Morphological and Molecular Systematics of Scleractinian Corals (Cnidaria, Anthozoa), with Emphasis on Deep-Water Species

Total Page:16

File Type:pdf, Size:1020Kb

Morphological and Molecular Systematics of Scleractinian Corals (Cnidaria, Anthozoa), with Emphasis on Deep-Water Species ResearchOnline@JCU This file is part of the following reference: Kitahara, Visentini Marcelo (2011) Morphological and molecular systematics of scleractinian corals (Cnidaria, Anthozoa), with emphasis on deep-water species. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/39370/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/39370/ To Michelle F. de O. Kitahara and Isadora Kitahara This page is intended to be blank ii Statement of Access I, the undersigned author of this thesis, understand that James Cook University will make it available for use within the university library and by electronic digital format, via the Australian digital theses network, for use elsewhere. I understand that, containing unpublished work, a thesis has significant protection under the Copyright Act. Therefore, all users consulting this work should agree with the following statement: “In consulting this thesis, I agree not to copy or partially paraphrase it in whole or in part without the written consent of the author, and to make proper written acknowledgement of any assistance which I have obtained from it” Beyond this, I do not place any restriction on access to this thesis. Marcelo Visentini Kitahara, April 2011 iii Statement of Sources I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text or in the Statement of Contribution of Others and a list of references is given. Marcelo Visentini Kitahara, April 2011 iv Statement on the Contribution of Others Scientific Contributions I gratefully thank the following people and organisations for providing resources and scientific/technical assistance to me during my candidature: • Dr Stephen D. Cairns (Smithsonian Institution), Dr Philippe Bouchet (Muséum National d’Histoire Naturelle), Dr Carden Wallace (Museum of Tropical Queensland), Ms Felicity McEnnulty (Commonwealth Scientific and Industrial Research Organisation), Dr Jane Fromont (Western Australian Museum) and Dr Karen Miller (University of Tasmania) for generously providing deep-water scleractinian samples. • Dr David J. Miller (James Cook University), Dr Stephen D. Cairns (Smithsonian Institution), Dr David Blair (James Cook University) and Dr Jaroslaw Stolarski (Instytut Paleobiologii) for providing critical reviews on my research and writing. • Dr Jaroslaw Stolarski (Instytut Paleobiologii) for providing SEMs, microstructural / microarchitectural data. • Dr David Blair (James Cook University) for assisting in the phylogenetic reconstructions. • Dr Tracy Ainsworth (ARC Centre of Excellence for Coral Reef Studies) for providing materials and guidance during histological studies, and Ms Sue Reilly (James Cook University) for embedding coral samples in paraffin. • Mr Paul Greenhall (Smithsonian Institution), Mrs Barbara Done (Museum of Tropical Queensland), Dr Carden Wallace (Museum of Tropical Queensland), Dr Pierre Lozouet (Muséum National d’Histoire Naturelle), Dr Aude Andouche (Muséum National d’Histoire Naturelle), Ms Felicity McEnnulty (Commonwealth Scientific and Industrial Research Organisation) for logistic v help with loans, CITES permission acquisition and/or providing institutional catalogue numbers for the specimens examined. • Mr James Robinson (University of Tasmania) and MSc Dustin Edge for technical assistance in laboratorial work and graphical design of maps respectively. • Dr Hironobu Fukami (Kyoto University) for providing unpublished CO1 sequences from 11 species of shallow-water scleractinian species used in the chapter 5. • Dr Chaolun A. Chen (Academia Sinica) and MSc Mei-Fang Lin (Academia Sinica) for providing unpublished universal mitochondrial primer sequences that resulted in the amplification of nearly 70% of the mitochondrial genome of Gardineria hawaiiensis as well as unpublished mitochondrial genome data from many hexacorallians. • Dr Sylvain Forêt (ARC Centre of Excellence for Coral Reef Studies) for assisting the gene annotation of the mitochondrial genome of Gardineria hawaiiensis and providing support for the phylogenetic analyses. • Dr Marcos Barbeitos (National Museum of Natural History) for providing personnal protocols for amplification of the nuclear 28S rDNA. • Dr Jen Whan (James Cook University) for gold coating and assisting the acquisition of SEM images. • Dr Joel Stake (Rivier College) for providing SEMs of Agaricia undata and Helioseris cucullata. Financial Assistance This research project was funded by Coordination for the Improvement of Higher Education Personnel and James Cook University as detailed below: • Coordination for the Improvement of Higher Education Personnel PhD scholarship (12/2006 - 10/2010). vi • School of Pharmacy and Molecular Sciences PhD scholarship (11/2010 - 04/2011). • James Cook University Research Graduate Scheme Grant (2008). vii Publications Arising from Thesis At the time of thesis submission, five papers describing the research findings of Chapters 2, 4 and 5 were already published, one manuscript arising from chapter 8 is under review, and other six manuscripts are currently in preparation. The complete taxonomic review arising from chapter 2 will be published as a volume of the book series Tropical deep-sea benthos. Details of each manuscript and talks presented during my PhD candidature are provided below: Manuscripts • Janiszewska, K., Stolarski, J., Benzerara, K., Meibom, A., Mazur, M., Kitahara, M. V. & Cairns, S. D. 2011. A unique skeletal microstructure of the deep-sea micrabaciid scleractinian corals. Journal of Morphology 272: 191-203. (Chapters 2 and 5) • Kitahara, M. V., Cairns, S. D. & Miller, D. J. 2010. Monophyletic origin of the Caryophyllia (Scleractinia; Caryophylliidae), with description of six new species. Systematics and Biodiversity, 8: 91-118. (Chapters 2 and 4) • Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D. & Miller, D. J. 2010. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. Plos One, v. 5, p. e11490. (Chapter 5) • Kitahara, M. V. & S. D. Cairns. 2008. New records of the genus Crispatotrochus (Scleractinia; Caryophylliidae) from New Caledonia, with description of a new species. Zootaxa, 1940: 59-68. (Chapter 2) • Kitahara, M. V. & Cairns, S. D. 2009. Revision of the genus Deltocyathus (Cnidaria, Scleractinia), with a description of a new species from New Caledonia. Zoosystema, 31(2): 233-249. (Chapter 2) • Stolarski, J., Kitahara, M. V., Miller, D. J. Cairns, S. D., Mazur, M. & Meibom, A. Submitted – BMC Evolutionary Biology. An ancient evolutionary origin of Scleractinia revealed by azooxanthellate corals. (Chapter 8) viii • Kitahara, M. V. & Cairns, S. D. In advanced stage of preparation - Invited to be published as a volume of the Tropical Deep-sea Benthos by the Museum National d’Histoire Naturelle. Deep-water azooxanthellate Scleractinia from New Caledonia. (Chapter 2) • Kitahara, M. V., Miller, D. J., Cairns, S. D., Stolarski, J. & Wallace, C. In advanced stage of preparation - Target: Nature. Was climate change the driving force for deep-water colonization by scleractinian corals? (Chapter 10) • Kitahara, M. V., Stolarski, J., Cairns, S. D. & Miller, D. J. In advanced stage of preparation - Target: Coral Reefs. Reciprocal illumination between molecular phylogeny and morphological characters supports the transfer of Dactylotrochus cervicornis (Moseley, 1881) to the Agariciidae (Anthozoa, Scleractinia). (Chapter 6) • Kitahara, M. V., Cairns, S. D. & Connoly, S. In preparation - Target: Journal of Biogeography. Diversity of deep-sea corals from New Caledonia: a central Pacific “hot spot” for azooxanthellate scleractinians. (Chapter 3) • Kitahara, M. V., Stolarski, J., Cairns, S. D. & Miller, D. J. In advanced stage of preparation - Target: Zoologica Scripta. Towards the second unification step between classical taxonomy and molecular phylogeny of Caryophylliidae (Anthozoa, Scleractinia): the elevation of Deltocyathus to family rank (Deltocyathiidae fam. nov.). (Chapter 7) • Mei-Fang, L., Kitahara, M. V., Yong, Y., Fôret, S., Fukami, H., Tracey, D., Miller, D. J. & Chen, C. A. In advanced stage of preparation - Target: Proceedings of the National Academy of Science, US. Anthozoa phylogeny based on 50 entire mitochondrial genomes. (Chapter 9) Talks • Kitahara, M. V. & Cairns, S. D. 2008. Diversity of deep-sea corals (Cnidaria, Scleractinia) from New Caledonia and adjacent waters: a central Pacific hot- spot for azooxanthellate scleractinians. Presented at the 4th International Symposium of Deep-sea Corals (NIWA - Wellington). • Kitahara, M. V. 2009. Global list of cold-water corals (Scleractinia, Filifera, Octocorallia, Antipatharia) from waters deeper than 200 m, vulnerable species, relevant references, list of experts, and draft recommendations for the ix production of identification guides. Presented at the Food and Agriculture Organization (FAO - Rome), the United Nations (UN). • Kitahara, M. V., Miller, D. J., Cairns, S. D. & Stolarski, J. 2009. How do azooxanthellate deep-water Scleractinia fit into the evolutionary history
Recommended publications
  • The Coral Trait Database, a Curated Database of Trait Information for Coral Species from the Global Oceans
    www.nature.com/scientificdata OPEN The Coral Trait Database, a curated SUBJECT CATEGORIES » Community ecology database of trait information for » Marine biology » Biodiversity coral species from the global oceans » Biogeography 1 2 3 2 4 Joshua S. Madin , Kristen D. Anderson , Magnus Heide Andreasen , Tom C.L. Bridge , , » Coral reefs 5 2 6 7 1 1 Stephen D. Cairns , Sean R. Connolly , , Emily S. Darling , Marcela Diaz , Daniel S. Falster , 8 8 2 6 9 3 Erik C. Franklin , Ruth D. Gates , Mia O. Hoogenboom , , Danwei Huang , Sally A. Keith , 1 2 2 4 10 Matthew A. Kosnik , Chao-Yang Kuo , Janice M. Lough , , Catherine E. Lovelock , 1 1 1 11 12 13 Osmar Luiz , Julieta Martinelli , Toni Mizerek , John M. Pandolfi , Xavier Pochon , , 2 8 2 14 Morgan S. Pratchett , Hollie M. Putnam , T. Edward Roberts , Michael Stat , 15 16 2 Carden C. Wallace , Elizabeth Widman & Andrew H. Baird Received: 06 October 2015 28 2016 Accepted: January Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to Published: 29 March 2016 an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository.
    [Show full text]
  • Biological Results of the Chatham Islands 1954 Expedition
    ISSN 2538-1016; 29 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH BULLETIN 139 (6) Biological Results of The Chatham Islands 1954 Expedition PART 6 Scleractinia BY DONALD F. SQUIRES New Zealand Oceanographic Institute Memoir No. 29 1964 This publication is the sixth part of the Department of Scientificand Industrial Research Bulletin 139, which records the Biological Results of the Chatham Islands 1954 Expedition. Parts already published are: Part 1. Crustacea, by R. K. Dell, N. S. Jones, and J. C. Yaldwyn. Part 2. Archibenthal and Littoral Echinoderms, by H. Barraclough Fell. Part 3. Polychaeta Errantia, by G. A. Knox. Part 4. Marine Mollusca, by R. K. Dell; Sipunculoidea, by S. J. Edmonds. Part 5. Porifera: Demospongiae, by Patricia R. Bergquist; Porifera: Keratosa, by Patricia R. Bergquist; Crustacea Isopoda: Bopyridae, by R. B. Pike; Crustacea Isopoda: Serolidae, by D. E. Hurley; Hydroida, by Patricia M. Ralph. Additional parts are in preparation. A "General Account" of the Expedition was published as N.Z. Department of Scientific and Industrial Research Bulletin No. 122 (1957). BIOLOGICAL RESULTS OF THE CHATHAM ISLANDS 1954 EXPEDITION PART 6-SCLERACTINIA This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Photograph: G. A. Knox. The Sero/is bromleyana - Spatangus multispinus community on the sorting screen. Aberrant growth form of Flabellum knoxi is in the lower left(see also plate 1, figs. 4-6). The abundant tubes are those of Hya!inoecia tubicola, the large starfish is Zoroaster spinu!osus, the echinoids Parameretia multituberculata.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Guide to Some Harvested Aquarium Corals Version 1.3
    Guide to some harvested aquarium corals Version 1.3 ( )1 Large septal Guide to some harvested aquarium teeth corals Version 1.3 Septa Authors Morgan Pratchett & Russell Kelley, May 2020 ARC Centre of Excellence for Coral Reef Studies Septa James Cook University Townsville, Queensland 4811 Australia Contents • Overview in life… p3 • Overview of skeletons… p4 • Cynarina lacrymalis p5 • Acanthophyllia deshayesiana p6 • Homophyllia australis p7 • Micromussa pacifica p8 • Unidentified Lobophylliid p9 • Lobophyllia vitiensis p10 • Catalaphyllia jardinei p11 • Trachyphyllia geoffroyi p12 Mouth • Heterocyathus aequicostatus & Heteropsammia cochlea p13 Small • Cycloseris spp. p14 septal • Diaseris spp. p15 teeth • Truncatoflabellum sp. p16 Oral disk Meandering valley Bibliography p17 Acknowledgements FRDC (Project 2014-029) Image support: Russell Kelley, Cairns Marine, Ultra Coral, JEN Veron, Jake Adams, Roberto Arrigioni ( )2 Small septal teeth Guide to some commonly harvested aquarium corals - Version 1.3 Overview in life… SOLID DISKS WITH FLESHY POLYPS AND PROMINENT SEPTAL TEETH Cynarina p5 Acanthophyllia p6 Homophyllia p7 Micromussa p8 Unidentified Lobophylliid p9 5cm disc, 1-2cm deep, large, thick, white 5-10cm disc at top of 10cm curved horn. Tissue 5cm disc, 1-2cm deep. Cycles of septa strongly <5cm disc, 1-2cm deep. Cycles of septa slightly septal teeth usually visible through tissue. In unequal. Large, tall teeth at inner marigns of primary unequal. Teeth of primary septa less large / tall at conceals septa. In Australia usually brown with inner margins. Australia usually translucent green or red. blue / green trim. septa. In Australia traded specimens are typically variegated green / red / orange. 2-3cm disc, 1-2cm deep. Undescribed species traded as Homophyllia australis in West Australia and Northern Territory but now recognised as distinct on genetic and morphological grounds.
    [Show full text]
  • In-Situ Observation of Deep Water Corals in the Northern Red Sea Waters of Saudi Arabia
    Deep-Sea Research I 89 (2014) 35–43 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri In-situ observation of deep water corals in the northern Red Sea waters of Saudi Arabia Mohammad A. Qurban a,n, P.K. Krishnakumar a, T.V. Joydas a, K.P. Manikandan a, T.T.M. Ashraf a, S.I. Quadri a, M. Wafar a, Ali Qasem b, S.D. Cairns c a Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, P. B. No. 391, Dhahran 31261, Saudi Arabia b Environmental Protection Department, Saudi Aramco, Dhahran, Saudi Arabia c Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, United States of America article info abstract Article history: Three sites offshore of the Saudi Arabia coast in the northern Red Sea were surveyed in November 2012 Received 29 October 2013 to search for deep-water coral (DWC) grounds using a Remotely Operated Vehicle. A total of 156 colonies Received in revised form were positively identified between 400 and 760 m, and were represented by seven species belonging to 30 March 2014 Scleractinia (3), Alcyonacea (3) and Antipatharia (1). The scleractinians Dasmosmilia valida Marenzeller, Accepted 5 April 2014 1907, Eguchipsammia fistula (Alcock, 1902) and Rhizotrochus typus Milne-Edwards and Haime, 1848 were Available online 13 April 2014 identified to species level, while the octocorals Acanthogorgia sp., Chironephthya sp., Pseudopterogorgia Keywords: sp., and the antipatharian Stichopathes sp., were identified to genus level. Overall, the highest abundance Cold water corals of DWC was observed at Site A1, the closest to the coast.
    [Show full text]
  • Habitat Suitability and Environmental Niche Comparison of Cold-Water Coral Species Along the Brazilian Continental Margin
    1 Deep-sea Research Part I-oceanographic Research Papers Archimer January 2020, Volume 155 Pages 103147 (12p.) https://doi.org/10.1016/j.dsr.2019.103147 https://archimer.ifremer.fr https://archimer.ifremer.fr/doc/00607/71927/ Habitat suitability and environmental niche comparison of cold-water coral species along the Brazilian continental margin Barbosa Romina 1, 4, *, Davies A. J. 2, 3, Sumida P. Y. G. 4 1 UBO, Lab Sci Environm Marin LEMAR, Plouzane, France. 2 Bangor Univ, Sch Ocean Sci, Anglesey, Wales. 3 Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. 4 Univ Sao Paulo, Inst Oceanog, 191 Praca Oceanog, BR-05508120 Sao Paulo, SP, Brazil. * Corresponding author : Romina Barbosa, email address : [email protected] Abstract : In face of increasing anthropogenic disturbance in the deep sea, it is a priority to better understand the regional distribution of cold-water corals (CWC). These organisms create some of the most species-rich habitats in the deep sea and, for this reason, they must be properly protected and managed. In this study, we aimed to identify suitable habitat for multiple CWC taxa off the Brazilian continental margin and compare their environmental niches. Habitat suitability models were developed using the Maxent approach, which allowed for the prediction of species distribution and for the identification of potential 'hot spot' areas that may be important for biodiversity conservation. Ecological niches were determined by a PCA-env approach, and niche similarity and equivalence were evaluated based on niche overlap using the Schoener's D metric. Potentially suitable habitat for Octocorallia covered a broad latitudinal range encompassing nearly the entire Brazilian continental margin, whereas Scleractinia had greater potentially suitable habitat in the Central and Southern areas.
    [Show full text]
  • Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution
    Deep‐Sea Coral Taxa in the U.S. Gulf of Mexico: Depth and Geographical Distribution by Peter J. Etnoyer1 and Stephen D. Cairns2 1. NOAA Center for Coastal Monitoring and Assessment, National Centers for Coastal Ocean Science, Charleston, SC 2. National Museum of Natural History, Smithsonian Institution, Washington, DC This annex to the U.S. Gulf of Mexico chapter in “The State of Deep‐Sea Coral Ecosystems of the United States” provides a list of deep‐sea coral taxa in the Phylum Cnidaria, Classes Anthozoa and Hydrozoa, known to occur in the waters of the Gulf of Mexico (Figure 1). Deep‐sea corals are defined as azooxanthellate, heterotrophic coral species occurring in waters 50 m deep or more. Details are provided on the vertical and geographic extent of each species (Table 1). This list is adapted from species lists presented in ʺBiodiversity of the Gulf of Mexicoʺ (Felder & Camp 2009), which inventoried species found throughout the entire Gulf of Mexico including areas outside U.S. waters. Taxonomic names are generally those currently accepted in the World Register of Marine Species (WoRMS), and are arranged by order, and alphabetically within order by suborder (if applicable), family, genus, and species. Data sources (references) listed are those principally used to establish geographic and depth distribution. Only those species found within the U.S. Gulf of Mexico Exclusive Economic Zone are presented here. Information from recent studies that have expanded the known range of species into the U.S. Gulf of Mexico have been included. The total number of species of deep‐sea corals documented for the U.S.
    [Show full text]
  • Sexual Reproduction of the Solitary Sunset Cup Coral Leptopsammia Pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean
    Marine Biology (2005) 147: 485–495 DOI 10.1007/s00227-005-1567-z RESEARCH ARTICLE S. Goffredo Æ J. Radetic´Æ V. Airi Æ F. Zaccanti Sexual reproduction of the solitary sunset cup coral Leptopsammia pruvoti (Scleractinia: Dendrophylliidae) in the Mediterranean. 1. Morphological aspects of gametogenesis and ontogenesis Received: 16 July 2004 / Accepted: 18 December 2004 / Published online: 3 March 2005 Ó Springer-Verlag 2005 Abstract Information on the reproduction in scleractin- came indented, assuming a sickle or dome shape. We can ian solitary corals and in those living in temperate zones hypothesize that the nucleus’ migration and change of is notably scant. Leptopsammia pruvoti is a solitary coral shape may have to do with facilitating fertilization and living in the Mediterranean Sea and along Atlantic determining the future embryonic axis. During oogene- coasts from Portugal to southern England. This coral sis, oocyte diameter increased from a minimum of 20 lm lives in shaded habitats, from the surface to 70 m in during the immature stage to a maximum of 680 lm depth, reaching population densities of >17,000 indi- when mature. Embryogenesis took place in the coelen- viduals mÀ2. In this paper, we discuss the morphological teron. We did not see any evidence that even hinted at aspects of sexual reproduction in this species. In a sep- the formation of a blastocoel; embryonic development arate paper, we report the quantitative data on the an- proceeded via stereoblastulae with superficial cleavage. nual reproductive cycle and make an interspecific Gastrulation took place by delamination. Early and late comparison of reproductive traits among Dend- embryos had diameters of 204–724 lm and 290–736 lm, rophylliidae aimed at defining different reproductive respectively.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Voestalpine Essential Fish Habitat Assessment for PSD Greenhouse Gas Permit
    Essential Fish Habitat Assessment: Texas Project Site voestalpine Stahl GmbH San Patricio County, Texas January 31, 2013 www.erm.com voestalpine Stahl GmbH Essential Fish Habitat Assessment: Texas Project Site January 31, 2013 Project No. 0172451 San Patricio County, Texas Alicia Smith Partner-in-Charge Graham Donaldson Project Manager Travis Wycoff Project Consultant Environmental Resources Management 15810 Park Ten Place, Suite 300 Houston, Texas 77084-5140 T: 281-600-1000 F: 281-600-1001 Texas Registered Engineering Firm F-2393 TABLE OF CONTENTS LIST OF ACRONYMS IV EXECUTIVE SUMMARY VI 1.0 INTRODUCTION 1 1.1 PROPOSED ACTION 1 1.2 AGENCY REGULATIONS 1 1.2.1 Magnuson-Stevens Fishery Conservation and Management Act 1 1.2.1 Essential Fish Habitat Defined 2 2.0 PROJECT DESCRIPTION 4 2.1 PROJECT SCHEDULE 4 2.2 PROJECT LOCATION 4 2.3 SITE DESCRIPTION 5 2.4 SITE HISTORY 7 2.5 EMISSIONS CONTROLS 8 2.6 NOISE 9 2.7 DUST 10 2.8 WATER AND WASTEWATER 10 2.8.1 Water Sourcing and Water Rights 11 2.8.2 Wastewater Discharge 13 3.0 IDENTIFICATION OF THE ACTION AREA 15 3.1 ACTION AREA DEFINED 15 3.2 ACTION AREA DELINEATION METHODOLOGY AND RESULTS 16 3.2.1 Significant Impact Level Dispersion Modeling 16 3.2.2 Other Contaminants 17 4.0 ESSENTIAL FISH HABITAT IN THE VICINITY OF THE PROJECT 19 4.1 SPECIES OF PARTICULAR CONCERN 19 4.1.1 Brown Shrimp 19 4.1.2 Gray Snapper 20 4.1.3 Pink Shrimp 20 4.1.4 Red Drum 20 4.1.5 Spanish Mackerel 21 4.1.6 White Shrimp 21 4.2 HABITAT AREAS OF PARTICULAR CONCERN 22 5.0 ENVIRONMENTAL BASELINE CONDITIONS AND EFFECTS ANALYSIS
    [Show full text]
  • Anthozoa: Hexacorallia: Scleractinia: Dendrophylliidae) from Korea
    Anim. Syst. Evol. Divers. Vol. 32, No. 1: 38-43, January 2016 http://dx.doi.org/10.5635/ASED.2016.32.1.038 Short communication A New Record of Dendrophyllia compressa (Anthozoa: Hexacorallia: Scleractinia: Dendrophylliidae) from Korea Eunae Choi, Jun-Im Song* College of Natural Sciences, Ewha Womans University, Seoul 03760, Korea ABSTRACT Dendrophyllia compressa Ogawa and Takahashi, 1995 is newly reported from Korea. The specimen was collected off Seogwipo, Jeju-do, Korea in 1969. It is described herein based on the morphological characters of the skeletal structures. Dendrophyllia compressa is characterized by its small and bushy growth form with branches, vertical growth direction, small calicular diameter, compressed calice, Pourtalès Plan with vertical septal inner edges, flat and spongy columella, exserted septal upper margins, and epitheca. Dendrophyllia compressa has been synonymized with Cladopsammia eguchii (Wells, 1982). However, the former species differs from the latter species in its growth form, growth direction, colony size, corallite size, and corallite shape. Keywords: Anthozoa, Scleractinia, Dendrophylliidae, Dendrophyllia, Korea INTRODUCTION cribed. The specimen was collected from the subtidal zone off The family Dendrophylliidae Gray, 1847 comprises 167 Seogwipo, Jeju-do, Korea in 1969. It was dissolved in sod- species in 21 genera (Cairns, 2001; Roberts et al., 2009; ium hypochlorite solution diluted with distilled water for World Register of Marine Species, 2015). Among these 24 hours to remove all the soft tissues, washed in distilled species, 29 species in the genus Dendrophyllia have been water, and dried for the examination of the skeletal struc- reported worldwide (Roberts et al., 2009; World Register of tures. The external growth forms and shapes of the coralla Marine Species, 2015).
    [Show full text]
  • Ecs2.2942 Publication Date 2019 Document Version Final Published Version Published in Ecosphere License CC by Link to Publication
    UvA-DARE (Digital Academic Repository) The rise of a native sun coral species on southern Caribbean coral reefs Hoeksema, B.W.; Hiemstra, A.-F.; Vermeij, M.J.A. DOI 10.1002/ecs2.2942 Publication date 2019 Document Version Final published version Published in Ecosphere License CC BY Link to publication Citation for published version (APA): Hoeksema, B. W., Hiemstra, A-F., & Vermeij, M. J. A. (2019). The rise of a native sun coral species on southern Caribbean coral reefs. Ecosphere, 10(11), [e02942]. https://doi.org/10.1002/ecs2.2942 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 ECOSPHERE NATURALIST The rise of a native sun coral species on southern Caribbean coral reefs 1,2,3, 1,3 4,5 BERT W.
    [Show full text]