Echinoidea: Clypeasteroida)

Total Page:16

File Type:pdf, Size:1020Kb

Echinoidea: Clypeasteroida) Org Divers Evol (2016) 16:141–166 DOI 10.1007/s13127-015-0231-9 ORIGINAL ARTICLE Comparative morphology and phylogenetic significance of Gregory’s diverticulum in sand dollars (Echinoidea: Clypeasteroida) Alexander Ziegler1 & Jennifer Lenihan2 & Louis G. Zachos 3 & Cornelius Faber4 & Rich Mooi5 Received: 28 April 2015 /Accepted: 28 July 2015 /Published online: 28 August 2015 # Gesellschaft für Biologische Systematik 2015 Abstract Several derived sand dollar (Echinoidea: This extensive dataset permits establishing a concise Clypeasteroida) families are characterized by the pres- terminology that incorporates all of the organ’s sub- ence of Gregory’s diverticulum, an accessory organ of structures. In addition, three-dimensional models of the digestive tract. This soft tissue structure is com- Gregory’s diverticulum are presented that provide an posed of a central tubular cecum that gives off mul- improved spatial understanding of the organ’smor- tiple lobes into the periphery of the test. Most notable phology in situ. The combined data from dissection, are the organ’s capacity to selectively store sand X-ray imaging, microcomputed tomography, and mag- grains that the animal has taken up from the sur- netic resonance imaging reveal a previously unknown rounding sediment as well as the gradual reduction variability of the structure, which also yields several of Gregory’s diverticulum during ontogeny. Several phylogenetically informative morphological characters. aspects of the biology of this structure have remained Among those sand dollar families that possess unexplored, including the organ’s precise morphology Gregory’s diverticulum, the organ is present in two and structural diversity. In order to provide a concise distinct shapes, which can be distinguished by the basis for future histological, physiological, and func- number, shape, and location of substructures. In addi- tional analyses, a comprehensive comparative morpho- tion, the data provide unequivocal evidence that logical and phylogenetic study across numerous taxa Gregory’s diverticulum is absent in the extant taxa was undertaken. Taxon sampling comprised over 100 Rotulidae and Astriclypeidae, but also in the enigmat- clypeasteroid species, including various fossil taxa. ic Marginoproctus. Electronic supplementary material The online version of this article (doi:10.1007/s13127-015-0231-9) contains supplementary material, which is available to authorized users. * Alexander Ziegler 1 Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität [email protected] Bonn, Meckenheimer Allee 169, 53115 Bonn, Germany Jennifer Lenihan 2 Museum of Comparative Zoology, Department of Organismic and [email protected] Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA Louis G. Zachos 3 [email protected] Department of Geology and Geological Engineering, University of Mississippi, 120 Carrier Hall, Oxford, MS 38677, USA Cornelius Faber 4 Institut für Klinische Radiologie, Westfälische Wilhelms-Universität [email protected] Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany Rich Mooi 5 California Academy of Sciences, Golden Gate Park, 55 Music [email protected] Concourse Drive, San Francisco, CA 94118, USA 142 A. Ziegler et al. Keywords Echinodermata . Digestive tract . Gregory’s Le zoologiste qui aurait en main assez de matériaux diverticulum . Magnetite . Comparative morphology . Soft pour entreprendre une étude comparative des tissue . Phylogeny caractères anatomiques des différents genres de Scutellidae ferait certainement des observations très intéressantes. R. Koehler (1922,p.123) Abbreviations μCT Microcomputed tomography 2D Two-dimensional Introduction 3D Three-dimensional Amb Ambulacrum A number of derived sand dollar (Echinoidea: Clypeasteroida) BMNH British Museum of Natural History, London, families possess an accessory digestive tract structure known UK as Gregory’s diverticulum (Gregory 1905; Lawrence 2001). In BPBM Bernice P. Bishop Museum, Honolulu, HI, USA juvenile specimens, this soft tissue organ is frequently filled CASG California Academy of Sciences Geology, San with sand grains of high specific gravity selectively taken up Francisco, CA, USA from the surrounding sediment, in particular magnetite CASIZ California Academy of Sciences Invertebrate (Fe2O3), ilmenite (TiFeO3), and zircon (ZrSiO4)(Chia1973; Zoology, San Francisco, CA, USA Chen and Chen 1994; Borzone et al. 1997; Elkin et al. 2012). CT Computed tomography As the animal matures, the sediment accumulated inside the FDNR Florida Department of Natural Resources, St. diverticulum is successively expelled (Chia 1985), leaving be- Petersburg, FL, USA hind an empty vestigial remnant of the organ that eventually IAmb Interambulacrum ceases to exist (Wagner 1963; Mitchell 1972; Borzone et al. MCZ Museum of Comparative Zoology, Cambridge, 1997). However, some sand dollar species were observed to MA, USA retain a sand-filled diverticulum throughout adulthood MMBS Misaki Marine Biological Station, Misaki, (Mitchell 1972;ChenandChen1994), illustrating a certain Japan degree of morphological and developmental variability. MNHN Muséum national d'Histoire naturelle, Paris, The prevailing hypothesis with regard to the function of France Gregory’s diverticulum is that the structure, when distended MRI Magnetic resonance imaging with sediment, serves the juvenile sand dollar as a Mya Million years ago “balancing aid” (Wagner 1963)or“weight belt” (Chia NMNS National Museum of Natural Science, Taipei, 1973), enabling the animal to maintain its natural position Taiwan in habitats with strong hydrodynamic properties (Borzone SIO Scripps Institution of Oceanography, San Diego, et al. 1997). However, this scenario has not yet been sub- CA, USA stantiated by direct experimental evidence (Lawrence 2001). UB Université de Bourgogne, Dijon, France In addition, the mechanisms for selection of heavy minerals UCMP Museum of Paleontology, University of both on the outside and on the inside of the animal remain California, Berkeley, CA, USA poorly understood (Wagner 1963; Mitchell 1972;Chia UNEFM Museo de la Universidad Nacional Experimental 1985). For example, it was proposed that internal sediment FranciscodeMiranda,Falcón,Venezuela selection could be a result of mass-related differences in the USNM United States National Museum, Washington, movement speed of sand grains contained inside the echi- DC, USA noid gut (Lares 1999; Lawrence 2001), but there are again UT University of Texas at Austin, Austin, TX, USA no experimental data to support this assumption. UTO University of Toronto, Ontario, Canada The histological characteristics of Gregory’s diverticulum WAM Western Australian Museum, Perth, Western have so far only briefly been studied. These results show that Australia, Australia the composition of the wall of the organ resembles that of the ZMB Museum für Naturkunde, Berlin, Germany intestine (Chia 1985), to which it is connected through a short ZMH Zoologisches Museum Hamburg, Hamburg, canal (Mitchell 1972). Even less is known about the early Germany development of Gregory’s diverticulum, in particular during ZMK Zoologisk Museum København, Copenhagen, or directly following the organism’s metamorphosis from larva Denmark to juvenile. Unfortunately, the few studies that provide data on ZSM Zoologische Staatssammlung München, Munich, larval and postmetamorphic anatomy of derived sand dollars Germany were performed before Emily R. Gregory’s description of the Evolution of Gregory’s diverticulum in sand dollars 143 organ in the early twentieth century (Fewkes 1886; Grave uncited manuscripts and conference abstracts. In total, data 1902) or are dealing with very specific aspects of larval mor- for over 600, mostly juvenile specimens pertaining to 104 phology (Burke 1982, 1983). clypeasteroid species were incorporated. Table 1 lists all From a systematic point of view, previous reports suggest samples analyzed and provides taxonomic information, spec- that Gregory’s diverticulum is absent in basal clypeasteroid imen data, information on applied techniques, observations families such as the Clypeasteridae, Laganidae, or Fibulariidae on the absence or presence of Gregory’s diverticulum, as (Chia 1985; Mooi and Chen 1996). Consequently, the presence well as the respective data sources. The taxonomic arrange- of the organ was proposed to constitute a synapomorphy of ment of the species follows recent phylogenetic analyses derived sand dollar families such as the Echinarachniidae, (Kroh and Smith 2010;Mooietal.2014) and nomenclature Dendrasteridae, and Mellitidae (Mooi and Chen 1996). from The World Echinoidea Database (Kroh and Mooi However, to date, only little graphic evidence concerning the 2015), except where noted. absence or presence of the organ and even more so regarding its shape was presented for most clypeasteroid clades. Specimen inspection, dissection, and photography In light of numerous open questions regarding the origin, development, function, and structural diversity of Gregory’s Whenever possible, extant specimens were prescreened by diverticulum, the principal aims of this contribution are (i) to placing them in front of a strong light source (Wagner introduce a concise terminology that incorporates all of the 1963). Due to the tenuity of most juvenile sand dollar tests, organ’s substructures, (ii) to provide the first graphic over- this procedure allowed quick identification of specimens view of its shape across taxa, (iii) to present
Recommended publications
  • Biscuit Clypeaster Subdepressus (Echinodermata: Clypeasteroida)
    Embryonic, Larval, and Juvenile Development of the Sea Biscuit Clypeaster subdepressus (Echinodermata: Clypeasteroida) Bruno C. Vellutini1,2*, Alvaro E. Migotto1,2 1 Centro de Biologia Marinha, Universidade de Sa˜o Paulo, Sa˜o Sebastia˜o, Sa˜o Paulo, Brazil, 2 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Sa˜o Paulo, Brazil Abstract Sea biscuits and sand dollars diverged from other irregular echinoids approximately 55 million years ago and rapidly dispersed to oceans worldwide. A series of morphological changes were associated with the occupation of sand beds such as flattening of the body, shortening of primary spines, multiplication of podia, and retention of the lantern of Aristotle into adulthood. To investigate the developmental basis of such morphological changes we documented the ontogeny of Clypeaster subdepressus. We obtained gametes from adult specimens by KCl injection and raised the embryos at 260C. Ciliated blastulae hatched 7.5 h after sperm entry. During gastrulation the archenteron elongated continuously while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larvae began to feed in 3 d and were *20 d old at metamorphosis; starved larvae died 17 d after fertilization. Postlarval juveniles had neither mouth nor anus nor plates on the aboral side, except for the remnants of larval spicules, but their bilateral symmetry became evident after the resorption of larval tissues. Ossicles of the lantern were present and organized in 5 groups. Each group had 1 tooth, 2 demipyramids, and 2 epiphyses with a rotula in between. Early appendages consisted of 15 spines, 15 podia (2 types), and 5 sphaeridia.
    [Show full text]
  • Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation
    land Article Geological-Geomorphological and Paleontological Heritage in the Algarve (Portugal) Applied to Geotourism and Geoeducation Antonio Martínez-Graña 1,* , Paulo Legoinha 2 , José Luis Goy 1, José Angel González-Delgado 1, Ildefonso Armenteros 1, Cristino Dabrio 3 and Caridad Zazo 4 1 Department of Geology, Faculty of Sciences, University of Salamanca, 37008 Salamanca, Spain; [email protected] (J.L.G.); [email protected] (J.A.G.-D.); [email protected] (I.A.) 2 GeoBioTec, Department of Earth Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516 Almada, Portugal; [email protected] 3 Department of Stratigraphy, Faculty of Geology, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] 4 Department of Geology, Museo Nacional de Ciencias Naturales, 28006 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923294496 Abstract: A 3D virtual geological route on Digital Earth of the geological-geomorphological and paleontological heritage in the Algarve (Portugal) is presented, assessing the geological heritage of nine representative geosites. Eighteen quantitative parameters are used, weighing the scientific, didactic and cultural tourist interest of each site. A virtual route has been created in Google Earth, with overlaid georeferenced cartographies, as a field guide for students to participate and improve their learning. This free application allows loading thematic georeferenced information that has Citation: Martínez-Graña, A.; previously been evaluated by means of a series of parameters for identifying the importance and Legoinha, P.; Goy, J.L.; interest of a geosite (scientific, educational and/or tourist). The virtual route allows travelling from González-Delgado, J.A.; Armenteros, one geosite to another, interacting in real time from portable devices (e.g., smartphone and tablets), I.; Dabrio, C.; Zazo, C.
    [Show full text]
  • Final Thesis File (7.170Mb)
    A TAXONOMIC REVISION OF THE TERTIARY ECHINOID GENUS MONOSTYCHIA Tony Sadler ORCID: 0000-0002-3406-8885 Submitted for the total fulfilment of the requirements of the degree of Doctor of Philosophy July 2020 School of Earth Sciences The University of Melbourne ABSTRACT For over 100 years the genus Monostychia (Echinoidea: Clypeasteroida) and its type species M. australis Laube, 1869 have been a taxonomic home for a wide range of genera and species with the commonality of a rounded to pentagonal, discoidal test and a submarginal periproct. The specimens comprising this group are all extinct and from the Tertiary strata of southern Australia. While there have been a few minor species identified beyond M. australis, notably M. etheridgei Woods, 1877 and P. loveni (Duncan, 1877), it has been clear to many researchers that the variability remaining in M. australis was representative of numerous other taxa awaiting discovery. Recent taxonomic works on the Clypeasteroida suggested that the number of interambulacral plates on the oral surface of the test of some species was a useful diagnostic character. Of interest were the plates that first come into contact with the periproct. However, there appeared little evidence in the literature that it had been established that the number of such plates remained constant with test length and age, or that the variability in each taxon, of those plate numbers, has been determined. Without understanding those two issues the utility of plate numbers was questionable. This study set out to resolve some of those issues for Monostychia and its relatives. It was found that the number of interambulacral and ambulacral plates on the oral surface was fixed and did not change with increasing test length and therefore there was potential utility for plate numbers as a taxonomic tool.
    [Show full text]
  • Echinoidea: Clypeasteroida)
    Zootaxa 3857 (4): 501–526 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3857.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:76021E0C-7542-455B-82F4-C670A3DC8806 Phylogenetic re-evaluation of fossil and extant micro-echinoids with revision of Tridium, Cyamidia, and Lenicyamidia (Echinoidea: Clypeasteroida) RICH MOOI1, ANDREAS KROH2,4 & DINESH K. SRIVASTAVA3 1Department of Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California 94118, USA. E-mail: [email protected] 2Naturhistorisches Museum Wien, Burgring 7, 1010 Vienna, Austria. E-mail: [email protected] 3Centre of Advanced Study in Geology, University of Lucknow, Lucknow 226 007, India. E-mail: [email protected] 4Corresponding author Abstract Tridium kieri Tandon & Srivastava, 1980, a clypeasteroid micro-echinoid from the Middle Eocene of Kachchh, India, has an apical system with just 3 gonopores. This condition is otherwise almost unknown among clypeasteroids, yet the mor- phology of Tridium is very similar to that of extant Fibularia, including members of another relatively poorly known ge- nus from the Indian subcontinent and Western Australia, Cyamidia Lambert & Thiéry, 1914. Re-examination of the type and additional material of T. kieri and Cyamidia paucipora Brunnschweiler, 1962, along with specimens identified as C. nummulitica nummulitica (Duncan & Sladen, 1884), allows for redescription of these forms. For the first time, maps of coronal plate architecture of Tridium and Cyamidia are developed, and SEM images of test surface details of the former are provided.
    [Show full text]
  • Fertilization Selection on Egg and Jelly-Coat Size in the Sand Dollar Dendraster Excentricus
    Evolution, 55(12), 2001, pp. 2479±2483 FERTILIZATION SELECTION ON EGG AND JELLY-COAT SIZE IN THE SAND DOLLAR DENDRASTER EXCENTRICUS DON R. LEVITAN1,2 AND STACEY D. IRVINE2 1Department of Biological Science, Florida State University, Tallahassee, Florida 32306-1100 2Bam®eld Marine Station, Bam®eld, British Columbia VOR 1B0, Canada Abstract. Organisms with external fertilization are often sperm limited, and in echinoids, larger eggs have a higher probability of fertilization than smaller eggs. This difference is thought to be a result of the more frequent sperm- egg collisions experienced by larger targets. Here we report how two components of egg target size, the egg cell and jelly coat, contributed to fertilization success in a selection experiment. We used a cross-sectional analysis of correlated characters to estimate the selection gradients on egg and jelly-coat size in ®ve replicate male pairs of the sand dollar Dendraster excentricus. Results indicated that eggs with larger cells and jelly coats were preferentially fertilized under sperm limitation in the laboratory. The selection gradients were an average of 922% steeper for egg than for jelly- coat size. The standardized selection gradients for egg and jelly-coat size were similar. Our results suggest that fertilization selection can act on both egg-cell and jelly-coat size but that an increase in egg-cell volume is much more likely to increase fertilization success than an equal change in jelly-coat volume. The strengths of the selection gradients were inversely related to the correlation of egg traits across replicate egg clutches. This result suggests the importance of replication in studies of selection of correlated characters.
    [Show full text]
  • Developmental Effects of Predator Cues on Dendraster Excentricus Larvae
    Running head: Developmental Effects of Predator Cues on Dendraster excentricus Larvae Developmental Effects of Predator Cues on Dendraster excentricus Larvae: The Effects of Pugettia producta Effluent and Crustacean Dominant Plankton Effluent Claudia Mateo University of Washington Friday Harbor Laboratories Developmental Effects of Predator Cues on Dendraster excentricus Larvae Mateo 1 Abstract Previous findings supporting increased cloning in Dendraster excentricus (D. excentricus) larvae as a response to predator cues, in particular fish slime. Such findings report a “visual predator hypothesis”, suggesting that the larvae clone in order to become smaller and thereby avoid visual predators and possibly even non-visual predators. The experiment reported here builds upon earlier findings by studying the exposure of D. excentricus larvae to a kelp crab effluent (using Pugettia producta) and a crustacean dominant plankton effluent. Individual larvae were exposed to one of three treatments: the kelp crab effluent, plankton effluent, or filtered sea water, for approximately 66 hours. After this period, number of clones, number of larval arms, and the rudiment stage of each larvae was determined. Linear modeling showed significant results when comparing the kelp crab treatment to the control for cloning (p=0.024) and rudiment stage (p= 0.032); they also displayed significant differences for larval arm stage when comparing both the kelp crab effluent treatment (p= <0.001) and plankton effluent treatment (p= <0.001) to the control. These findings may support the visual predator theory, depending on whether D. excentricus larvae are able to differentiate predator cues, and, if so, to what specificity. Developmental Effects of Predator Cues on Dendraster excentricus Larvae Mateo 2 Introduction Dendraster excentricus (D.
    [Show full text]
  • Field Keys to Common Hawaiian Marine Animals and Plants
    DOCUMENT RESUME ED 197 993 SE 034 171 TTTTE Field Keys to Common Hawaiian Marine Animals and Plants: INSTITUTTON Hawaii State Dept. of Education, Honolulu. Officeof In::tructional Services. SEPOPT NO RS-78-5247 PUB DATE Mar 78 NOT? 74p.: Not available in he*:dcopy due to colored pages throughout entire document. EDRS PRICE MFO1 Plus Postage. PC Not Available frcm EPRS. DESCRIPTORS *Animals: Biology: Elementary Secondary Education: Environmental Education: *Field Trips: *Marine Biology: Outdoor Education: *Plant Identification: Science Educat4on TDENTIFTERS Hawaii ABSTRACT Presented are keys for identifyingcommon Hawaiian marine algae, beach plants, reef corals,sea urci.ins, tidepool fishes, and sea cucumbers. Nearly all speciesconsidered can be distinguished by characte-istics visible to- thenaked eye. Line drawings illustrate most plants atd animals included,and a list of suggested readings follows each section. (WB) *********************************************************************** Reproductions supplied by FDPS are the best thatcan be lade from the original document. **************************t***************************************** Field Keys to Common Hawaiian Marine Animals and Plants Office of Instructional Services/General Education Branch Department of Education State of Hawaii RS 78-5247 March 1978 "PERMISSION TO REPRODUCE THIS U S DEPARTMENT OF HEALTH. MATERIAL HAS BEEN GRANTED BY EDUCATION &WELFARE NATIONAL INSTITUTE OF EDUCATION P. Tz_urylo THIS DOCUMENT HAS BEEN qEPRO. DuCED EXACTLY AS PECE1VEDPO.` THE PE PSON OP OPC,AN7ATION ORIGIN. TING IT POINTS Or vIEW OR OPINIONS SATED DO NOT NECESSARILY PE PPE. TO THE EDUCATIONAL RESOURCES SENTO<<IC I AL NATIONAL INSTITUTE 0, INFORMATION CENTER (ERIC)." EDuCA T,ON POSIT.ON OR CY O A N 11 2 The Honorable George R. Arlyoshl Governor, State of Hawaii BOARD OF EDUCATION Rev.
    [Show full text]
  • Surat Thani Blue Swimming Crab Fishery Improvement Project
    Surat Thani Blue Swimming Crab Fishery Improvement Project -------------------------------------------------------------------------------------------------------------------------------------- Milestone 33b: Final report of bycatch research Progress report: The study of fishery biology, socio-economic and ecosystem related to the restoration of Blue Swimming Crab following Fishery improvement program (FIP) in Bandon Bay, Surat Thani province. Amornsak Sawusdee1 (1) The Center of Academic Service, Walailak University, Tha Sala, Nakhon Si Thammarat, 80160 The results of observation of catching BSC by using collapsible crab trap and floating seine. According to the observation of aquatic animal which has been caught by main BSC fishing gears; floating seine and collapsible crab trap, there were 176 kind of aquatic animals. The catch aquatic animals are shown in the table1. In this study, aquatic animal was classified into 11 Groups; Blue Swimming Crab (Portunus Pelagicus), Coelenterata (coral animals, true jellies, sea anemones, sea pens), Helcionelloida (clam, bivalve, gastropod), Cephalopoda (sqiud, octopus), Chelicerata (horseshoe crab), Hoplocari(stomatopods), Decapod (shrimp), Anomura (hermit crab), Brachyura (crab), Echinoderm (sea cucambers, sea stars, sea urchins), Vertebrata (fish). Vertebrata was the main group that was captured by BSC fishing gears, more than 70 species. Next are Helcionelloida and Helcionelloida 38 species and 29 species respectively. The sample that has been classified were photographed and attached in appendix 1. However, some species were classified as unknow which are under the classification process and reconcile. There were 89 species that were captured by floating seine. The 3 main group that were captured by this fishing gear are Vertebrata (34 species), Brachyura (20 species) Helcionelloida and Echinoderm (10 Species). On the other hand, there were 129 species that were captured by collapsible crab trap.
    [Show full text]
  • Kimberley Marine Biota. Historical Data: Echinoderms
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 84 207–246 (2015) DOI: 10.18195/issn.0313-122x.84.2015.207-246 SUPPLEMENT Kimberley marine biota. Historical data: echinoderms Alison Sampey1* and Loisette M. Marsh1 1 Department of Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia * Email: [email protected] ABSTRACT – Australian state museums contain extensive species data and can provide baseline biodiversity information for many areas. We collated the specimen records from the Kimberley region of Australia and found 382 shallow water (<30 m) echinoderm species, comparable to available estimates of species richness from adjacent regions such as the Pilbara, ‘Coral Triangle’ or Great Barrier Reef. We identify and discuss taxonomic and collecting gaps, cross shelf patterns in species richness and composition, biogeography, and suggest some areas for future research on echinoderms in the region. At most locations, echinoderms have been incompletely sampled and many taxonomic gaps are apparent. Sampling to date has focused on hard substrates, yet there are extensive soft sediment areas in the region. More collections have occurred at inshore reefs and islands, which are more numerous, than at offshore atolls. Cumulative species richness is higher inshore than offshore, but at most inshore locations species richness is lower than offshore. However, this is biased by more collections having occurred intertidally inshore compared to subtidally offshore and much remains to be discovered about the inshore subtidal echinoderm fauna. Five times more endemic species are recorded inshore than offshore, with conservation implications. Further work is needed to identify specimens in existing collections. KEYWORDS: natural history collections, species inventory, biodiversity, NW Australia, baseline INTRODUCTION taxa known from an area henceforth titled the Kimberley Project Area (Project Area).
    [Show full text]
  • The Irregular Sea Urchins (Echinodermata: Echinoidea)
    Zoological Studies 39(3): 250-265 (2000) The Irregular Sea Urchins (Echinodermata: Echinoidea) from Taiwan, with Descriptions of Six New Records Shyh-Min Chao Division of Zoology, National Museum of Natural Science, Taichung, Taiwan 404, R.O.C. Tel: 886-4-3226940 ext. 502. Fax: 886-4-3232146. (Accepted March 27, 2000) Shyh-Min Chao (2000) The irregular sea urchins (Echinodermata: Echinoidea) from Taiwan, with descriptions of six new records. Zoological Studies 39(3): 250-265. Taiwans irregular sea urchin fauna now comprises 19 valid species in 11 families. New records include Fibularia ovulum Lamarck (Fibulariidae), Astriclypeus manni Verrill (Astriclypeidae), Linopneustes sp. (Palaeopneustidae), Schizaster lacunosus (Linnaeus) (Schizasteridae), Brissus latecarinatus (Leske), and Rhynobrissus pyramidalis A. Agassiz (Brissidae). Species accounts and figures of 14 species collected by the author are presented. Key words: Sea urchins, Irregular urchins, Echinoderms, Taiwan, Taxonomy. Sea urchins may be either regular or irregular. Regular urchins have an almost spherical symmetry. Irregular urchins display varying degrees of bilateral symmetry. They are common macrobenthic organ- isms along the coasts of Taiwan. However, only a few papers dealing with them have been published (Tokunaga 1900, Ohshima 1927, Hayasaka 1948, Peng and Tiao 1971, Chen and Chang 1981, Shigei 1981, Wang 1984) on the ecology and systematics of these animals from the waters of Taiwan. The regu- lar sea urchins from Taiwan have been revised by Chen and Chang (1981). However, there has been no study of the irregular urchins from Taiwan since Hayasaka (1948) except for a new species, Tai- wanaster mai (now Sinaechinocyamus mai), de- scribed by Wang (1984).
    [Show full text]
  • 1 Hidden Genetic History of the Japanese Sand Dollar Peronella (Echinoidea
    *Revised Manuscript (unmarked) 1 Hidden genetic history of the Japanese sand dollar Peronella (Echinoidea: 2 Laganidae) revealed by nuclear intron sequences 3 4 Megumi Endo1, Mamiko Hirose2*, Masanao Honda1, Hiroyuki Koga1, Yoshiaki 5 Morino1, Masato Kiyomoto2 and Hiroshi Wada1 6 7 8 1 Faculty of Life and Environmental Sciences, University of Tsukuba 9 2 Tateyama Marine Biological Station, Ochanomizu University 10 * Present address: School of Marine Science and Technology, Tokai University 11 12 Author for correspondence: H. Wada 13 Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 14 305-8572 Japan 15 E-mail: [email protected] 16 Tel & Fax +81-29-853-4671 17 ORCiD: 0000-0002-9594-3647 18 19 20 1 21 Abstract 22 The marine environment around Japan experienced significant changes during 23 the Cenozoic Era. In this study, we report findings suggesting that this dynamic 24 history left behind traces in the genome of the Japanese sand dollar species 25 Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I 26 sequences did not indicate fragmentation of the current local populations of P. 27 japonica around Japan, two different types of intron sequence were found in the 28 Alx1 locus. We inferred that past fragmentation of the populations account for the 29 presence of two types of nuclear sequences as alleles in the Alx1 intron of P. 30 japonica. It is likely that the split populations have intermixed in recent times; 31 hence, we did not detect polymorphisms in the sequences reflecting the current 32 localization of the species. In addition, we found two allelic sequences of theAlx1 33 intron in the sister species P.
    [Show full text]
  • Crustacea: Brachyura: Pinnotheridae
    r PTACEA LIBRARY < , ,30NIAN INSTITUTION BULLETIN OF MARINE SCIENCE, 40(3): 397-422, 1987 RETURN TO W-119 ' TAXONOMY OF THE GENUS DISSODACTYLUS (CRUSTACEA: BRACHYURA: PINNOTHERIDAE) WITH DESCRIPTIONS OF THREE NEW SPECIES Hugh Griffith ABSTRACT Several taxonomic problems within the genus Dissodactylus (Crustacea: Pinnotheridae) are resolved. Dissodactylus alcocki Rathbun, 1918 is a junior synonym of D. juvenilis Bouvier, 1917. D. meyerabichi Bott, 1955 is a junior synonym of D. nitidus Smith, 1870. D. smithi Rioja, 1944 is a junior synonym of D. lockingtoni Glassell, 1935 and not of D. nitidus, as previously described. Three new species, D. latus, D. schmittiandD. ususfructus, are described, and D. stebbingi is redescribed, accompanied by a description of the first zoeal stage. Thirteen species are currently recognized, and host and distributional data are given for each. A key to the species of Dissodactylus is provided. Crabs of the genus Dissodactylus (Brachyura: Pinnotheridae: Pinnotherinae) are ectosymbiotic on irregular echinoids. Morphological characters supporting the monophyly of the genus include bifid dactyls of the ambulatory legs and fused first and second and third through sixth male abdominal segments. Dissodactylus was erected by Smith (1870) by monotypy for the species D. nitidus. Schmitt et al. (1973) listed 14 species of Dissodactylus: D. alcocki Rathbun, 1918; D. borradailei Rathbun, 1918; D. calmani Rathbun, 1918; D. crinitichelis Moreira, 1901;/). glasselli Rioja, 1944; D. juvenilis Bouvier, 1917; D. lockingtoni Glassell, 1935; D. mellitae (Rathbun, 1900); D. meyerabichi Bott, 1955; D. nitidus Smith, 1870; D. primitivus Bouvier, 1917; D. rugatus Bouvier, 1917; D. stebbingi Rathbun, 1918 and D. xantusi Glassell, 1936. The number of species has since been reduced to 12.
    [Show full text]