Checklist of the Frogs and Reptiles of Westem Australia

Total Page:16

File Type:pdf, Size:1020Kb

Checklist of the Frogs and Reptiles of Westem Australia DOI: 10.18195/issn.0313-122x.63.2001.051-074 Records of the Western Australian Museum Supplement No. 63: 51-74 (2001). Checklist of the frogs and reptiles of Westem Australia ~.P. Aplin and L.A. Smith Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia INTRODUCTION geographic entities maintained byextrinsic factors that A formal checklist of the frogs and reptiles of effectively deny reproductive interaction." In practical Western Australia has not been published terms, this definition leads us to recognise subspecies previously, although similar functions have been for allopatric populations that are essentially alike in served by the various generations of handbooks basic ethology and reproductive biology, but are produced originally by Glauert (1950, 1957, 1961, diagnosably distinct in features that are likely to have 1967) for lizards and snakes and more recently by been subject to environmentally determined patterns Storr, Smith and Johnstone (1981, 1983, 1986, 1990, of selection and/or random drift. Such differences 1999) for these groups and by Tyler, Smith and most often involve features such as size and body Johnstone (1984, 1994, 2000) for frogs. proportions, ground colour or minor details of The general philosophy of this checklist, along patteming and/or scalation. Such taxa are more likely with the companion checklists of mammals, birds to be treated as full species where the differences and fishes, has been discussed in a brief between them involve aspects of the 'specific mate introductory essay (Aplin et al., 2001). Before recognition system' (sensu Paterson, 1985) or where presenting this particular checklist, however, it is there has been divergence in features that might imply necessary to address a number of additional points contrasting lifestyles. of historic and taxonomic interest. In the relatively few cases where hybrid For any reader familiar with the taxonomic usage interaction has been demonstrated between closely- employed in the Western Australian Museum's related taxa of frogs and reptiles, the frequency and current handbook series, published in first editions outcome of hybridization is also taken into account between 1981 and 1990, the content of the present in deciding the taxonomic rank of participating checklist will represent a radical departure. In part populations. As a general rule of thumb, occasional this reflects the significant advances in phylogenetic or spatially-restricted hybridization with limited knowledge gained for several groups over the last two introgression generally does not challenge the decades. However, it also represents a reconciliation identity of separate species, while frequent, of the often-eontrasting taxonomies employed by two widespread hybridization and effective of Australia's most influential herpetologists, Glen introgression is likely to eliminate genetic and Storr, Curator of Birds and Reptiles at the Western morphological distinction between subspecies Australian Museum 1962-1986, and Hal Cogger, brought into secondary contact in relatively few Curator of Reptiles and later, Deputy Director of the generations. Where hybridization occurs at Australian Museum, 1963-1995. moderate to high frequency along a zone of contact Another factor in determining the content of this or narrow overlap, a stable or gradually shifting listing has been the decision by the International 'tension zone' (sensu Barton and Charlesworth, Commission on Zoological Nomenclature 1984) may form. These are sometimes aligned with (Anonymous, 1991) rejecting suppression of the two an environmental gradient of some kind, but more self-published works by Wells and Wellington often they owe their origin and stability to partial (1984, 1985), in which many hundreds of taxonomic chromosomal incompatibility. In such cases, the actions were taken in relation to Australian frogs individual taxa are generally treated as subspecies and reptiles. This decision has confirmed the or as chromosomal 'races', depending on the degree availability of many names, some of which predate of morphological and ecological distinctiveness. names proposed for valid taxa in subsequent Wherever possible, we have attempted to taxonomic reviews. eliminate or at least highlight any prior subspecific In general, we have employed species and nomenclature that was created solely to label subspecies ranks in accordance with the principles geographical isolates in the absence of outlined in the introductory essay. To recapitulate morphological or other differentiation, or to briefly, "species are essentially biological entities designate subdivisions or points along extended maintained by intrinsic attributes promoting clines. Both practices were standard practice during reproductive isolation, while subspecies are essentially the earlier years of vertebrate systematics in 52 K.P. Aplin, L.A. Smith Australia, as elsewhere in the world (Wilson and level in order to convey asense of phylogenetic Brown, 1953), but are no longer regarded as structure, but only where the integrity of aparticular acceptable taxonomic actions. clade is well-supported by several lines of evidence. Otherwise the list is presented in alphabetical order Format and scope and without synonyms or summaries of prior The checklist covers all taxa of frogs and reptiles combinations. An extended series of footnotes are recorded in Western Australia, including several presented in justification of certain decisions and as a that have become established since European means of highlighting major areas of taxonomic or settlement. The naturalised exotics are clearly phylogenetic uncertainty. identified as such in the list. Taxa that are recorded Bibliographic details of type descriptions of most as occasional accidental introductions, either from species can be obtained from Cogger et al. (1983); eastern Australia (e.g., naturalised Cane Toads, Bufo for ease of reference, we provide these details for marinus) or from overseas (e.g., Bufo melanostictus), taxa described subsequent to their work. are not listed. We thank Dr Glen Shea for his useful comments The list includes taxonomic ranks above the genus on an earlier version of this work. REFERENCES Anonymous (1991). Three works by Richard W. Wells (Anura: Myobatrachidae) in southern Australia: a and CRoss Wellington: proposed suppression for phylogenetic analysis of allozyme data supporting nomenclatural purposes. Bulletin of Zoological endemic speciation in southwestern Australia. Nomenclature 48: 337-338. Evolution 38: 1238-1250. Aplin, KP. (1998). Three new blindsnakes (Squamata: Barker, D.G. and Barker, T.M. (1994). Pythons of the world. Typhlopidae) from northwestern Australia. Records of Volume 1, Australia. Advanced Vivarium Systems, the Western Australian Museum 19: 1-12 [descriptions Lakeside, California. of Ramphotyphlops ganei, R. longissimus, R. splendidus]. Barton, N.H. and Charlsworth, B. (1984). Genetic Aplin, KP. (1999). 'Amateur' taxonomy in Australian revolutions, founder effects, and speciation. Annual herpetology -help or hindrance? Monitor, Journal of Review of Ecology and Systematics 15: 133-164. the Victorian Herpetological Society 10: 104-109. Bauer, A.M. (1990). Phylogenetic systematics and Aplin, KP. and Adams, M. (1998). Morphological and biogeography of the Carphodactylini (Reptilia: genetic discrimination of new species and subspecies Gekkonidae). Bonner Zoologische Monographien 30: 1- of gekkonid and scincid lizards (Squamata: Lacertilia) 218. from the Carnarvon Basin region of Western Bauer, AM., Good, D.A and Branch, W.R (1997). The Australia. Journal of the Royal Society of Western taxonomy of the southern African Leaf-toed Geckos Australia 81: 201-223 [descriptions of Ctenotus (Squamata: Gekkonidae), with areview of Old World maryani, Diplodactylus klugei, Menetia surda cresswelli]. "Phyllodactylus" and the description of five new Aplin, KP. and Donnellan, S.C (1993). Anew species of genera. Proceedings of the California Academy of Sciences blindsnake, genus Ramphotyphlops (Typhlopidae, 49: 447-497. Squamata) from northwestern Western Australia, B6hme, W. (1991). The identity of Varanus gouldii (Gray, with aredescription of R. hamatus, Storr 1981. Records 1838), and the nomenclature of the V. gouldii-species of the Western Australian Museum 16: 243-256 complex. Mertensiella 2: 38-41. [description of Ramphotyphlops pilbarensis]. Bowen, B.W., Nelson, W.S. and Avise, J.C (1993). A Aplin, KP. and Donnellan, S.C (1999). An extended molecular phylogeny for marine turtles: trait description of the Pilbara Death Adder, Acanthophis mapping, rate assessment, and conservation wellsi Hoser (Serpentes: Elapidae), with notes on the relevance. Proceedings of the National Academy of Desert Death Adder, A. pyrrhus, Boulenger, and Science U.S.A. 90: 5574-5577. identification of apossible hybrid zone. Records of the Broderick, D., Moritz, C, Miller, J.D., Guinea, M., Prince, Western Australian Museum 19: 277-298. RI.T. and Limpus, CJ. (1994). Genetic studies of the Aplin, K.P., Adams, M. and Cow an, M.A. (2001) hawksbill turtle Eretmochelys imbricata: evidence for Systematics and biogeography of the herpetofauna of multiple stocks in Australian waters. Pacific the Carnarvon region of Western Australia. Records of Conservation Biology I: 123-131. the Western Australian Museum, Supplement (in press). Brongersma, L.D. (1996). On the availability of the name Aplin, KP., Cooper, N.K, How, R.A., Hutchins, J.B. Dermochelys coriacea schlegelii (Garman, 1884) as
Recommended publications
  • Volume 86 Part 3
    Journal of the Royal Society of Western Australia, 91: 207–208, 2008 Range extension of the Western relates to R. a. adelaidensis subspecies. This species was Heath Dragon, Rankinia formally placed in the genus Tympanocryptis adelaidensis (Gray 1841), while Melville et al. (2001) adelaidensis adelaidensis suggested that it should be placed in Ctenophorus. (Squamata: Agamidae) The habitat of R. a. adelaidensis was described by Bush et al. (1995; 2007) as low coastal vegetation on beaches and dunes, including heathlands and Banksia S A Thompson1, G G Thompson2 & J E Oates1 woodlands on the Swan Coastal Plain. 1 Coffey Environments, Dilhorn House, We report here two recent captures that are outside 2 Bulwer St, Perth 6000 the published geographical distribution for this dragon [email protected] but within known suitable habitat. [email protected] According to records in the Western Australian 2 Centre for Ecosystem Management, Edith Cowan Museum database, the previous most southerly records University, 100 Joondalup Drive, Joondalup, WA, 6027 of R. a. adelaidensis are from Jandakot (13 records), [email protected] Yangebup, Gosnells and a single record from Caddadup Reserve, Mandurah. There is also a 1957 record from the Manuscript received October 2007; accepted February 2008 south-west cape region at Deepdene in 1957 (R12427). Given the single record in 1957 and geographical isolation of the record, it is unknown whether it is a Abstract. Two recent captures and a sighting of Rankinia genuine record or an error in the database. Figure 1 adelaidensis increase its recorded geographical indicates the recorded locations of R. a. adelaidensis in distribution in a southerly direction.
    [Show full text]
  • Level 2 Fauna Survey MEELUP REGIONAL PARK
    Level 2 Fauna Survey MEELUP REGIONAL PARK APRIL 2015 suite 1, 216 carp st (po box 470) bega nsw 2550 australia t (02) 6492 8333 www.nghenvironmental.com.au e [email protected] unit 18, level 3, 21 mary st suite 1, 39 fitzmaurice st (po box 5464) surry hills nsw 2010 australia wagga wagga nsw 2650 australia t (02) 8202 8333 t (02) 6971 9696 unit 17, 27 yallourn st (po box 62) room 15, 341 havannah st (po box 434) fyshwick act 2609 australia bathurst nsw 2795 australia t (02) 6280 5053 0488 820 748 Document Verification Project Title: MEELUP REGIONAL PARK Project Number: 5354 Project File Name: Meelup Regional Park Level 2 Fauna Survey v20150115 Revision Date Prepared by (name) Reviewed by (name) Approved by (name) DRAFT 27/03/15 Shane Priddle Nick Graham-Higgs Nick Graham-Higgs (SW Environmental) and Greg Harewood Final 17/04/15 Shane Priddle Shane Priddle Shane Priddle (SW Environmental) (SW Environmental) (SW Environmental) nghenvironmental prints all documents on environmentally sustainable paper including paper made from bagasse (a by- product of sugar production) or recycled paper. nghenvironmental is a registered trading name of NGH Environmental Pty Ltd; ACN: 124 444 622. ABN: 31 124 444 622 suite 1, 216 carp st (po box 470) bega nsw 2550 australia t (02) 6492 8333 www.nghenvironmental.com.au e [email protected] unit 18, level 3, 21 mary st suite 1, 39 fitzmaurice st (po box 5464) surry hills nsw 2010 australia wagga wagga nsw 2650 australia t (02) 8202 8333 t (02) 6971 9696 unit 17, 27 yallourn st (po box 62) room 15, 341 havannah st (po box 434) fyshwick act 2609 australia bathurst nsw 2795 australia t (02) 6280 5053 0488 820 748 Level 2 Fauna Survey MEELUP REGIONAL PARK CONTENTS LEVEL 2 FAUNA SURVEY .....................................................................................................................
    [Show full text]
  • Chemical Signatures of Femoral Pore Secretions in Two Syntopic but Reproductively Isolated Species of Galápagos Land Iguanas (Conolophus Marthae and C
    www.nature.com/scientificreports open chemical signatures of femoral pore secretions in two syntopic but reproductively isolated species of Galápagos land iguanas (Conolophus marthae and C. subcristatus) Giuliano colosimo1,2, Gabriele Di Marco2, Alessia D’Agostino2, Angelo Gismondi2, Carlos A. Vera3, Glenn P. Gerber1, Michele Scardi2, Antonella Canini2 & Gabriele Gentile2* the only known population of Conolophus marthae (Reptilia, Iguanidae) and a population of C. subcristatus are syntopic on Wolf Volcano (Isabela Island, Galápagos). No gene fow occurs suggesting that efective reproductive isolating mechanisms exist between these two species. Chemical signature of femoral pore secretions is important for intra- and inter-specifc chemical communication in squamates. As a frst step towards testing the hypothesis that chemical signals could mediate reproductive isolation between C. marthae and C. subcristatus, we compared the chemical profles of femoral gland exudate from adults caught on Wolf Volcano. We compared data from three diferent years and focused on two years in particular when femoral gland exudate was collected from adults during the reproductive season. Samples were processed using Gas Chromatography coupled with Mass Spectrometry (GC–MS). We identifed over 100 diferent chemical compounds. Non-Metric Multidimensional Scaling (nMDS) was used to graphically represent the similarity among individuals based on their chemical profles. Results from non-parametric statistical tests indicate that the separation between the two species is signifcant, suggesting that the chemical profle signatures of the two species may help prevent hybridization between C. marthae and C. subcristatus. Further investigation is needed to better resolve environmental infuence and temporal reproductive patterns in determining the variation of biochemical profles in both species.
    [Show full text]
  • ARAV Cancer and Case Reports
    Section 20 ARAV Cancer and Case Reports Jeff Baier, MS, DVM; Erica Giles, DVM Moderators Fibropapillomatosis in Chameleons Kim Oliver Heckers, Dr med vet, Janosch Dietz, med vet, Rachel E Marschang, PD, Dr med vet, Dipl ECZM (Herpetology), FTÄ Mikrobiologie, ZB Reptilien Session #346 Affiliation: Laboklin GmbH & Co KG, Steubenstr 4, 97688 Bad Kissingen, Germany. Fibropapillomas have been observed with increasing frequency in recent years and occur mostly in panther chameleons (Furcifer pardalis). These include a complex of different neoplastic lesions (papillomas, keratoacan- thomas and intracutaneous cornifying epitheliomas) with similar macroscopic appearance and clinical behavior characterized by nodular changes, starting with single spots, which spread over the body in a period of 1-2 years. At the beginning, the overall general condition is good while at progressive stages of spread, the general condi- tion declines. In a retrospective study, 22 tumors from chameleons with several types of fibropapillomas were examined. Panther chameleons (Furcifer pardalis) were the most affected species (64%), followed by veiled chameleons (Chamaeleo calyptratus) (14%) and 22% of chameleons of unknown species. All of the affected chameleons were adults. The age of 9 animals was known and had a range of 2-5 years with an average of 3.4 years. Thirteen males, one female and eight chameleons of unknown sex were examined. Papillomas were the most frequent tumors (55%), followed by keratoacanthomas (36%) and intracutaneous cornifying epitheliomas (9%). In this study no trend towards malignant transformation of the tumors was found. The etiology of fibro- papillomatosis is still unknown but a viral genesis is suspected. An invertebrate iridovirus was detected in the lesions of one veiled chameleon by PCR.
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • 2020 KALAMUNDA LOCAL BIODIVERSITY STRATEGY Technical Report October 2020
    Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 City of Kalamunda Biodiversity Conservation Action Plan 2020 – 2030 2020 KALAMUNDA LOCAL BIODIVERSITY STRATEGY Technical Report October 2020 Prepared by Nam Natura Consulting 0 City of Kalamunda 852 Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 Document Tracking Item Detail Project Name Review and update of the City of Kalamunda Local Biodiversity Strategy Client City of Kalamunda Prepared by Renata Zelinova Status Draft Technical Report Version 4 Number Last saved on Disclaimer This document may only be used for the purpose for which it was commissioned and in accordance with the contract between the City of Kalamunda and Nam Natura Consulting. The scope of services was defined in consultation with the client, by time and budgetary constraints imposed by the client, and the availability of reports and other data on the subject area. Changes to available information, legislation and schedules are made on an ongoing basis and readers should obtain up to date information. Nam Natura Consulting accepts no liability or responsibility whatsoever for or in respect of any use of or reliance upon this report and its supporting material by any third party. Information provided is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. Unauthorised use of this report in any form is prohibited. 1 City of Kalamunda 853 Public Agenda Briefing Forum 8 December 2020 Attachments Attachment 10.2.1.2 PURPOSE .................................................................................................................... 4 1 INTRODUCTION – WHY HAVE A LOCAL BIODIVERSITY STRATEGY? ..............
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Flora and Fauna Survey June 2018
    Burrup Peninsula Interconnector Pipeline Flora and Fauna Survey June 2018 Prepared for DDG Operations Pty Ltd Report Reference: 21244-18-BISR-1Rev0_180803 This page has been left blank intentionally. Burrup Peninsula Interconnector Pipeline Flora and Fauna Survey Prepared for DDG Operations Pty Ltd Job Number: 21244-18 Reference: 21244-18-BISR-1Rev0_180803 Revision Status Rev Date Description Author(s) Reviewer B. Jeanes A 20/07/2018 Draft Issued for Client Review H. Warrener J. Atkinson J. Johnston B. Jeanes 0 03/08/2018 Final Issued for Information H. Warrener J. Atkinson J. Johnston Approval Rev Date Issued to Authorised by Name Signature A 20/07/2018 M. Goodwin R. Archibald 0 03/08/2018 M. Goodwin S. Pearse © Copyright 2018 Astron Environmental Services Pty Ltd. All rights reserved. This document and information contained in it has been prepared by Astron Environmental Services under the terms and conditions of its contract with its client. The report is for the clients use only and may not be used, exploited, copied, duplicated or reproduced in any form or medium whatsoever without the prior written permission of Astron Environmental Services or its client. DDG Operations Pty Ltd Burrup Peninsula Interconnector Pipeline – Flora and Fauna Survey, June 2018 Abbreviations Abbreviation Definition Astron Astron Environmental Services BAM Biosecurity and Agriculture Management Act 2007 DBNGP Dampier Bunbury Natural Gas Pipeline DBCA Department of Biodiversity, Conservation and Attractions DEC Department of Environment and Conservation
    [Show full text]
  • THE ORIGIN and EVOLUTION of SNAKE EYES Dissertation
    CONQUERING THE COLD SHUDDER: THE ORIGIN AND EVOLUTION OF SNAKE EYES Dissertation Presented in Partial Fulfillment for the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Christopher L. Caprette, B.S., M.S. **** The Ohio State University 2005 Dissertation Committee: Thomas E. Hetherington, Advisor Approved by Jerry F. Downhower David L. Stetson Advisor The graduate program in Evolution, John W. Wenzel Ecology, and Organismal Biology ABSTRACT I investigated the ecological origin and diversity of snakes by examining one complex structure, the eye. First, using light and transmission electron microscopy, I contrasted the anatomy of the eyes of diurnal northern pine snakes and nocturnal brown treesnakes. While brown treesnakes have eyes of similar size for their snout-vent length as northern pine snakes, their lenses are an average of 27% larger (Mann-Whitney U test, p = 0.042). Based upon the differences in the size and position of the lens relative to the retina in these two species, I estimate that the image projected will be smaller and brighter for brown treesnakes. Northern pine snakes have a simplex, all-cone retina, in keeping with a primarily diurnal animal, while brown treesnake retinas have mostly rods with a few, scattered cones. I found microdroplets in the cone ellipsoids of northern pine snakes. In pine snakes, these droplets act as light guides. I also found microdroplets in brown treesnake rods, although these were less densely distributed and their function is unknown. Based upon the density of photoreceptors and neural layers in their retinas, and the predicted image size, brown treesnakes probably have the same visual acuity under nocturnal conditions that northern pine snakes experience under diurnal conditions.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description
    Shoalwater and Corio Bays Area Ramsar Site Ecological Character Description 2010 Disclaimer While reasonable efforts have been made to ensure the contents of this ECD are correct, the Commonwealth of Australia as represented by the Department of the Environment does not guarantee and accepts no legal liability whatsoever arising from or connected to the currency, accuracy, completeness, reliability or suitability of the information in this ECD. Note: There may be differences in the type of information contained in this ECD publication, to those of other Ramsar wetlands. © Copyright Commonwealth of Australia, 2010. The ‘Ecological Character Description for the Shoalwater and Corio Bays Area Ramsar Site: Final Report’ is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 4.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This report should be attributed as ‘BMT WBM. (2010). Ecological Character Description of the Shoalwater and Corio Bays Area Ramsar Site. Prepared for the Department of the Environment, Water, Heritage and the Arts.’ The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Ecological Character Description for the Shoalwater and
    [Show full text]