A Catalogue of Reptiles of Monfragüe National Park (Spain), with Molecular Characterization of Populations of Blanus Wagler, 1830 in This Protected Area

Total Page:16

File Type:pdf, Size:1020Kb

A Catalogue of Reptiles of Monfragüe National Park (Spain), with Molecular Characterization of Populations of Blanus Wagler, 1830 in This Protected Area Basic and Applied Herpetology 33 (2019) 81-91 A catalogue of reptiles of Monfragüe National Park (Spain), with molecular characterization of populations of Blanus Wagler, 1830 in this protected area Daniel Fernández-Ortín1, Gregorio Sánchez-Montes2, Íñigo Martínez-Solano2,* 1 Betania, 1, bajo G, 10003 Cáceres, Spain. 2 Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, José Gutiér- rez Abascal, 2, 28006 Madrid, Spain. *Correspondence: E-mail: [email protected] Received: 17 July 2019; returned for review: 29 October 2019; accepted 06 November 2017. Monfragüe National Park (Cáceres, Extremadura, Spain) is a protected area in central‐western Iberia,including some of the best preserved primary Mediterranean vegetation. Legal protection dates back to 1979 (first as a Natural Park and then as a National Park), but knowledge about its reptile communities is so far limited to sparse records. In this paper we present an updated species list based on 521 records covering 163 1x1 km UTM grids in the study area, compiled in the period 2000‐2019. We detected 20 native species, representing 71.4% of the reptile fauna in Extremadura and 35% of the ibero‐balearic reptile fauna. Additionally, based on molecular analyses populations of the amphisbaenid genus Blanus in the study area are assigned to the oriental Iberian taxon, B. cinereus. The new records extend the known distribution of the different reptile species in the study area in 56 10x10 km UTM grids. Species presenting more restricted distributions in Monfragüe are Lacerta schreiberi (one 1x1 grid), Emys orbicularis, and Acanthodactylus erythrurus (four 10x10 grids each). Key words: Blanus cinereus; Extremadura; Iberian Peninsula; Monfragüe National Park; reptiles. The Iberian Peninsula hosts a great ripheral Protected Area (“Zona Periférica diversity of habitats and ecosystems, a de Protección”, ZPP) conform a study area legacy of its deep geological history and of 116 000 ha (Fig. 1), which includes other topographic complexity. National parks protected areas like ZEPA “ES0000014 provide legal protection for representative Monfragüe y las Dehesas del Entorno”, natural areas including singular geological ZEC “ES4320077 Monfragüe” and a Bio‐ characteristics, flora, and fauna. Monfra‐ sphere Reserve. güe National Park is located in the prov‐ Monfragüe National Park has been ince of Cáceres, in the region of Extrema‐ legally protected since 1979 (first as a Nat‐ dura, in central‐western Iberia, occupying ural Park and since 2007 as a National an extension of 18 396 ha of rugged terrain Park), but there is little information about with steep slopes, and includes some of its reptile communities. Apart from the the best preserved primary Mediterranean study of Álvarez‐Vasserot (1998), the vegetation. The National Park and its Pe‐ information about the reptile fauna of DOI: http://dx.doi.org/10.11160/bah.173 Supplementary material available online FERNÁNDEZ-ORTÍN ET AL. Figure 1: Location of the study area. Monfragüe consists of sparse records, with mostly focusing on amphibians. Other in‐ the exception of a survey conducted by formation about reptiles in national parks biology students from the University of comprises specific reports on conservation Extremadura (MuÑoz del Viejo, 2005). The plans for threatened species in the Canary poor knowledge about reptiles in Monfra‐ islands or isolated records, like the first güe is in line with the situation in most of report of the presence of Lacerta schreiberi the 15 national parks in Spain (16 in Iberia Bedriaga, 1878 in Monfragüe (Fernández‐ considering Peneda Gerês National Park Ortín Toboso‐Borrella, 2014). in Portugal). Of all these protected areas, Of all reptile taxa present in Monfragüe there are only detailed studies and species National Park, genus Blanus Wagler, 1830 catalogues in the national parks of Islas is the only case presenting a conflict re‐ Atlánticas (Galán Regalado, 2003), garding specific characterization of its Peneda Gerês (Soares et al., 2005), Picos populations. At present, two lineages are de Europa (AyllÓn et al., 2010), and Do‐ known to occur in Iberia: an occidental ñana (Andreu, 2014). In other national lineage, in the Iberian southwest, and an parks like Cabañeros, Sierra de Guadarra‐ oriental one distributed across the rest of ma and Sierra Nevada there are monitor‐ Iberia. In 2009, Albert Fernández de‐ ing programs of herptile populations, but scribed a new blanid species in Iberia, 82 REPTILES OF MONFRAGÜE AND MOLECULAR ANALYSIS OF BLANUS Blanus mariae Albert Fernández, 2009. güe National Park, and new molecular Its distribution encompasses the south‐ evidence regarding the specific status of western quadrant of Iberia, thus represent‐ Blanus populations in this protected area. We ing the occidental lineage, with its north‐ provide >500 new records documenting ern range border in the province of Cáce‐ the presence of 20 native reptile species in res (Albert Fernández, 2009). Albert et Monfragüe, and show the presence of B. al. (2007) identified the closest Blanus rec‐ cinereus in two localities in the study area ords to Monfragüe as Blanus cinereus based on the analysis of sequences of the Vandelli, 1797, at the southern Tajo river mitochondrial DNA gene ND4. margin, in the locality of Garciaz in Cáce‐ Materials and Methods res. Nevertheless, Sampaio et al. (2014) recorded the presence of B. mariae north This study is based on a compilation of of the Tajo river, in the portuguese locality observations of reptiles from surveys con‐ of Carvalhão, suggesting that the two spe‐ ducted between 2000 and June 2019, docu‐ cies of Iberian Blanus could coexist in the mented in a database including photo‐ vicinities of Monfragüe National Park, graphic records. These records were ob‐ since both lineages occupy both the north‐ tained through direct observation, photo‐ ern and southern margins of the Tajo river. graphs, and, occasionally, identification in Based on alleged nomenclatural prob‐ hand. No individual was sacrificed for lems in Albert Fernández’s (2009) de‐ identification or tissue sampling. scription of B. mariae, Ceríaco Bauer The study area includes Monfragüe (2018) concluded that B. mariae is a junior National Park and its ZPP; as geographic synonym of B. cinereus and described reference we used the system UTM_MGRS Blanus vandellii Ceríaco Bauer, 2018 as a ED50, zones 29N and 30N, codes EPSG: new species. Thus, according to these au‐ 23029 and 23030, and referenced observa‐ thors, all B. cinereus records should be tions in 1x1 km UTM grids. For georefe‐ ascribed to the new species, B. vandellii, rencing, we used cartographic viewers and B. mariae records should be assigned (“Sistema de Información Geográfica de to B. cinereus. However, the existence of Parcelas Agrícolas del Ministerio de Agri‐ another problematic taxon, B. rufus cultura y Pesca, Alimentación y Medio (Hemprich, 1820), with type locality in Ambiente, SIGPAC” (Mapa.gob.es, s.f.), “southern Spain”, an area where the two and “Instituto Geográfico Nacional, IBER‐ Iberian lineages co‐occur, suggests that the PIX” (Instituto Geográfico Nacional de new species, B. vandellii, could be likewise España, s.f.). Toponyms were obtained considered a junior synonym of B. rufus. from 1:25 000 maps in both cartographic This circumstance will not be resolved un‐ servers or from local denominations. til the type specimen of B. rufus can be The orography of Monfragüe is defined assigned to either the occidental or the by two major mountain chains running in oriental Iberian Blanus lineage. parallel NW‐SE, with the highest peaks at In the current study, we present an up‐ Pico de Miravete (839 m a.s.l.) and Sierra dated reptile species catalogue for Monfra‐ de Enmedio (870 m a.s.l.), in Casas de 83 FERNÁNDEZ-ORTÍN ET AL. Figure 2: Sampling effort (grey squares) and biogeographic regions in the study area, showing 10 x 10 km UTM grids. Miravete and Deleitosa, respectively. Nev‐ part of the Western Iberian Mediterranean ertheless, most of the study area comprises biogeographic province, “Luso‐ elevations ranging from 220 m to 600 m. Extremadurense” subprovince, “Toledano‐ The two most prominent hydrographic Tagano” sector, and include five districts: features are rivers Tajo and Tiétar, embed‐ “Talaverano”, “Vereño” and “Coriano”, in ded in steep margins and dammed along the “Talaverano‐Placentino” subsector; their full course in the study area. The hy‐ and “Cacereño” and “Villuerquino”, in the drological network in Monfragüe is com‐ “Oretano” subsector (Fig. 2). Average an‐ plemented with second order streams as‐ nual rainfall ranges from 868 mm in Mal‐ sociated with these two major river basins; partida de Plasencia to 551 mm in Torrejón most of them are temporary, with higher el Rubio. Most of the study area presents water flow in the spring, and low flow climatic values associated with the Ocean‐ during the drier months. The water table ic Pluvistational Mediterranean biocli‐ only surfaces at fountains and springs, mate, except the southeastern part, where with no relevant endorreic ponds except climatic data from the station at Campillo Laguna de Cantalgallo, in Jaraicejo, and de Deleitosa (Fig. 1) provides values with‐ Lagunas de Mesas Caveras, in Deleitosa. in the Continental Pluvistational Mediter‐ According to Belmonte LÓpez (2008) ranean type. Regarding thermal and om‐ Monfragüe National Park and its ZPP are brotypes, almost all the study area is with‐ 84 REPTILES OF MONFRAGÜE AND MOLECULAR ANALYSIS OF BLANUS in the Mesomediterranean (“Inferior‐Seco‐ mendations of Asociación Herpetológica Superior”) realm, except some spots at the Española (Carretero et al., 2018). Thus, southeastern border, which present char‐ regarding genus Blanus, we follow their acteristics within the Mesomediterranean decision to accept B. mariae as a valid tax‐ (“Superior‐Subhúmedo‐Inferior”) realm. on, with B. cinereus representing the ori‐ With respect to temperatures, the station ental lineage in Iberia. For estimates of of Campillo de Deleitosa is singular, with ibero‐balearic species richness we exclud‐ periods of freezing every year, but average ed allochthonous taxa and marine species.
Recommended publications
  • Natural History of the Tropical Gecko Phyllopezus Pollicaris (Squamata, Phyllodactylidae) from a Sandstone Outcrop in Central Brazil
    Herpetology Notes, volume 5: 49-58 (2012) (published online on 18 March 2012) Natural history of the tropical gecko Phyllopezus pollicaris (Squamata, Phyllodactylidae) from a sandstone outcrop in Central Brazil. Renato Recoder1*, Mauro Teixeira Junior1, Agustín Camacho1 and Miguel Trefaut Rodrigues1 Abstract. Natural history aspects of the Neotropical gecko Phyllopezus pollicaris were studied at Estação Ecológica Serra Geral do Tocantins, in the Cerrado region of Central Brazil. Despite initial prospection at different types of habitats, all individuals were collected at sandstone outcrops within savannahs. Most individuals were observed at night, but several specimens were found active during daytime. Body temperatures were significantly higher in day-active individuals. We did not detect sexual dimorphism in size, shape, weight, or body condition. All adult males were reproductively mature, in contrast to just two adult females (11%), one of which contained two oviductal eggs. Dietary data indicates that P. pollicaris feeds upon a variety of arthropods. Dietary overlap between sexes and age classes was moderate to high. The rate of caudal autotomy varied between age classes but not between sexes. Our data, the first for a population ofP. pollicaris from a savannah habitat, are in overall agreement with observations made in populations from Caatinga and Dry Forest, except for microhabitat use and reproductive cycle. Keywords. Cerrado, lizard, local variation, niche breadth, thermal ecology, sexual dimorphism, tail autotomy. Introduction information about aspects of the natural history (habitat Phyllopezus pollicaris (Spix, 1825) is a large-sized, use, morphology, diet, temperatures, reproductive nocturnal and insectivorous gecko native to central condition and caudal autotomy) of a population of South America (Rodrigues, 1986; Vanzolini, Costa P.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Independent Evolution of Sex Chromosomes in Eublepharid Geckos, a Lineage with Environmental and Genotypic Sex Determination
    life Article Independent Evolution of Sex Chromosomes in Eublepharid Geckos, A Lineage with Environmental and Genotypic Sex Determination Eleonora Pensabene , Lukáš Kratochvíl and Michail Rovatsos * Department of Ecology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; [email protected] (E.P.); [email protected] (L.K.) * Correspondence: [email protected] or [email protected] Received: 19 November 2020; Accepted: 7 December 2020; Published: 10 December 2020 Abstract: Geckos demonstrate a remarkable variability in sex determination systems, but our limited knowledge prohibits accurate conclusions on the evolution of sex determination in this group. Eyelid geckos (Eublepharidae) are of particular interest, as they encompass species with both environmental and genotypic sex determination. We identified for the first time the X-specific gene content in the Yucatán banded gecko, Coleonyx elegans, possessing X1X1X2X2/X1X2Y multiple sex chromosomes by comparative genome coverage analysis between sexes. The X-specific gene content of Coleonyx elegans was revealed to be partially homologous to genomic regions linked to the chicken autosomes 1, 6 and 11. A qPCR-based test was applied to validate a subset of X-specific genes by comparing the difference in gene copy numbers between sexes, and to explore the homology of sex chromosomes across eleven eublepharid, two phyllodactylid and one sphaerodactylid species. Homologous sex chromosomes are shared between Coleonyx elegans and Coleonyx mitratus, two species diverged approximately 34 million years ago, but not with other tested species. As far as we know, the X-specific gene content of Coleonyx elegans / Coleonyx mitratus was never involved in the sex chromosomes of other gecko lineages, indicating that the sex chromosomes in this clade of eublepharid geckos evolved independently.
    [Show full text]
  • Download PDF (Inglês)
    Iheringia Série Zoologia e-ISSN 1678-4766 www.scielo.br/isz Museu de Ciências Naturais Article The lizard that never sleeps: activity of the pampa marked gecko Homonota uruguayensis Renata C. Vieira , Laura Verrastro , Márcio Borges-Martins & Jéssica F. Felappi Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, prédio 43435, sala 101, Agronomia, 91501-970 Porto Alegre, RS, Brazil. Received 12 April 2019 Accepted 24 April 2020 Published 05 June 2020 DOI 10.1590/1678-4766e2020011 ABSTRACT. It is generally assumed that lizards are active whenever climatic conditions are favorable. Homonota uruguayensis (Vaz-Ferreira & Sierra de Soriano, 1961) is the only native gecko – and nocturnal lizard – living in the northern Pampa biome, and its ecology is poorly known. This study aimed at describing this species’ pattern of daily and annual activity and its relation with environmental temperatures. The study was conducted in the extreme south of Brazil (Rosário do Sul, State of Rio Grande do Sul), between May 2010 and January 2011 at a rocky outcrop located in the Pampa biome. The study was carried out in a total of four seasonal field trips, totalizing 1185 hours of field work. The data were collected, both during the day and the night in 6-hour shifts (duration of the sampling period). The area was randomly covered at each shift to record activity and microhabitat use by the lizards. In total 1541 specimens were recorded throughout the study. Homonota uruguayensis showed diurnal and nocturnal activity in the four seasons, with periods of daily activity varying significantly between all seasons in a cyclic and multimodal pattern, with no significant relation with environmental temperatures.
    [Show full text]
  • First Record of Albinism in the Taragüi Gecko Homonota Taragui (Squamata: Phyllodactylidae)
    Herpetology Notes, volume 8: 425-427 (published online on 12 August 2015) First record of albinism in the Taragüi Gecko Homonota taragui (Squamata: Phyllodactylidae) Azul Courtis1,*, Rodrigo Cajade1, 2, José Miguel Piñeiro1, 2, Alejandra Hernando1, 2 and Federico Marangoni1, 2 Albinism is a rare, congenital, genetically inherited - Rivera et al., 2001), Eublepharidae (Eublepharis condition characterized by a partial or complete lack of macularius - Gamble et al., 2006) and Phyllodactylidae melanin; the pigment that colors the skin, eyes and hair (Tarentola boettgeri bischoffi - Rocha and Rebelo, or feathers (López and Ghirardi, 2011). This condition 2010). Here, we report the first case of albinism in results from the expression of a recessive allele, which aspecies of the genus Homonota (Phyllodactylidae). causes tyrosinase inactivity, an enzyme involved in The South American genus Homonota includes ten melanin biosynthesis (Krecsák, 2008). There are two species of nocturnal and terrestrial lizards distributed in types of albinism, complete albinism, a condition Argentina, Bolivia, Brazil, Paraguay and Uruguay (Avila expressed phenotypically as the complete absence of et al., 2012; Cajade et al., 2013). The normal coloration melanin in the entire body; and partial albinism, when consists of irregular brown or black reticulation or melanin is reduced in the whole body or the absence regular brownish rectangles superimposed on either a is located in just one part of the body (Klug and yellowish brown or grayish black ground color; brown Cummings, 1999). or black bar on snout anterior to eye always present, in In reptiles, albinism is an uncommon phenomenon in some cases very obscure; ventral surfaces immaculate to nature, which may be due to certain factors such as high densely covered with chromatophores (Kluge, 1964).
    [Show full text]
  • 17 June 2021 Aperto
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Osteology, fossil record and palaeodiversity of the European lizards This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/1627296 since 2017-05-19T14:48:55Z Published version: DOI:10.1163/15685381-00003085 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 26 September 2021 This is the author's final version of the contribution published as: Villa, Andrea; Tschopp, Emanuel; Georgalis, Georgios L.; Delfino, Massimo. Osteology, fossil record and palaeodiversity of the European lizards. AMPHIBIA-REPTILIA. 38 pp: 79-88. DOI: 10.1163/15685381-00003085 The publisher's version is available at: http://booksandjournals.brillonline.com/content/journals/10.1163/15685381-00003085 When citing, please refer to the published version. Link to this full text: http://hdl.handle.net/ This full text was downloaded from iris - AperTO: https://iris.unito.it/ iris - AperTO University of Turin’s Institutional Research Information System and Open Access Institutional Repository 1 Osteology, fossil record and palaeodiversity of the European lizards 2 3 Andrea Villa1, *, Emanuel Tschopp1,
    [Show full text]
  • Captive Wildlife Allowed List
    Saskatchewan Captive Wildlife Allowed Species List (as of June 1, 2021) AMPHIBIANS (CLASS AMPHIBIA) Class (Common Name) Scientific Name Family Ambystomatidae Axolotl Ambystoma mexicanum Marble Salamander Ambystoma opacum Family Bombinatoridae Oriental Fire-Bellied Toad Bombina orientalis Family Bufonidae Green Toad Anaxyrus debilis Black Indonesian Toad Bufo asper Indonesian Toad Duttaphrynus melanostictus Family Ceratophryidae Surinam Horned Frog Ceratophrys cornuta Chacoan Horned Frog Ceratophrys cranwelli Argentine Horned Frog Ceratophrys ornata Budgett’s Frog Lepidobatrachus laevis Family Dendrobatidae Dart Poison Frog Dendrobates auratus Yellow-banded Poison Dart Frog Dendrobates leucomelas Dyeing Dart Frog Dendrobates tinctorius Yellow-striped Poison Frog Dendrobates truncatus Family Hylidae Clown Tree Frog Dendropsophus leucophyllatus Bird Poop Tree Frog Dendropsophus marmoratus Barking Tree Frog Dryophytes gratiosus Squirrel Tree Frog Dryophytes squirellus Green Tree Frog Dryophytes cinereus Cuban Tree Frog Osteopilus septentrionalis Haitian Giant Tree Frog Osteopilus vastus White’s Tree Frog Ranoidea caerulea Brazilian Black and White Milky Frog Trachycephalus resinifictrix Hyperoliidae African Reed Frog Hyperolius concolor Family Mantellidae Baron’s Mantella Mantella baroni Brown Mantella Mantella betsileo Family Megophryidae Long-nosed Horned Frog Megophrys nasuta Family Microhylidae Tomato Frog Dyscophus guineti Chubby Frog Kaloula pulchra Banded Rubber Frog Phrynomantis bifasciatus Emerald Hopper Frog Scaphiophryne madagascariensis
    [Show full text]
  • Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution
    ISSN 1809-127X (online edition) © 2011 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution Lizards of Rio Negro Province, northern Patagonia, PECIES S Argentina OF ISTS L Cristian Hernan Fulvio Perez 1, Nicolas Frutos 1, Monica Kozykariski 1, Mariana Morando 1, Daniel Roberto Perez 2 and Luciano Javier Avila 1* 1 CENPAT-CONICET. Boulevard Almirante Brown 2915, U9120ACD. Puerto Madryn, Chubut, Argentina. 2 Universidad Nacional del Comahue, Escuela Superior de Salud y Ambiente. Buenos Aires 1400, 8300, Neuquén, Neuquén, Argentina. * Corresponding author. E-mail: [email protected] Abstract: We provide a checklist of lizards distributed in the Rio Negro province, northern Patagonia, Argentina. Representatives of 45 species of lizards were found inhabiting this region as well as several still undescribed species. This list is a contribution to the still poorly known herpetofauna of the region. Introduction Morando 2002; Belver and Avila 2002; Ibargüengoytía Knowledge of Argentinean lizards has grown 2004; Ibargüengoytía et al. 2005; Perez and Avila 2005; exponentially in the last decade. In general the majority of Perez et al. 2005; Yokes et al. 2006; Frutos et al. 2007; the new information is concentrated around big cities with Ibargüengoytía and Casalins 2007; Morando et al. 2007; academic institutions or in areas with some particular Ibargüengoytía et al. 2008; Perez et al. 2008; Nori et al. interest, as an accessible mountain range, national park, 2010a;b; Scrocchi et al. 2010), as well as descriptions of or subject to survey for environmental studies related to new species (Abdala 2003; 2005; Etheridge and Christie some kind of human perturbation.
    [Show full text]
  • Multiple Evolutionary Origins and Losses of Tooth Complexity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Multiple evolutionary origins and losses of tooth 2 complexity in squamates 3 4 Fabien Lafuma*a, Ian J. Corfe*a, Julien Clavelb,c, Nicolas Di-Poï*a 5 6 aDevelopmental Biology Program, Institute of Biotechnology, University of Helsinki, FIN- 7 00014 Helsinki, Finland 8 bDepartment of Life Sciences, The Natural History Museum, London SW7 5DB, United 9 Kingdom 10 cLaboratoire d’Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université 11 Claude Bernard Lyon 1 – UMR CNRS 5023, ENTPE, F-69622 Villeurbanne, France 12 13 *Mail: [email protected]; [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Teeth act as tools for acquiring and processing food and so hold a prominent role in 15 vertebrate evolution1,2. In mammals, dental-dietary adaptations rely on tooth shape and 16 complexity variations controlled by cusp number and pattern – the main features of the 17 tooth surface3,4.
    [Show full text]
  • Characteristics of Miniaturization in Squamates: A
    CHARACTERISTICS OF MINIATURIZATION IN SQUAMATES: A PHYLOGENETIC PERSPECTIVE FROM CRANIAL MORPHOLOGY ___________ A Thesis Presented to The Faculty of the Department of Biological Sciences Sam Houston State University ___________ In Partial Fulfillment of the Requirements for the Degree of Master of Science ___________ by Maria Camila Vallejo Pareja August, 2018 CHARACTERISTICS OF MINIATURIZATION IN SQUAMATES: A PHYLOGENETIC PERSPECTIVE FROM CRANIAL MORPHOLOGY by Maria Camila Vallejo Pareja ___________ APPROVED: Juan Diego Daza, PhD Committee Director Christopher Randle, PhD Committee Co-Director Monte L. Thies, PhD Committee Member Jessica Anderson Maisano, PhD Committee Member John B. Pascarella, PhD Dean, College of Sciences and Engineering Technology DEDICATION A Mariana y Manuel, A Nacho y a Silvia, A Carito y Juanis. Con infinita gratitud. iii ABSTRACT Vallejo Pareja, Maria Camila, Characteristics of miniaturization in squamates: A phylogenetic perspective from cranial morphology. Master of Science (Biological Sciences), August, 2018, Sam Houston State University, Huntsville, Texas. Miniaturization is recurrent in tetrapods, and has been widely recognized to be an evolutionary process resulting from the occupation of previously unexploited niches (Hanken and Wake, 1993; Rieppel, 1984a, 1996). In this thesis I review the process of miniaturization and its effects on the skull of squamates (lizards, snakes, and amphisbaenians). I compiled a list of characteristics previously described for squamates and summarized the main differences among higher level groups (e.g., Iguania, Gekkota or Scincomorpha). I also investigated whether observed traits linked to miniaturization are the product of convergent evolution. I used a large published morphological data set that includes 204 species of which 54 are miniaturized. I coded characters for an additional species that represent the smallest known squamates (e.g., Sphaerodactylus ariasae and Brookesia micra) and belong to taxonomic groups with minor representation in the original dataset.
    [Show full text]