Stochastic Calculus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CONFORMAL INVARIANCE and 2 D STATISTICAL PHYSICS −
CONFORMAL INVARIANCE AND 2 d STATISTICAL PHYSICS − GREGORY F. LAWLER Abstract. A number of two-dimensional models in statistical physics are con- jectured to have scaling limits at criticality that are in some sense conformally invariant. In the last ten years, the rigorous understanding of such limits has increased significantly. I give an introduction to the models and one of the major new mathematical structures, the Schramm-Loewner Evolution (SLE). 1. Critical Phenomena Critical phenomena in statistical physics refers to the study of systems at or near the point at which a phase transition occurs. There are many models of such phenomena. We will discuss some discrete equilibrium models that are defined on a lattice. These are measures on paths or configurations where configurations are weighted by their energy with a preference for paths of smaller energy. These measures depend on at leastE one parameter. A standard parameter in physics β = c/T where c is a fixed constant, T stands for temperature and the measure given to a configuration is e−βE . Phase transitions occur at critical values of the temperature corresponding to, e.g., the transition from a gaseous to liquid state. We use β for the parameter although for understanding the literature it is useful to know that large values of β correspond to “low temperature” and small values of β correspond to “high temperature”. Small β (high temperature) systems have weaker correlations than large β (low temperature) systems. In a number of models, there is a critical βc such that qualitatively the system has three regimes β<βc (high temperature), β = βc (critical) and β>βc (low temperature). -
Superprocesses and Mckean-Vlasov Equations with Creation of Mass
Sup erpro cesses and McKean-Vlasov equations with creation of mass L. Overb eck Department of Statistics, University of California, Berkeley, 367, Evans Hall Berkeley, CA 94720, y U.S.A. Abstract Weak solutions of McKean-Vlasov equations with creation of mass are given in terms of sup erpro cesses. The solutions can b e approxi- mated by a sequence of non-interacting sup erpro cesses or by the mean- eld of multityp e sup erpro cesses with mean- eld interaction. The lat- ter approximation is asso ciated with a propagation of chaos statement for weakly interacting multityp e sup erpro cesses. Running title: Sup erpro cesses and McKean-Vlasov equations . 1 Intro duction Sup erpro cesses are useful in solving nonlinear partial di erential equation of 1+ the typ e f = f , 2 0; 1], cf. [Dy]. Wenowchange the p oint of view and showhowtheyprovide sto chastic solutions of nonlinear partial di erential Supp orted byanFellowship of the Deutsche Forschungsgemeinschaft. y On leave from the Universitat Bonn, Institut fur Angewandte Mathematik, Wegelerstr. 6, 53115 Bonn, Germany. 1 equation of McKean-Vlasovtyp e, i.e. wewant to nd weak solutions of d d 2 X X @ @ @ + d x; + bx; : 1.1 = a x; t i t t t t t ij t @t @x @x @x i j i i=1 i;j =1 d Aweak solution = 2 C [0;T];MIR satis es s Z 2 t X X @ @ a f = f + f + d f + b f ds: s ij s t 0 i s s @x @x @x 0 i j i Equation 1.1 generalizes McKean-Vlasov equations of twodi erenttyp es. -
A Stochastic Processes and Martingales
A Stochastic Processes and Martingales A.1 Stochastic Processes Let I be either IINorIR+.Astochastic process on I with state space E is a family of E-valued random variables X = {Xt : t ∈ I}. We only consider examples where E is a Polish space. Suppose for the moment that I =IR+. A stochastic process is called cadlag if its paths t → Xt are right-continuous (a.s.) and its left limits exist at all points. In this book we assume that every stochastic process is cadlag. We say a process is continuous if its paths are continuous. The above conditions are meant to hold with probability 1 and not to hold pathwise. A.2 Filtration and Stopping Times The information available at time t is expressed by a σ-subalgebra Ft ⊂F.An {F ∈ } increasing family of σ-algebras t : t I is called a filtration.IfI =IR+, F F F we call a filtration right-continuous if t+ := s>t s = t. If not stated otherwise, we assume that all filtrations in this book are right-continuous. In many books it is also assumed that the filtration is complete, i.e., F0 contains all IIP-null sets. We do not assume this here because we want to be able to change the measure in Chapter 4. Because the changed measure and IIP will be singular, it would not be possible to extend the new measure to the whole σ-algebra F. A stochastic process X is called Ft-adapted if Xt is Ft-measurable for all t. If it is clear which filtration is used, we just call the process adapted.The {F X } natural filtration t is the smallest right-continuous filtration such that X is adapted. -
Lecture 19 Semimartingales
Lecture 19:Semimartingales 1 of 10 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 19 Semimartingales Continuous local martingales While tailor-made for the L2-theory of stochastic integration, martin- 2,c gales in M0 do not constitute a large enough class to be ultimately useful in stochastic analysis. It turns out that even the class of all mar- tingales is too small. When we restrict ourselves to processes with continuous paths, a naturally stable family turns out to be the class of so-called local martingales. Definition 19.1 (Continuous local martingales). A continuous adapted stochastic process fMtgt2[0,¥) is called a continuous local martingale if there exists a sequence ftngn2N of stopping times such that 1. t1 ≤ t2 ≤ . and tn ! ¥, a.s., and tn 2. fMt gt2[0,¥) is a uniformly integrable martingale for each n 2 N. In that case, the sequence ftngn2N is called the localizing sequence for (or is said to reduce) fMtgt2[0,¥). The set of all continuous local loc,c martingales M with M0 = 0 is denoted by M0 . Remark 19.2. 1. There is a nice theory of local martingales which are not neces- sarily continuous (RCLL), but, in these notes, we will focus solely on the continuous case. In particular, a “martingale” or a “local martingale” will always be assumed to be continuous. 2. While we will only consider local martingales with M0 = 0 in these notes, this is assumption is not standard, so we don’t put it into the definition of a local martingale. tn 3. -
Chaotic Decompositions in Z2-Graded Quantum Stochastic Calculus
QUANTUM PROBABILITY BANACH CENTER PUBLICATIONS, VOLUME 43 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998 CHAOTIC DECOMPOSITIONS IN Z2-GRADED QUANTUM STOCHASTIC CALCULUS TIMOTHY M. W. EYRE Department of Mathematics, University of Nottingham Nottingham, NG7 2RD, UK E-mail: [email protected] Abstract. A brief introduction to Z2-graded quantum stochastic calculus is given. By inducing a superalgebraic structure on the space of iterated integrals and using the heuristic classical relation df(Λ) = f(Λ+dΛ)−f(Λ) we provide an explicit formula for chaotic expansions of polynomials of the integrator processes of Z2-graded quantum stochastic calculus. 1. Introduction. A theory of Z2-graded quantum stochastic calculus was was in- troduced in [EH] as a generalisation of the one-dimensional Boson-Fermion unification result of quantum stochastic calculus given in [HP2]. Of particular interest in Z2-graded quantum stochastic calculus is the result that the integrators of the theory provide a time-indexed family of representations of a broad class of Lie superalgebras. The notion of a Lie superalgebra was introduced in [K] and has received considerable attention since. It is essentially a Z2-graded analogue of the notion of a Lie algebra with a bracket that is, in a certain sense, partly a commutator and partly an anticommutator. Another work on Lie superalgebras is [S] and general superalgebras are treated in [C,S]. The Lie algebra representation properties of ungraded quantum stochastic calculus enabled an explicit formula for the chaotic expansion of elements of an associated uni- versal enveloping algebra to be developed in [HPu]. -
A Stochastic Fractional Calculus with Applications to Variational Principles
fractal and fractional Article A Stochastic Fractional Calculus with Applications to Variational Principles Houssine Zine †,‡ and Delfim F. M. Torres *,‡ Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] * Correspondence: delfi[email protected] † This research is part of first author’s Ph.D. project, which is carried out at the University of Aveiro under the Doctoral Program in Applied Mathematics of Universities of Minho, Aveiro, and Porto (MAP). ‡ These authors contributed equally to this work. Received: 19 May 2020; Accepted: 30 July 2020; Published: 1 August 2020 Abstract: We introduce a stochastic fractional calculus. As an application, we present a stochastic fractional calculus of variations, which generalizes the fractional calculus of variations to stochastic processes. A stochastic fractional Euler–Lagrange equation is obtained, extending those available in the literature for the classical, fractional, and stochastic calculus of variations. To illustrate our main theoretical result, we discuss two examples: one derived from quantum mechanics, the second validated by an adequate numerical simulation. Keywords: fractional derivatives and integrals; stochastic processes; calculus of variations MSC: 26A33; 49K05; 60H10 1. Introduction A stochastic calculus of variations, which generalizes the ordinary calculus of variations to stochastic processes, was introduced in 1981 by Yasue, generalizing the Euler–Lagrange equation and giving interesting applications to quantum mechanics [1]. Recently, stochastic variational differential equations have been analyzed for modeling infectious diseases [2,3], and stochastic processes have shown to be increasingly important in optimization [4]. In 1996, fifteen years after Yasue’s pioneer work [1], the theory of the calculus of variations evolved in order to include fractional operators and better describe non-conservative systems in mechanics [5]. -
Locally Feller Processes and Martingale Local Problems
Locally Feller processes and martingale local problems Mihai Gradinaru and Tristan Haugomat Institut de Recherche Math´ematique de Rennes, Universit´ede Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France fMihai.Gradinaru,[email protected] Abstract: This paper is devoted to the study of a certain type of martingale problems associated to general operators corresponding to processes which have finite lifetime. We analyse several properties and in particular the weak convergence of sequences of solutions for an appropriate Skorokhod topology setting. We point out the Feller-type features of the associated solutions to this type of martingale problem. Then localisation theorems for well-posed martingale problems or for corresponding generators are proved. Key words: martingale problem, Feller processes, weak convergence of probability measures, Skorokhod topology, generators, localisation MSC2010 Subject Classification: Primary 60J25; Secondary 60G44, 60J35, 60B10, 60J75, 47D07 1 Introduction The theory of L´evy-type processes stays an active domain of research during the last d d two decades. Heuristically, a L´evy-type process X with symbol q : R × R ! C is a Markov process which behaves locally like a L´evyprocess with characteristic exponent d q(a; ·), in a neighbourhood of each point a 2 R . One associates to a L´evy-type process 1 d the pseudo-differential operator L given by, for f 2 Cc (R ), Z Z Lf(a) := − eia·αq(a; α)fb(α)dα; where fb(α) := (2π)−d e−ia·αf(a)da: Rd Rd (n) Does a sequence X of L´evy-type processes, having symbols qn, converges toward some process, when the sequence of symbols qn converges to a symbol q? What can we say about the sequence X(n) when the corresponding sequence of pseudo-differential operators Ln converges to an operator L? What could be the appropriate setting when one wants to approximate a L´evy-type processes by a family of discrete Markov chains? This is the kind of question which naturally appears when we study L´evy-type processes. -
A Short History of Stochastic Integration and Mathematical Finance
A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes – Monograph Series Vol. 45 (2004) 75–91 c Institute of Mathematical Statistics, 2004 A short history of stochastic integration and mathematical finance: The early years, 1880–1970 Robert Jarrow1 and Philip Protter∗1 Cornell University Abstract: We present a history of the development of the theory of Stochastic Integration, starting from its roots with Brownian motion, up to the introduc- tion of semimartingales and the independence of the theory from an underlying Markov process framework. We show how the development has influenced and in turn been influenced by the development of Mathematical Finance Theory. The calendar period is from 1880 to 1970. The history of stochastic integration and the modelling of risky asset prices both begin with Brownian motion, so let us begin there too. The earliest attempts to model Brownian motion mathematically can be traced to three sources, each of which knew nothing about the others: the first was that of T. N. Thiele of Copen- hagen, who effectively created a model of Brownian motion while studying time series in 1880 [81].2; the second was that of L. Bachelier of Paris, who created a model of Brownian motion while deriving the dynamic behavior of the Paris stock market, in 1900 (see, [1, 2, 11]); and the third was that of A. Einstein, who proposed a model of the motion of small particles suspended in a liquid, in an attempt to convince other physicists of the molecular nature of matter, in 1905 [21](See [64] for a discussion of Einstein’s model and his motivations.) Of these three models, those of Thiele and Bachelier had little impact for a long time, while that of Einstein was immediately influential. -
Informal Introduction to Stochastic Calculus 1
MATH 425 PART V: INFORMAL INTRODUCTION TO STOCHASTIC CALCULUS G. BERKOLAIKO 1. Motivation: how to model price paths Differential equations have long been an efficient tool to model evolution of various mechanical systems. At the start of 20th century, however, science started to tackle modeling of systems driven by probabilistic effects, such as stock market (the work of Bachelier) or motion of small particles suspended in liquid (the work of Einstein and Smoluchowski). For us, the motivating questions are: Is there an equation describing the evolution of a stock price? And, perhaps more applicably, how can we simulate numerically a seemingly random path taken by the stock price? Example 1.1. We have seen in previous sections that we can model the distribution of stock prices at time t as p 2 St = S0 exp (µ − σ =2)t + σ tY ; (1.1) where Y is standard normal random variable. So perhaps, for every time t we can generate a standard normal variable, substitute it into equation (1.1) and plot the resulting St as a function of t? The result is shown in Figure 1 and it definitely does not look like a price path of a stock. The underlying reason is that we used equation (1.1) to simulate prices at different time points independently. However, if t1 is close to t2, the prices cannot be completely independent. It is the change in price that we assumed (in “Efficient Market Hypothesis") to be independent of the previous price changes. 2. Wiener process Definition 2.1. Wiener process (or Brownian motion) is a random function of t, denoted Wt = Wt(!) (where ! is the underlying random event) such that (a) Wt is a.s. -
Lecture Notes on Stochastic Calculus (Part II)
Lecture Notes on Stochastic Calculus (Part II) Fabrizio Gelsomino, Olivier L´ev^eque,EPFL July 21, 2009 Contents 1 Stochastic integrals 3 1.1 Ito's integral with respect to the standard Brownian motion . 3 1.2 Wiener's integral . 4 1.3 Ito's integral with respect to a martingale . 4 2 Ito-Doeblin's formula(s) 7 2.1 First formulations . 7 2.2 Generalizations . 7 2.3 Continuous semi-martingales . 8 2.4 Integration by parts formula . 9 2.5 Back to Fisk-Stratonoviˇc'sintegral . 10 3 Stochastic differential equations (SDE's) 11 3.1 Reminder on ordinary differential equations (ODE's) . 11 3.2 Time-homogeneous SDE's . 11 3.3 Time-inhomogeneous SDE's . 13 3.4 Weak solutions . 14 4 Change of probability measure 15 4.1 Exponential martingale . 15 4.2 Change of probability measure . 15 4.3 Martingales under P and martingales under PeT ........................ 16 4.4 Girsanov's theorem . 17 4.5 First application to SDE's . 18 4.6 Second application to SDE's . 19 4.7 A particular case: the Black-Scholes model . 20 4.8 Application : pricing of a European call option (Black-Scholes formula) . 21 1 5 Relation between SDE's and PDE's 23 5.1 Forward PDE . 23 5.2 Backward PDE . 24 5.3 Generator of a diffusion . 26 5.4 Markov property . 27 5.5 Application: option pricing and hedging . 28 6 Multidimensional processes 30 6.1 Multidimensional Ito-Doeblin's formula . 30 6.2 Multidimensional SDE's . 31 6.3 Drift vector, diffusion matrix and weak solution . -
Introduction to Stochastic Calculus
Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula Introduction to Stochastic Calculus Rajeeva L. Karandikar Director Chennai Mathematical Institute [email protected] [email protected] Rajeeva L. Karandikar Director, Chennai Mathematical Institute Introduction to Stochastic Calculus - 1 Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula A Game Consider a gambling house. A fair coin is going to be tossed twice. A gambler has a choice of betting at two games: (i) A bet of Rs 1000 on first game yields Rs 1600 if the first toss results in a Head (H) and yields Rs 100 if the first toss results in Tail (T). (ii) A bet of Rs 1000 on the second game yields Rs 1800, Rs 300, Rs 50 and Rs 1450 if the two toss outcomes are HH,HT,TH,TT respectively. Rajeeva L. Karandikar Director, Chennai Mathematical Institute Introduction to Stochastic Calculus - 2 Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula Rajeeva L. Karandikar Director, Chennai Mathematical Institute Introduction to Stochastic Calculus - 3 Introduction Conditional Expectation Martingales Brownian motion Stochastic integral Ito formula A Game...... Now it can be seen that the expected return from Game 1 is Rs 850 while from Game 2 is Rs 900 and so on the whole, the gambling house is set to make money if it can get large number of players to play. The novelty of the game (designed by an expert) was lost after some time and the casino owner decided to make it more interesting: he allowed people to bet without deciding if it is for Game 1 or Game 2 and they could decide to stop or continue after first toss. -
Stochastic Calculus of Variations for Stochastic Partial Differential Equations
JOURNAL OF FUNCTIONAL ANALYSIS 79, 288-331 (1988) Stochastic Calculus of Variations for Stochastic Partial Differential Equations DANIEL OCONE* Mathematics Department, Rutgers Universiiy, New Brunswick, New Jersey 08903 Communicated by Paul Malliavin Receved December 1986 This paper develops the stochastic calculus of variations for Hilbert space-valued solutions to stochastic evolution equations whose operators satisfy a coercivity con- dition. An application is made to the solutions of a class of stochastic pde’s which includes the Zakai equation of nonlinear filtering. In particular, a Lie algebraic criterion is presented that implies that all finite-dimensional projections of the solution define random variables which admit a density. This criterion generalizes hypoelhpticity-type conditions for existence and regularity of densities for Iinite- dimensional stochastic differential equations. 0 1988 Academic Press, Inc. 1. INTRODUCTION The stochastic calculus of variation is a calculus for functionals on Wiener space based on a concept of differentiation particularly suited to the invariance properties of Wiener measure. Wiener measure on the space of continuous @-valued paths is quasi-invariant with respect to translation by a path y iff y is absolutely continuous with a square-integrable derivative. Hence, the proper definition of the derivative of a Wiener functional considers variation only in directions of such y. Using this derivative and its higher-order iterates, one can develop Wiener functional Sobolev spaces, which are analogous in most respects to Sobolev spaces of functions over R”, and these spaces provide the right context for discussing “smoothness” and regularity of Wiener functionals. In particular, functionals defined by solving stochastic differential equations driven by a Wiener process are smooth in the stochastic calculus of variations sense; they are not generally smooth in a Frechet sense, which ignores the struc- ture of Wiener measure.