Model-Based Robust Transient Control of Reusable Liquid-Propellant Rocket Engines Sergio Perez Roca

Total Page:16

File Type:pdf, Size:1020Kb

Model-Based Robust Transient Control of Reusable Liquid-Propellant Rocket Engines Sergio Perez Roca Model-based robust transient control of reusable liquid-propellant rocket engines Sergio Perez Roca To cite this version: Sergio Perez Roca. Model-based robust transient control of reusable liquid-propellant rocket engines. Systems and Control [cs.SY]. Université Paris-Saclay, 2020. English. NNT : 2020UPASS017. tel- 02888841 HAL Id: tel-02888841 https://tel.archives-ouvertes.fr/tel-02888841 Submitted on 3 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Model-based Robust Transient Control of Reusable Liquid-Propellant Rocket Engines Thèse de doctorat de l’Université Paris-Saclay École doctorale n◦ 580, Sciences et technologies de l’information et de la communication (STIC) Spécialité de doctorat : Automatique Unité de recherche : Université Paris-Saclay, ONERA, Traitement de l’information et systèmes, 91123, Palaiseau, France. Référent : Faculté des Sciences d’Orsay Thèse présentée et soutenue à Palaiseau, France, le 27/01/2020, par Sergio PÉREZ ROCA Composition du jury: Cristina STOICA MANIU Présidente Professeure, CentraleSupélec (L2S) Michael OSCHWALD Rapporteur & Examinateur Professeur, DLR (Institut für Raumfahrtantriebe) Sami OTHMAN Rapporteur & Examinateur Maître de conférences, HDR, Université Lyon 1 (LAGEPP) Jean-Pierre CORRIOU Examinateur Professeur Emérite, Université de Lorraine (ENSIC) Mircea LAZAR Examinateur Professeur associé, Dr., TU Eindhoven Hélène PIET-LAHANIER Directrice de thèse Directrice de Recherche, ONERA (DTIS) Nicolas LANGLOIS Co-directeur de thèse Professeur, ESIGELEC (IRSEEM) Julien MARZAT Co-encadrant & Examinateur Ingénieur de Recherche, HDR, ONERA (DTIS) François FARAGO Invité, Co-encadrant Ingénieur, Dr., CNES (DLA) Marco GALEOTTA Invité, Co-encadrant Ingénieur, CNES (DLA) Serge LE GONIDEC Invité, Co-encadrant Ingénieur, ArianeGroup SAS NNT: 2020UPASS017 Thèse de doctorat de Thèse Funders: Supervisors: A Marina, a mi padre, a ma mare i a Melanie, ./ "Perquè hi haurà un dia que no podrem més, i llavors ho podrem tot", Vicent Andrés Estellés. ./ "I got soul, but I’m not a soldier", from All These Things That I’ve Done by The Killers. Remerciements/Acknowledgements Cette thèse n’aurait pu aboutir sans la collaboration et le soutien de plusieurs personnes de différents établissements et environnements. Je voudrais tout d’abord remercier mes rapporteurs, Sami Othman et Michael Oschwald pour les constructifs rapports qu’ils ont écrit. Ich bedanke mich bei Prof. Oschwald für die qualifizierten Kommentare und ich freue mich, dass er meiner Doktorarbeit Relevanz beimisst. Je remercie aussi mes examinateurs, les Professeurs Cristina Stoica Maniu et Jean-Pierre Corriou de leurs intéressantes questions, and especially Mircea Lazar, who has made a great effort to carefully read my dissertation and to provide very constructive feedback, thereby helping to increase the quality of the final text. Parmi ma "nombreuse" équipe d’encadrants, je remercie d’abord Elisa Cliquet Moreno, qui avait commencé à encadrer cette thèse avant son aventure japonaise; Serge Le Gonidec d’avoir lancé cette thèse; Nicolas Langlois de ses conseils et de m’avoir donné la possibilité d’aller à l’ESIGELEC- IRSEEM Rouen, où j’ai pu avoir des discussions multiculturelles et motivantes avec des doctorants et ingénieurs du même domaine; François Farago de sa gentillesse et sa prédisposition à m’écouter et m’aider quand j’en avais besoin; Hélène Piet-Lahanier de ses conseils scientifiques, de sa bonne humeur et de son aide avec les soucis administratifs qui ont apparu; Marco Galeotta de son aide immense pendant la phase de modélisation moteur, où j’ai pu profiter de sa grande expérience et savoir-faire, à part de sa bonne humeur et gentillesse (Grazie mille!); et Julien Marzat, qui a suivi mes pas de plus près, m’a proportionné des outils et m’a aidé et rassuré dans les prises de décisions. Des personnes qui, n’étant pas encadrantes, ont aidé avec de petits gestes à faire des différents établissements liés à la thèse des endroits plus humains, sont Florence Marie (ONERA, probablement l’assistante la plus efficace et sympa du monde), Claire Quillien (ONERA), Bruno de la cafétéria (ONERA), Anne-Marie Cerrato (CNES), Alex Le Page (CNES), Bruno Vieille (CNES), Thérèse Toro (UPSud), Corinne Le Hong (ONERA), Virginie Wiels (ONERA), Gilles Duc (Supélec, pour sa gentillesse et son énorme travail en tête du pôle Automatique de l’école doctorale), Gérard Ordonneau (ONERA), Valérie Haemmerle et les autres ingénieurs de l’unité NGPA de l’ONERA-DTIS (et nos afterworks marrants), dont j’ai des remerciements spéciaux pour mon dernier co-bureau Prince Edorh, et pour Ioannis Sarras, qui s’est toujours intéressé à comment j’avançais et m’a fait plein de suggestions (même si enfin je n’ai pas pu toutes les appliquer). On arrive à la partie la plus personnelle. Cette thèse a entraîné une montagne russe émotionnelle. Des questions sans réponse, des chemins barrés... En plus du grand challenge intellectuel qu’elle signifie, elle a entraîné aussi un grand challenge psychologique. Je me suis senti isolé, hybride (ni vii d’ici ni de là-bas), parfois démotivé, mais j’ai réussi à trouver la motivation, grâce en partie à ma passion pour les moteurs fusée et les systèmes fluides, mais surtout grâce à toutes les personnes avec lesquelles j’ai partagé ces trois ans. Je remercie à tout le groupe de stagiaires et doctorants du DTIS, qui ont été ma famille en région parisienne en partageant beaucoup de soirées bars et jeux : Rodolphe Dubois, Vincent Chabridon, Iréna Robinson, Romain Rincé, Ric(c)ardo Bonalli, Jean-Lynce Gnanago, Denis de Oliveira, Julius Ibenthal, Antonello Venturino, Guillaume Hardouin, Baptiste Levasseur, Marcela Carvalho, Arnaud Denjoy, Antonella Florio, Thomas Perrin, Étienne Bertin (et ses blagues surréalistes), Nathan↔Michel (je vous assure que je l’ai vu), Camille Palmier (et sa force de cohésion du groupe), Enzo Iglésis (et ses faiblesses au baby-foot), Ali Hebbal (et notre passion commune pour Rafa Nadal), Julien Pelamatti (et son humeur incisive) y Esteban Restrepo Ochoa (amigo de navette y más chimba ;)). Notre bande de rock, faussement appelée "Les stagiaires d’Émilien", m’a beaucoup amusé et m’a fait découvrir des habilités cachées. J’ai des remerciements particuliers pour deux déjà Docteurs qui m’ont poussé à finir cette thèse. Lorsque je pensais que cette thèse pouvait avec moi, là il y avait mon ancienne co-bureau Camille Sarotte (ou Sarette), pour m’encourager et me rassurer tout le temps. Un grand merci à elle pour son aide mathématique au tableau et de tous genres (même pour déplacer un lave-linge). Et là on arrive à Émilien Flayac. Quoi dire de ce personnage ? Mis à part son humeur presque offensive et ses douteuses connaissances d’espagnol, il m’a illuminé avec sa sagesse mathématique. En passant à mon bureau beaucoup de matins, il s’est petit à petit intéressé à ma thèse et a su poser les bonnes questions, ce qui lui a permis de me proposer des pistes de travail très pertinentes. On a même été co-auteurs d’un papier de conférence. Je lui dois beaucoup. En fait, le fonctionnement de la recherche devrait plus ressembler à ce que ce monsieur fait : échanger avec les autres de façon désintéressée et juste pour l’intérêt de la science. Finalmente, quiero agradecer a los míos por el apoyo continuo durante estos tres años: a mis amigos Toni, Joaquín, Marcos, Luis, Álvaro, Edu, Loles, los Pablos, Juan, Juanpa, Jérôme, Louis, a les meues amigues Núria i Mayrén, bei der Familie Lipp, a mi familia Pérez i a la meua família Roca. A mi padre Chema le agradezco su cariño y sus muestras de ánimo continuas (como "¡eres un crack!"). Y por último doy las gracias a las tres mujeres de mi vida y de mi corazón. A la meua ger- maneta Marina, por animarme siempre e incluso acompañarme a conferencias en otros continentes. Herzlichen Dank an Melanie, die trotz des Abstandes immer da war, wenn ich Aufmunterung und Beratung gebraucht habe. Jetzt beginnt eine neue Phase unserer Leben. Y a mi madre Carmen, porque es probablemente la mayor culpable de que haya llegado hasta aquí, habiendo puesto un foco enorme en mi educación. Gràcies Mare, por todo lo que me has dado y sigues dando. Palaiseau, janvier 2020. Résumé substantiel en français La tendance actuelle vers un accès plus abordable à l’espace se matérialise généralement par des lanceurs et moteurs réutilisables. Du point de vue de la commande, ces moteurs fusée à propergol liquide (MFPL) réutilisables impliquent des spécifications de robustesse plus exigeantes que ceux à usage unique, principalement en raison de leurs capacités de redémarrage multiple et de modulation de poussée. Classiquement, le système de commande gère les opérations des MFPL autour d’un ensemble fini de points prédéfinis. Cette approche réduit leur domaine de modulation à un intervalle restreint dans lequel ils sont conçus pour être sûrs dans des conditions nominales. De plus, les phases transitoires, qui ont un impact important sur la durée de vie du moteur, ne sont pas exécutées de manière robuste. Dans l’état de l’art de la commande des MFPL, la commande en boucle fermée a été réalisée autour de leurs états d’équilibre. Concrètement, des approches robustes face aux incertitudes et à certains scénarios défectueux sont présentes dans la littérature. La mitigation de l’endommagement de certains composants a également été considérée. Concernant les phases transitoires, seules des approches en boucle ouverte non robustes ont été développées.
Recommended publications
  • Spacex Launch Manifest - a List of Upcoming Missions 25 Spacex Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45Th Space Wing Fact Sheet
    COTS 2 Mission Press Kit SpaceX/NASA Launch and Mission to Space Station CONTENTS 3 Mission Highlights 4 Mission Overview 6 Dragon Recovery Operations 7 Mission Objectives 9 Mission Timeline 11 Dragon Cargo Manifest 13 NASA Slides – Mission Profile, Rendezvous, Maneuvers, Re-Entry and Recovery 15 Overview of the International Space Station 17 Overview of NASA’s COTS Program 19 SpaceX Company Overview 21 SpaceX Leadership – Musk & Shotwell Bios 23 SpaceX Launch Manifest - A list of upcoming missions 25 SpaceX Facilities 27 Dragon Overview 29 Falcon 9 Overview 31 45th Space Wing Fact Sheet HIGH-RESOLUTION PHOTOS AND VIDEO SpaceX will post photos and video throughout the mission. High-Resolution photographs can be downloaded from: http://spacexlaunch.zenfolio.com Broadcast quality video can be downloaded from: https://vimeo.com/spacexlaunch/videos MORE RESOURCES ON THE WEB Mission updates will be posted to: For NASA coverage, visit: www.SpaceX.com http://www.nasa.gov/spacex www.twitter.com/elonmusk http://www.nasa.gov/nasatv www.twitter.com/spacex http://www.nasa.gov/station www.facebook.com/spacex www.youtube.com/spacex 1 WEBCAST INFORMATION The launch will be webcast live, with commentary from SpaceX corporate headquarters in Hawthorne, CA, at www.spacex.com. The webcast will begin approximately 40 minutes before launch. SpaceX hosts will provide information specific to the flight, an overview of the Falcon 9 rocket and Dragon spacecraft, and commentary on the launch and flight sequences. It will end when the Dragon spacecraft separates
    [Show full text]
  • PRESS RELEASE Safran Appointments
    PRESS RELEASE Safran appointments June 28, 2021 Two appointments to Safran's Executive Committee Effective July 1, 2021, Stéphane Cueille is named CEO of Safran Electrical & Power. He takes over from Alain Sauret, who is retiring. Olivier Andriès, CEO of Safran, said, “I would like to sincerely thank Alain Sauret, who joined the Group almost 40 years ago at our legacy company, Labinal. He went on to transform the company into a world-class center of electrical system excellence. Safran Electrical & Power is today a cornerstone of our decarbonized aviation roadmap.” Holding the rank of Ingénieur de l’Armement (defense scientist), Stéphane Cueille was seconded to Snecma1 from 1998 to 2001 to work on ceramic matrix composites (CMC). He returned to the French defense procurement agency DGA in 2001, taking various management positions in the aircraft propulsion sector. In 2005 he was placed in charge of the Missiles-Space unit in the industrial affairs department (S2IE). In 2008, he returned to Snecma, starting in the turbine blade quality department at the Gennevilliers plant. He was subsequently named repair general manager in Snecma’s Military Engine division, then director of the turbine blade center of excellence. / Safran Mereis / Capa/ Safran/ MereisCapa/ Safran / In May 2013 he was appointed Managing Director of Aircelle Ltd, the UK subsidiary of Aircelle2 based in Burnley. In January 2015 he was named head of Safran Tech, the Stéphanie Group's Research & Technology (R&T) center, and then in 2016 was appointed Senior Executive Vice President R&T and Christophe Innovation, also becoming a member of the Safran Executive © Committee.
    [Show full text]
  • Numerical Investigation of a 7-Element GOX/GCH4 Subscale Combustion Chamber
    DOI: 10.13009/EUCASS2017-173 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) Numerical Investigation of a 7-Element GOX/GCH4 Subscale Combustion Chamber ? ? ? Daniel Eiringhaus †, Daniel Rahn‡, Hendrik Riedmann , Oliver Knab and Oskar Haidn‡ ?ArianeGroup Robert-Koch-Straße 1, 82024 Taufkirchen, Germany ‡Institute of Turbomachinery and Flight Propulsion (LTF), Technische Universität München (TUM) Boltzmannstr. 15, 85748 Garching, Germany [email protected] †Corresponding author Abstract For future liquid rocket engines methane has become the focus of several studies on alternative fuels in the western hemisphere. At ArianeGroup numerical simulation tools have been established as a powerful instrument in the design process. In order to achieve the same confidence level for CH4/O2 as for H2/O2 combustion, the applied numerical models have to be adapted and validated against sufficient test data. At the Chair of Space Propulsion at the Technical University of Munich (TUM) several combustion cham- bers have been designed and tests at different operating points have been conducted. In this paper one of these subscale combustion chambers with calorimetric cooling and seven shear coaxial injection elements running on gaseous methane and oxygen is used to examine ArianeGroup’s in-house tools for combustion chamber performance analysis. 1. Introduction Current development programs in many space-faring nations focus on launchers utilizing a propellant combination of liquid oxygen (LOX) and liquid methane (CH4). In Europe, hydrocarbons have been identified as an alternative fuel in the frame of the Future Launcher Preparatory Programme (FLPP).14, 23 Major industrial development of methane / oxy- gen rocket engines is ongoing in the United States at SpaceX with the Raptor engine (staged combustion), at Blue Origin with the BE-4 engine (staged combustion) and in Europe at ArianeGroup with the Prometheus engine (gas gen- erator).
    [Show full text]
  • Qualification Over Ariane's Lifetime
    r bulletin 94 — may 1998 Qualification Over Ariane’s Lifetime A. González Blázquez Directorate of Launchers, ESA, Paris M. Eymard Groupe Programme CNES/Arianespace, Evry, France Introduction Similarly, the RL10 engine on the Centaur stage The primary objectives of the qualification of the Atlas launcher has been the subject of an activities performed during the operational ongoing improvement programme. About 5000 lifetime of a launcher are: tests were performed before the first flight, and – to verify the qualification status of the vehicle 4000 during the subsequent ten years. – to resolve any technical problems relating to subsystem operations on the ground or in On-going qualification activities of a similar flight. nature were started for the Ariane-3 and 4 launchers in 1986, and for Ariane-5 in 1996. Before focussing on the European family of They can be classified into two main launchers, it is perhaps informative to review categories: ‘regular’ and ‘one-off’. just one or two of the US efforts in the area of solid and liquid propulsion in order to put the Ariane-3/4 accompanying activities Ariane-related activities into context. Regular activities These activities are mainly devoted to In principle, the development programme for a launcher ends with the verification of the qualification status of the qualification phase, after which it enters operational service. In various launcher subsystems. They include the practice, however, the assessment of a launcher’s reliability is a following work packages: continuing process and qualification-type activities proceed, as an – Periodic sampling of engines: one HM7 and extension of the development programme (as is done in aeronautics), one Viking per year, tested to the limits of the over the course of the vehicle’s lifetime.
    [Show full text]
  • Safran Aircraft Engines Download
    SAFRAN AIRCRAFT ENGINES This is a multi-site certificate, additional site details are listed in the appendix to this certificate 10 ALLEE DU BREVENT - COURCOURONNES 91019 EVRY CEDEX - FRANCE Bureau Veritas Certification certify that the Management System of the above organisation has been audited in accordance with the relevant Aerospace Supplier Quality system Certification Scheme EN 9104-001:2013 and found to be in accordance with the requirements of the management system standard detailed below: Standard EN 9100:2018 AS 9100:D - JISQ 9100:2016 Scope of certification DESIGN, DEVELOPMENT, PRODUCTION, DISTRIBUTION, TEST AND SERVICING OF CIVIL AND MILITARY AIRCRAFT ENGINES - DESIGN, DEVELOPMENT, PRODUCTION, DISTRIBUTION, TEST AND SERVICING SATELLITE AND SPACECRAFT PROPULSION SYSTEMS - ASSOCIATED SERVICES PROVIDED TO CIVIL AND MILITARY CUSTOMERS. Certification structure : Campus Certification Issue date: 15 September 2018 Subject to the continued satisfactory operation of the organization’s Management System, this certificate expires on (Certification Expiry date): 14 September 2021 Original certification date: 15 July 2004 Certificate : 7098050-Rev0 Date: 06 September 2018 File number : FR044707-1 Jacques Matillon – Managing DIrector Bureau Veritas Certification France 60, avenue du Général de Gaulle – Immeuble Le Guillaumet - 92046 Paris La Défense Further clarifications regarding the scope of this certificate the applicability of the management system requirements may be obtained by consulting the organization. To check this certificate validity, please call + 33(0) 1 41 97 00 60. APPENDIX SAFRAN AIRCRAFT ENGINES Standard EN 9100:2018 AS 9100:D - JISQ 9100:2016 Scope of certification Site Address Scope 10 ALLEE DU BREVENT COURCOURONNES SIEGE CENTRAL FUNCTIONS 91019 EVRY CEDEX, France RUE HENRI AUGUSTE INDUSTRIALIZATION AND MANUFACTURING OF PARTS AND EVRY-CORBEIL DESBRUÈRES - BP 81 COMPONENTS FOR AIRCRAFT ENGINES.
    [Show full text]
  • High-Thrust In-Space Liquid Propulsion Stage: Storable Propellants
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2014 – ID 2968378 High-Thrust in-Space Liquid Propulsion Stage: Storable Propellants Etienne Dumont, Alexander Kopp, Carina Ludwig, Nicole Garbers DLR, Space Launcher Systems Analysis (SART), Bremen, Germany [email protected] Abstract In the frame of a project funded by ESA, a consortium led Subscripts, Abbreviations by Avio in cooperation with Snecma, Cira, and DLR is ATV Automated Transfer Vehicle performing the preliminary design of a High-Thrust in- CDF Concurrent Design Facility Space Liquid Propulsion Stage for two different types of ECSS European Cooperation on Space manned missions beyond Earth orbit. For these missions, Standardization one or two 100 ton stages are to be used to propel a Elec assy electronic assembly manned vehicle. Three different propellant combinations; EPS Etage à propergols stockables (Ariane 5’s LOx/LH2, LOx/CH4 and MON-3/MMH are being storable propellant stage) compared. GNC Guidance Navigation and Control HTS High-Thrust Stage The preliminary design of the storable variant (MON- IF Interface 3/MMH) has been performed by DLR. The Aestus II ISS International Space Station engine with a large nozzle expansion ratio has been LEO Low Earth Orbit chosen as baseline. A first iteration has demonstrated, that LEOP Launch and Early Orbit Phase it indeed provides the best performance for the storable LH2 Liquid Hydrogen propellant combination, when considering all engines LOx Liquid Oxygen available today or which may be available in a short- to MLI Multi-Layer Insulation medium term.
    [Show full text]
  • GAM-2020-LPA Large Passenger Aircraft Innovative Aircraft
    PROJECT GAM-2020-LPA Large Passenger Aircraft Innovative Aircraft Demonstrator Platform Funding: European (Horizon 2020) Duration: Jan 2020 - Dec 2021 Status: Ongoing Total project cost: €142,140,284 EU contribution: €106,688,121 Call for proposal: H2020-IBA-CS2-GAMS-2019 CORDIS RCN : 231017 Objectives: The main objective for the Clean Sky 2 Large Passenger Aircraft Programme (LPA) is to further mature and validate key technologies such as advanced wings and empennages design, making use of hybrid laminar airflow wing developments, the integration of most advanced engines into the large passenger aircraft aircraft design as well as an all-new next generation fuselage cabin and cockpit-navigation. Dedicated demonstrators are dealing with research on the best opportunities to combine radical propulsion concepts, and the opportunities to use scalled flight testing for the maturation and validation of these concepts via scalled flight testing. Components of hybrid electric propulsion concepts are developed and tested in a major ground based test rig. The LPA program is also contributing with a major work package to the E-Fan X program. The R&T activities in the LPA program is split in 21 so-called demonstrators. In the project period 2020 and 2021 a substantial number of hardware items ground and flight test items will be manufactured, assembled tested. For some large items like the Multifunctional Fuselage demonstrators or the HLFC wing ground demonstrator the detailed design and manufacturing of test items will be commenced. For the great majority of contributing technologies a Technology Readiness level (TRL) 3 or 4 will be accomplished or even exceeded.
    [Show full text]
  • ESSENTIALS a Single-Aisle Commercial Jet Powered by Our Engines(1) TAKES OFF SOMEWHERE in the WORLD EVERY 2 SECONDS
    ESSENTIALS A single-aisle commercial jet powered by our engines(1) TAKES OFF SOMEWHERE IN THE WORLD EVERY 2 SECONDS SAFRAN IS AN INTERNATIONAL 54,000+ LANDINGS 1 OUT OF EVERY 3 HELICOPTER HIGH-TECH GROUP a day using our products TURBINE ENGINES and tier-1 supplier of systems and equipment sold worldwide in the aerospace and defense markets. Operating worldwide, Safran has nearly 58,000 employees and generated sales of 15.8 billion euros in 2016. The Group’s international footprint allows it to enhance its competitiveness, build industrial and commercial relationships with the world’s leading prime contractors and operators, and provide + 75 SUCCESSFUL 3,000 COMBAT AIRCRAFT Ariane 5(2) launches in a row fitted with our inertial responsive local service anywhere in the world. Working navigation systems alone or in partnership, Safran holds world or European leadership positions in its core markets. 500 KILOMETERS OF WIRING 35,000+ POWER in each Airbus A380 TRANSMISSIONS, totaling over 850 million flight-hours 17,300 NACELLE 250 EJECTION COMPONENTS SEATS in service for Rafale fighters(3) SAFRAN AERO BOOSTERS • SAFRAN AIRCRAFT ENGINES • SAFRAN CERAMICS SAFRAN ELECTRICAL & POWER • SAFRAN ELECTRONICS & DEFENSE (1) In partnership with GE through CFM International. SAFRAN HELICOPTER ENGINES • SAFRAN LANDING SYSTEMS (2) In partnership with Airbus Group through ArianeGroup. SAFRAN NACELLES • SAFRAN TRANSMISSION SYSTEMS (3) Through Safran Martin Baker France, the 50/50 joint company between Safran and Martin-Baker. 3 15,536 15,781 1.6% 7.9% Treasury
    [Show full text]
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • 6. Chemical-Nuclear Propulsion MAE 342 2016
    2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20
    [Show full text]
  • Variations of Solid Rocket Motor Preliminary Design for Small TSTO Launcher
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2012 – ID 2394102 Variations of Solid Rocket Motor Preliminary Design for Small TSTO launcher Etienne Dumont Space Launcher Systems Analysis (SART), DLR, Bremen, Germany [email protected] NGL New/Next Generation Launcher Abstract SI Structural Index (mdry / mpropellant) Several combinations of solid rocket motors and ignition SRM Solid Rocket Motor strategies have been considered for a small Two Stage to TSTO Two Stage To Orbit Orbit (TSTO) launch vehicle based on a big solid rocket US Upper Stage motor first stage and cryogenic upper stage propelled by VENUS Vega New Upper Stage the Vinci engine. In order to reach the target payload avg average during the flight performance of about 1400 kg into GTO for the clean s.l. sea level version and 2700 to 3000 kg for the boosted version, the vac vacuum influence of the selected solid rocket motors on the upper 2 + 2 P23 4 P23: two ignited on ground and two with a stage structure has been studied. Preliminary structural delayed ignition designs have been performed and the thrust histories of the solid rocket motor have been tweaked to limit the upper stage structural mass. First stage and booster 1. Introduction combinations with acceptable general loads are proposed. Solid rocket motors (SRM) are commonly used for boosters or launcher first stage. Indeed they can provide high thrust levels while being compact, light and Nomenclature relatively simple compared to a liquid rocket engine Isp specific impulse s providing the same thrust level.
    [Show full text]
  • French Aeronautical Players to Fly 100% Alternative Fuel on Single-Aisle Aircraft End of 2021
    French aeronautical players to fly 100% alternative fuel on single-aisle aircraft end of 2021 Toulouse, Paris, 10 June 2021- Airbus, Safran, Dassault Aviation, ONERA and Ministry of Transport are jointly launching an in-flight study, at the end of 2021, to analyse the compatibility of unblended sustainable aviation fuel (SAF) with single-aisle aircraft and commercial aircraft engine and fuel systems, as well as with helicopter engines. This flight will be made with the support of the “Plan de relance aéronautique” (the French government‘s aviation recovery plan) managed by Jean Baptiste Djebbari, French Transport Minister. Known as VOLCAN (VOL avec Carburants Alternatifs Nouveaux), this project is the first time that in-flight emissions will be measured using 100% SAF in a single-aisle aircraft. Airbus is responsible for characterising and analysing the impact of 100% SAF on-ground and in- flight emissions using an A320neo test aircraft powered by a CFM LEAP-1A engine1. Safran will focus on compatibility studies related to the fuel system and engine adaptation for commercial and helicopter aircraft and their optimisation for various types of 100% SAF fuels. ONERA will support Airbus and Safran in analysing the compatibility of the fuel with aircraft systems and will be in charge of preparing, analysing and interpreting test results for the impact of 100% SAF on emissions and contrail formation. In addition, Dassault Aviation will contribute to the material and equipment compatibility studies and verify 100% SAF biocontamination susceptibility. The various SAFs used for the VOLCAN project will be provided by TotalEnergies. Moreover, this study will support efforts currently underway at Airbus and Safran to ensure the aviation sector is ready for the large-scale deployment and use of SAF as part of the wider initiative to decarbonise the industry.
    [Show full text]