal DNA ITS/5.8S sequences reveals that Millettia is polyphyletic, and that subclades of the core Millettieae group, such as the New World Lonchocarpus or the pantropical Tephrosia and segregate genera (e.g., Chadsia and Mundulea), each form well supported monophyletic subgroups.
    [Show full text]
  • Legume-Rhizobium Symbiotic Promiscuity and Effectiveness Do Hexane, DCM, Butanol, Water and 35% Water in Methanol
    Abstracts 341 about the feasibility of eradicating the species following four years of continuum of specialisation and, therefore, promiscuous legumes control and monitoring. should have higher chances of forming effective symbioses in novel ranges. Using Australian Acacia species in South Africa we hypo- doi:10.1016/j.sajb.2017.01.076 thesised that widespread and highly invasive species will be more generalist in their rhizobial symbiotic requirements and more effective in fixing atmospheric nitrogen compared to localised and less invasive species. To test our hypotheses we used eight widespread and eleven localised acacias and utilized next generation fi Systematics and diversi cation of the genus Tephrosia and allies sequencing data for the nodulation gene, nodC, to compare the (Millettieae, Fabaceae) identity, species richness, diversity and compositional similarity of rhizobia associated with these acacias. We also used stable isotope a a b,c a R.M. Kabongo , H.E. Iheanacho , A.R. Magee , M. Van der Bank , analysis to determine levels of nitrogen obtained from the atmo- d J.S. Boatwright sphere via symbiotic nitrogen fixation. We found no differences in a African Centre for DNA Barcoding, University of Johannesburg, PO Box richness, diversity and community composition between localised 524, Auckland Park 2006, Johannesburg, South Africa and widespread acacias. Similarly, widespread and localised acacias b Compton Herbarium, South African National Biodiversity Institute, did not differ in their ability to fix atmospheric nitrogen. However, Private Bag X7, Claremont 7735, Cape Town, South Africa for some species by site comparisons we found significant differ- c Department of Botany and Plant Biotechnology, University of Johannesburg, ences in δ15N isotopic signatures, indicating differential symbiotic PO Box 524, Auckland Park 2006, Johannesburg, South Africa effectiveness between these.
    [Show full text]
  • Rbcl and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C
    rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C. Donovan Bailey; Jeff J. Doyle Systematic Botany, Vol. 26, No. 3. (Jul. - Sep., 2001), pp. 515-536. Stable URL: http://links.jstor.org/sici?sici=0363-6445%28200107%2F09%2926%3A3%3C515%3ARALPWP%3E2.0.CO%3B2-C Systematic Botany is currently published by American Society of Plant Taxonomists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aspt.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Tephrosia Candida Fabaceae
    Tephrosia candida (Roxb.) DC. Fabaceae - Papilionoideae LOCAL NAMES Bengali (bangara); English (white hoary pea,hoang pea,white tephrosia); French (indigo sauvage,requie'nie); Hindi (boga medalo,kulthi,lashtia,masethi); Indonesian (enceng-enceng,poko tom,kapeping badah); Javanese (enceng-enceng); Pidgin English (pis pea); Vietnamese (cot khi) BOTANIC DESCRIPTION Tephrosia candida is an erect herb, shrub or small tree, up to 3.5 m tall, with straggling branches from the base. Leaves spirally arranged, imparipinnate; stipules 5-11 x 0.8-1.5 mm, often caducous; rachis (including the petiole) up to 22.5 cm long, with brown indumentum, 6-13 pairs leaflets, opposite, narrowly ovate, elliptical to narrowly obovate, 1.3-7.5 x 0.5-1.7 cm, glaucous green, soft, with silvery indumentum, base and apex acute, long-mucronate, venation distinct below. Inflorescence a terminal, axillary or leaf-opposed pseudo-raceme, 2.5-40 cm long; basal bracts few, leaflike, upper bracts narrowly triangular, 2.2-6 x 0.5-1.5 mm, often caducous; flowers in fascicles of 5-13, 13-26 mm long, white, silky, with dark brown hairs on the outside; calyx campanulate, standard broadly ovate to obovate, 13-25 x 11-25 mm, apex rounded to emarginate, acuminate, claw 1-5 mm long, wings 12-20 x 5.5-13 mm, glabrous, claw 1-4.4 mm long; keel 11-20 x 3-10 mm, glabrous, lateral pockets sometimes bulging, claw 1.5-5 mm long, stamens 10, vexillary filament free at base, connate half way, other filaments alternately longer and shorter. Pod linear, 7-12 cm x 0.5-1 cm, green or brown with silky hairs, slightly convex around the 10-15 seeds.
    [Show full text]