<<

Supplemental data

Behavioral data

Memory performances in term of percentage on the total number of old or new items, for each group of subject, irrespective of the of the stimuli.

R responses K responses Miss Correct False rejections alarms Sleep group 22.1 ±16.6 30.1 ± 7.3 47.7 ± 16.6 90.1 ± 7.3 10.0 ± 7.6 TSD group 19.6 ± 12.5 31.7 + 11.6 48.8 ± 12.8 95.0 ± 5.1 4.9 ± 5.0

Pupillary size data

Analysis of pupillary size data During encoding and both retest sessions, mean pupillary size was estimated during the second following the beginning of the picture display. During this interval, the pupillary size was stable enough to assess the autonomic elicited by the pictures. Trials contaminated by blinks were discarded. To reduce the inter-subject variability, baseline pupillary size was estimated during the null events (fixation cross), averaged, and subtracted from the mean values. A repeated measure ANOVA with (neg, neu, pos) and session (encoding, 3d and 6m Retest) as within- subjects factors and groups (RS vs. TSD) as between-subjects factor. We tested the effects of group, emotion and session and their interaction. One subject was discarded from the analysis due to poor quality of pupillary data during the 3d Retest session. Planned comparisons tested the differences in pupillary size between the three types of during the 6m retest session.

Results of the pupillary size

Table S1: mean pupillary size ± SD Sleep group TSD group Neg Neu Pos Neg Neu Pos Encoding 0.40 ± 0.31 ± 0.32 ± 0.53 ± 0.47 ± 0.46 ± 0.19 0.17 0.21 0.15 0.14 0.14 3d Retest 0.34 ± 0.29 ± 0.26 ± 0.35 ± 0.32 ± 0.30 ± 0.22 0.22 0.23 0.17 0.16 0.14 6m Retest 0.44 ± 0.39 ± 0.38 ± 0.54 ± 0.45 ± 0.43 ± 0.19 0.17 0.18 0.12 0.11 0.11

We observed no significant main effect of group (F(1,29)=2.26, p=0.14) but we observed a significant main effect of emotion (F(2,58)=58.8, p<0.001) and time (F(2,58)=11.79, p<0.001). There was a significant effect of negative and positive emotion as compared to neutral ones across the three sessions (neg>neu, p<0.001) and (neu>pos, p=0.04). The same effects were observed for the 6m session only (neg>neu, p<0.001) and (neu>pos, p=0.03). Most importantly, there was a significant effect of time : the pupillary size was larger after 6 months than after 3 days (p<0.001), but was not significantly different beween 6 months retest and encoding (p=0.16), suggesting a restoration of the emotional arousal after 6 months but not after 3 days. Finally, we observed no significant difference between groups of sleep for the 6 months retest only (p=0.2), suggesting that the response of the amygdala for the RS subjects was not due to the modification of the perception of emotion between groups. In summary, we observed a significant effect of emotion on pupillary size across the three sessions and particularly after 6 months retest, because negative pictures induced larger pupillary size than neutral ones. Second, emotional arousal is larger after 6 months than after 3 days and is equal after 6 months than during encoding. Finally, the autonomic response is not significantly different between groups.

Functional MRI results

All of the regions presented are thresholded at p<0.001 (uncorrected) and significant at p<0.05 after correction on a small volume of , excepted for: *= significant at p<0.05 corrected over the entire brain volume, °= thresholded at p<0.005 uncorrected, and significant or showing a trend (between p<0.05 and p=0.1) after correction on a small volume of interest. (Psvc: p value after small volume correction on coordinates founds in the literatures referenced in supplemental data).

Table S1: Effect of emotion, all subjects (RS and TSD group)

Brain regions MNI Z- Side Psvc coordinates score (x,y,z:mm) Neg>Neu (One sample t-test, RS+TSD) Frontal cortex Inferior frontal 54, 32, 0 3.44 R 0.021 gyrus Occipital cortex Middle occipital 58, -64, 2 5.13 R 0.01* /temporal gyrus -52, -64, 12 4.58 L <0.001 Limbic area Amygdala -22, -8, -22 3.22 L 0.038 Brain stem Locus coeruleus -2, -32, -28 3.33 L 0.029 Pos>Neu(One sample t-test, RS+TSD) Occipital cortex Middle occipital -14, -100, 6 3.60 L 0.011 gyrus 16, -90, 6 3.74 R 0.007

Table S2: Effect of memory (R>K), all subjects (RS and TSD group)

Brain regions MNI Z- Side Psvc coordinates score (x,y,z:mm) RS + TSD groups (One sample t-test) Frontal cortex Medial prefrontal 2, 52, 8 7.58 R <0.001* cortex -6, 44, 10 7.38 L <0.001* 4, 46, 20 7.35 R <0.001* -2, 54, 24 7.35 L <0.001* Ventral medial 8, 42, -14 6.26 R <0.001* /orbital prefrontal cortex Superior frontal -36, 10, 38 6.15 L <0.001* gyrus 20, 40, 48 5.97 R <0.001* Postcentral -44, -16, 48 5.82 L <0.001* Inferior frontal / -28, 14, -26 6.91 L <0.001* temporal pole -36, 4, -26 6.10 L <0.001* cortex -50, 4, -36 5.94 L <0.001* 30, 16, -26 5.85 R <0.001* Temporal cortex Superior temporal -54, -22, -18 5.71 L 0.001 sulcus 60, -32, -4 5.06 R 0.015 Parietal cortex Precuneus -6, -50, 38 7.47 L <0.001* Angular gyrus -50, -68, 42 7.08 L <0.001* -58, -62, 28 6.65 L <0.001* Posterior cingulate -2, -50, 24 6.21 L <0.001* gyrus Supramarginal -50, -52, 28 6.16 L <0.001* gyrus Basal ganglia Caudate nucleus -10, 4, -8 6.36 L <0.001* 6, 6, -4 6.33 R <0.001* Limbic area Hippocampus -30,-28,-10 3.90 L 0.019 30, -20, -28 4.53 R 0.001 Amygdala -14, -6, -20 6.19 L <0.001* 26, 0, -28 5.75 R 0.001

Table S3: Interaction between (Pos>Neu)x(R>K) after 6 months

Brain regions MNI Z- Side Psvc coordinates score (x,y,z:mm) RS group (One sample t-test) Frontal cortex Superior medial -20, 38, 46 3,46 L 0.027 prefrontal cortex Parietal cortex Inferior parietal -52, -42, 58 3.13 L 0.11 gyrus Occipital Lingual gyrus 18, -48, 0 3.54 R 0.021 cortex Limbic areas Amygdala 28, -4, -26 4.15 R 0.003

Table S4: Interaction between emotion (Pos>Neu), memory (R>K) and sleep status (RS > TSD) after 6 months

Brain regions MNI Z- Side Psvc coordinates score (x,y,z:mm) RS > TSD groups (Two sample t-test) Frontal cortex Superior medial 12, 62, 32 3.09 R 0.05 frontal gyrus Mid cingulate -12, 18, 36 3.17 L 0.042 Middle prefrontal -52, 26, 36 3.34 L 0.027 gyrus Parietal cortex Intraparietal 16, -64, 54 3.11 R 0.049 sulcus Occipital cortex Middle occipital -60, -64, 14 2.90 L 0.08 ° gyrus Limbic area Amygdala 28, -4, -22 3.91 R 0.005

Table S5: Psychophysiological interactions

RS > TSD Brain regions MNI Z- Side Psvc Two sample t-test coordinates score (x,y,z:mm) VMPFC Intraparietal -22, -58, 40 3.75 L 0.008 sulcus Amygdala Middle occipital -46, -58, -2 2.71 L 0.12° gyrus Inferior prefrontal -36, 38, -6 2.60 L 0.14° gyrus

Table S6: Interaction between emotion (Pos>Neu), memory (R>K), sleep status (RS > TSD) and time (6m > 3d)

Brain regions MNI Z- Side Psvc coordinates score (x,y,z:mm) RS > TSD groups (Two sample t-test), 6 months > 3 days Frontal cortex Lateral middle -44, 0, 38 4.45 L 0.001 prefrontal cortex Mid cingulate -12, 18, 38 3.24 L 0.039 Parietal cortex Inferior parietal 32, -54, 52 3.32 R 0.032 gyrus Occipital cortex Inferior occipital -26, -88, -8 3.47 L 0.021 gyrus Fusiform gyrus 28, -28, -24 3.85 R 0.007 Limbic area Amygdala 28, -4, -30 2.91 R 0.086°

Coordinates found in the literature:

Effect of emotion, all subjects (Table S1) Neg>Neu Inferior frontal cortex (52, 36, 0) (Sterpenich et al., 2007), Occipital cortex (-52, -74, 12) (Sterpenich et al., 2007), Amygdala (-24, -6, -15) (Smith et al., 2006), LC (2, -32, -20) (Sterpenich et al., 2006) Pos>Neu Middle occipital gyrus (–10, -98, 0) (Morris et al., 1998), (–10, -92, 4) (Morris et al., 1998)

Effect of memory, all subjects (R>K) (Table S2) Hippocampus (36,-20,-20) (-38,-28,-14) (Sterpenich et al., 2007)

Interaction between memory and time (R>K) x (6m Retest6M > 3d Retest) (Table 2) Ventral medial prefrontal gyrus (-2,36,4) (Sterpenich et al., 2007), Lateral middle prefrontal gyrus (-36,48,9) (Henson et al., 2005), Inferior parietal gyrus (51,-54,48) (Henson et al., 2005), (-48,-42,45) (Henson et al., 2005), Precuneus (–6, -72, 45) (Smith et al., 2005)

Interaction between memory and time (R>K) x (3d Retest > 6m Retest) (Table 2) Hippocampus (36, -26, -10) (Sterpenich et al., 2007)

Effect of memory (R>K) for the RS group exclusively masked by the effect of memory (R>K) for the TSD group VMPFC (-8, 26, -8) (Gais et al., 2007), Fusiform gyrus (-36, -48, -24) (Sterpenich et al., 2007), Precuneus (–6, -72, 45) (Smith et al., 2005)

Multiple regression on the effect of memory (R>K) for the RS group, modulated by performances MPFC (-12, 54, -12) (Sterpenich et al., 2007)

Interaction between emotion and memory (Emo>Neu) x (R>K) (Tables 3 and S3) Neg>Neu MPFC (-12, 54, -12) (Sterpenich et al., 2007), VMPFC (-8, 26, -8) (Gais et al., 2007), MPFC (24, 30, -15) (Yonelinas et al., 2005), Precuneus (–6, -66, 58), Fusiform gyrus (-36, -48, -24) (Sterpenich et al., 2007), Hippocampus (-38, -28, -14) (Sterpenich et al., 2007), Amygdala: (24 –9 –15)(Fenker et al., 2005)

Pos>Neu Superior medial frontal gyrus (-14, 40, 52) (Sterpenich et al., 2007), Inferior parietal gyrus (-48, -42, -45) (Henson et al., 2005), Lingual gyrus (15, -57, -3) (Smith et al., 2005), Amygdala (27, -3, -18) (Smith et al., 2005)

Interaction between emotion, memory and sleep status (Tables 4 and S4) Neg>Neu MPFC (-6, 54, -6) (Yonelinas et al., 2005), MPFC (9, 63, 21) (Yonelinas et al., 2005), VMPFC (2, 48, 2) (Takashima et al., 2007), VMPFC (-8, 26, -8) (Gais et al., 2007), Middle frontal cortex (30, 12, 45) / (-45, 15, 30) (Henson et al., 2005), Precuneus (–6, -72, 45) (Smith et al., 2005), Parietal cortex (-20, -60, 54) (Takashima et al., 2007), Parietal cortex (36, -66, 48) (Yonelinas et al., 2005), Middle occipital cortex (-50, -74, 0) (Sterpenich et al., 2007), Amygdala (24 –9 –15) (Fenker et al., 2005), (34, -4, -30) (Sterpenich et al., 2007)

Pos>Neu Medial prefrontal cortex (8, 60, 24) (Sterpenich et al., 2007), Cingulate cortex (-3, 21, 39) (Henson et al., 2005), Inferior posterior / Middle frontal (–45, 30, 39) (Henson et al., 2005), Intraparietal sulcus (21, -63, 45) (Henson et al., 2005), Middle occipital cortex (52, -66, 14) (Sterpenich et al., 2007), Amygdala (24, –9, –15) (Fenker et al., 2005)

Interaction (Emo>Neu) x (R>K) x (RS > TSD) inclusively masked by the effect of emotion (Emo>Neu) during encoding (Tables 5 and S5) Neg>Neu Middle occipital cortex (-50, -74, 0) (Sterpenich et al., 2007), Amygdala (24 –9 – 15)(Fenker et al., 2005), (34, -4, -30) (Sterpenich et al., 2007)

Pos>Neu Occipital cortex (-39, -81, 18) (Fenker et al., 2005), Amygdala (24, -12, -30) (Sterpenich et al., 2007)

Interaction (Emo>Neu) x (R>K) x (RS > TSD) inclusively masked by the effect of memory specific to long term (R-K) x (6m Retest > 3d Retest) (Tables 5 and S5) Neg>Neu VMPFC (2, 48, 2) (Takashima et al., 2007), Middle frontal cortex (30, 12, 45) / (-45, 15, 30) (Henson et al., 2005), Precuneus (–6, -72, 45) (Smith et al., 2005), Parietal cortex (20, -60, 54) (Takashima et al., 2007), Parietal cortex (36, -66, 48) (Yonelinas et al., 2005)

Pos>Neu MPFC (8, 64, 12) (Sterpenich et al., 2007) (4,48,40) (Heinzel et al., 2005), Middle frontal (–45, 30, 39) (Henson et al., 2005), Intraparietal sulcus (-48, -42, 45) (Henson et al., 2005)

Psychophysiological interaction (Tables 6 and S6) Neg>Neu Precuneus (-6,-51,30) (Henson et al., 2005), Fusiform gyrus (–24, -30, -26) (Sterpenich et al., 2007), Fusiform gyrus (44, -34, -16) (Morris et al., 1998), MPFC (– 8, 26, -8) (Gais et al., 2007)

Pos>Neu Intraparietal sulcus (21, -63, 45) (Henson et al., 2005), Middle occipital cortex (48, - 62, -6) (Sterpenich et al., 2007), Orbitofrontal (-42, 30, -6) (Sterpenich et al., 2007)

Interaction between emotion, memory and time Amygdala (34, -4, -30) (Sterpenich et al., 2007), MPFC (-12,54,12) (Sterpenich et al., 2007)

Interaction between emotion, memory, sleep status and time (Tables 7 and S7) Neg>Neu VMPFC (–8, 26, -8) (Gais et al., 2007), Middle frontal cortex ( -39, 3, 30) (Henson et al., 2005), Middle occipital cortex (-50, -74, 0) (Sterpenich et al., 2007), Amygdala (34, -4, -30) (Sterpenich et al., 2007)

Pos>Neu Middle frontal cortex (-39, 0, 30) (Henson et al., 2005), Cingulate (-3, 21, 39) (Henson et al., 2005), Inferior parietal cortex (-36, -57, 54) (Henson et al., 2005), Middle occipital cortex (–28, -84, 0) (Smith et al., 2004), Fusiform gyrus (–24, -30, - 26) (Sterpenich et al., 2007), Amygdala (24, -12, -30) (Sterpenich et al., 2007) References

Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical : psychometric properties. J Consult Clin Psychol 56:893-897. Bermond B, Vorst HC, Vingerhoets AJ, Gerritsen W (1999) The Amsterdam Alexithymia Scale: its psychometric values and correlations with other personality traits. Psychother Psychosom 68:241-251. Buysse DJ, Reynolds CF, 3rd, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28:193-213. Fenker DB, Schott BH, Richardson-Klavehn A, Heinze HJ, Duzel E (2005) Recapitulating emotional context: activity of amygdala, hippocampus and fusiform cortex during recollection and familiarity. Eur J Neurosci 21:1993- 1999. Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, Rauchs G, Schabus M, Sterpenich V, Vandewalle G, Maquet P, Peigneux P (2007) Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A 104:18778-18783. Heinzel A, Bermpohl F, Niese R, Pfennig A, Pascual-Leone A, Schlaug G, Northoff G (2005) How do we modulate our emotions? Parametric fMRI reveals cortical midline structures as regions specifically involved in the processing of emotional valences. Brain Res Cogn Brain Res 25:348-358. Henson RN, Hornberger M, Rugg MD (2005) Further dissociating the processes involved in recognition memory: an FMRI study. J Cogn Neurosci 17:1058- 1073. Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4:97- 110. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14:540-545. Morris JS, Friston KJ, Buchel C, Frith CD, Young AW, Calder AJ, Dolan RJ (1998) A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121 ( Pt 1):47-57. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97-113. Smith AP, Henson RN, Dolan RJ, Rugg MD (2004) fMRI correlates of the episodic retrieval of emotional contexts. Neuroimage 22:868-878. Smith AP, Henson RN, Rugg MD, Dolan RJ (2005) Modulation of retrieval processing reflects accuracy of emotional source memory. Learn Mem 12:472- 479. Smith AP, Stephan KE, Rugg MD, Dolan RJ (2006) Task and content modulate amygdala-hippocampal connectivity in emotional retrieval. Neuron 49:631- 638. Steer RA, Ball R, Ranieri WF, Beck AT (1997) Further evidence for the construct validity of the Beck Inventory-II with psychiatric outpatients. Psychol Rep 80:443-446. Sterpenich V, D'Argembeau A, Desseilles M, Balteau E, Albouy G, Vandewalle G, Degueldre C, Luxen A, Collette F, Maquet P (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26:7416-7423. Sterpenich V, Albouy G, Boly M, Vandewalle G, Darsaud A, Balteau E, Dang-Vu TT, Desseilles M, D'Argembeau A, Gais S, Rauchs G, Schabus M, Degueldre C, Luxen A, Collette F, Maquet P (2007) Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol 5:e282. Takashima A, Nieuwenhuis IL, Rijpkema M, Petersson KM, Jensen O, Fernandez G (2007) Memory trace stabilization leads to large-scale changes in the retrieval network: a functional MRI study on associative memory. Learn Mem 14:472- 479. Yonelinas AP, Otten LJ, Shaw KN, Rugg MD (2005) Separating the brain regions involved in recollection and familiarity in recognition memory. J Neurosci 25:3002-3008.

Figure legends

Figure S1: Different localizations of significant responses in the amygdala found in the interaction between emotion and memory after 6 months for the sleep group (red) and after 3 days for the TSD group (blue)