The Dawn of Radiochemistry in Japan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessing Potential Induced Radioactivity in Materials Processed with X-Ray Energy Above 5 Mev: Assessment Protocols and Practical Experience
FERMILAB-PUB-20-562-DI Assessing potential induced radioactivity in materials processed with X-ray energy above 5 MeV: Assessment protocols and practical experience Hervé Michel1; Thomas Kroc2; Brian J. McEvoy 3; Deepak Patil4 Pierre Reppert5; Mark A. Smith6 1Director, Radiation Technology EMEAA, STERIS, Hogenweidstrasse 6, 4658 Däniken, Switzerland, [email protected] 2Applications Physicist for Technology Development, Fermilab, Batavia, Illinois, USA, [email protected] 3Senior Director Global Technologies, STERIS, IDA Business & Technology Park, Tullamore, County Offaly, R35 X865, Ireland, [email protected] 4Senior Director, Radiation Technology, 1880 Industrial Drive, Libertyville, IL 60048 [email protected] 5Validation Manager, STERIS, Hogenweidstrasse 6, 4658 Däniken, Switzerland, [email protected] 6Managing Director, Ionaktis, LLC, PO Box 11599, Charlotte, NC 28220 USA [email protected] Abstract In accordance with ISO11137-1 section 5.1.2, ‘the potential for induced radioactivity in product shall be assessed’. This article describes how compliance to this requirement may be achieved using qualified test methods. Materials of consideration are conceptually discussed. Results of testing conducted on products processed with a 7.5 MeV X-ray irradiation process are provided. As X-ray becomes more widely used in healthcare sterilization, having standard assessment protocols for activation coupled with a shared database of material test results will benefit all healthcare product manufacturers seeking to avail of this innovative technology. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. 1. Introduction Radioactive material of natural origin is ubiquitous in nature, widely varying in type and amount. -
Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser
PHYSICAL REVIEW X 4, 031030 (2014) Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser † A. Picciotto,1,* D. Margarone,2, A. Velyhan,2 P. Bellutti,1 J. Krasa,2 A. Szydlowsky,3,4 G. Bertuccio,5 Y. Shi,5 A. Mangione,6 J. Prokupek,2,7 A. Malinowska,4 E. Krousky,8 J. Ullschmied,8 L. Laska,2 M. Kucharik,7 and G. Korn2 1Micro-Nano Facility, Fondazione Bruno Kessler, 38123 Trento, Italy 2Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, 182 21 Prague, Czech Republic 3Institute of Plasma Physics and Laser Microfusion, 01-497 Warsaw, Poland 4National Centre for Nuclear Research, 05-400 Otwock, Poland 5Politecnico di Milano, Department of Electronics Information and Bioengineering, 22100 Como, Italy 6Institute of Advanced Technologies, 91100 Trapani, Italy 7Czech Technical University in Prague, FNSPE, 115 19 Prague, Czech Republic 8Institute of Plasma Physics of the ASCR, PALS Laboratory, 182 00 Prague, Czech Republic (Received 12 January 2014; revised manuscript received 1 April 2014; published 19 August 2014) We show that a spatially well-defined layer of boron dopants in a hydrogen-enriched silicon target allows the production of a high yield of alpha particles of around 109 per steradian using a nanosecond, low-contrast laser pulse with a nominal intensity of approximately 3 × 1016 Wcm−2. This result can be ascribed to the nature of the long laser-pulse interaction with the target and with the expanding plasma, as well as to the optimal target geometry and composition. The possibility of an impact on future applications such as nuclear fusion without production of neutron-induced radioactivity and compact ion accelerators is anticipated. -
Simulation of Induced Radioactivity for a Heavy Ion Medical Machine
Chinese Physics C Vol. 38, No. 11 (2014) 118201 Simulation of induced radioactivity for a heavy ion medical machine XU Jun-Kui(Md¿)1;2 SU You-Wu(kÉ)2;1) LI Wu-Yuan(oÉ)2 MAO Wang(f!)2 XIA Jia-Wen(gZ©)2 CHEN Xi-Meng(Ú)1 YAN Wei-Wei(î)2 XU Chong(MÇ)2 1 School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China 2 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China Abstract: The radioactivity induced by carbon ions of the Heavy Ion Medical Machine (HIMM) was studied to asses its radiation protection and environmental impact. Radionuclides in the accelerator component, and in the cooling water and air at the target area, which are induced from primary beam and secondary particles, are simulated by FLUKA Monte Carlo code. It is found that radioactivity in the cooling water and air is not very important at the required beam intensity and energy that is needed for treatment, while radionuclides in the accelerator component may cause some problems for maintenance work and, therefore, a suitable cooling time is needed after the machine is shut down. Key words: radioactivity, HIMM, heavy ion PACS: 07.89.+b, 28.41.Qb DOI: 10.1088/1674-1137/38/11/118201 1 Introduction back to the early period when Curie and Joliot found the activation reaction in 1934 [4]. In recent years, improve- Nowadays, radiation therapy is an important means ments of the accelerator have meant that more kinds of tumor treatment. More than 50% of all patients with of particles, of a higher energy can be accelerated and, localized malignant tumors are treated with radiation [1]. -
The Early History of the Niels Bohr Institute
CHAPTER 4.1 Birthplace of a new physics - the early history of the Niels Bohr Institute Peter Robertson* Abstract SCI.DAN.M. The foundation in 1921 of the Niels Bohr Institute in Copenhagen was to prove an important event in the I birth of modern physics. From its modest beginnings as • ONE a small three-storey building and a handful of physicists, HUNDRED the Institute underwent a rapid expansion over the fol lowing years. Under Bohr’s leadership, the Institute provided the principal centre for the emergence of quan YEARS tum mechanics and a new understanding of Nature at OF the atomic level. Over sixty physicists from 17 countries THE came to collaborate with the Danish physicists at the In BOHR stitute during its first decade. The Bohr Institute was the ATOM: first truly international centre in physics and, indeed, one of the first in any area of science. The Institute pro PROCEEDINGS vided a striking demonstration of the value of interna tional cooperation in science and it inspired the later development of similar centres elsewhere in Europe and FROM the United States. In this article I will discuss the origins and early development of the Institute and examine the A CONFERENCE reasons why it became such an important centre in the development of modern physics. Keywords: Niels Bohr Institute; development of quan tum mechanics; international cooperation in science. * School of Physics, University of Melbourne, Melbourne, Vic. 3010, Australia. Email: [email protected]. 481 PETER ROBERTSON SCI.DAN.M. I 1. Planning and construction of the Institute In 1916 Niels Bohr returned home to Copenhagen over four years since his first visit to Cambridge, England, and two years after a second visit to Manchester, working in the group led by Ernest Ru therford. -
Otto Stern Annalen 4.11.11
(To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern. -
Bibliography
Bibliography F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (John Wiley & Sons, New York, New York, USA, 1986) V. Balashov, Interaction of Particles and Radiation with Matter (Springer, Berlin, Heidelberg, New York, 1997) British Journal of Radiology, Suppl. 25: Central Axis Depth Dose Data for Use in Radiotherapy (British Institute of Radiology, London, UK, 1996) J.R. Cameron, J.G. Skofronick, R.M. Grant, The Physics of the Body, 2nd edn. (Medical Physics Publishing, Madison, WI, 1999) S.R. Cherry, J.A. Sorenson, M.E. Phelps, Physics in Nuclear Medicine, 3rd edn. (Saunders, Philadelphia, PA, USA, 2003) W.H. Cropper, Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking (Oxford University Press, Oxford, UK, 2001) R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (John Wiley & Sons, New York, NY, USA, 1985) R.D. Evans, TheAtomicNucleus(Krieger, Malabar, FL USA, 1955) H. Goldstein, C.P. Poole, J.L. Safco, Classical Mechanics, 3rd edn. (Addison Wesley, Boston, MA, USA, 2001) D. Greene, P.C. Williams, Linear Accelerators for Radiation Therapy, 2nd Edition (Institute of Physics Publishing, Bristol, UK, 1997) J. Hale, The Fundamentals of Radiological Science (Thomas Springfield, IL, USA, 1974) W. Heitler, The Quantum Theory of Radiation, 3rd edn. (Dover Publications, New York, 1984) W. Hendee, G.S. Ibbott, Radiation Therapy Physics (Mosby, St. Louis, MO, USA, 1996) W.R. Hendee, E.R. Ritenour, Medical Imaging Physics, 4 edn. (John Wiley & Sons, New York, NY, USA, 2002) International Commission on Radiation Units and Measurements (ICRU), Electron Beams with Energies Between 1 and 50 MeV,ICRUReport35(ICRU,Bethesda, MD, USA, 1984) International Commission on Radiation Units and Measurements (ICRU), Stopping Powers for Electrons and Positrons, ICRU Report 37 (ICRU, Bethesda, MD, USA, 1984) 646 Bibliography J.D. -
H-Diplo Article Review 20 19
H-Diplo Article Review 20 19 Article Review Editors: Thomas Maddux and Diane Labrosse H-Diplo Web and Production Editor: George Fujii @HDiplo Article Review No. 869 3 July 2019 Walter E. Grunden. “Physicists and ‘Fellow Travelers’: Nuclear Fear, the Red Scare, and Science Policy in Occupied Japan.” Journal of American-East Asian Relations 25:4 (2018): 343-383. DOI: https://doi.org/10.1163/18765610-02504001. https://hdiplo.org/to/AR869 Review by Dong-Won Kim, Harvard University hree decades have passed since the Berlin Wall collapsed in 1989, and most members of the younger generation now consider the Cold War to be as antique as both the First World War and the Second World War. In an era of global terrorism that shakes every corner of the world regardless of political Tand religious differences, the “red scare” of 1947-1960 can even seem to be unrealistic. Historians’ efforts to reinterpret the Cold War from different and distant perspectives are therefore only natural.1 Likewise, historians of science are now reinterpreting science and technology during the Cold War from new angles: for example, David Kaiser’s 2005 analysis of the unfair treatment of several theoretical physicists in the United States during the early Cold War period differs from the analyses offered by the historians of science in the 1980s and 1990s.2 Walter Grunden’s article, “Physicists and ‘Fellow Travelers’: Nuclear Fear, the Red Scare, and Science Policy in Occupied Japan,” offers a fresh understanding of the Cold War outside the United States. The paper is particularly welcome because it systematically analyzes how both the American Occupation (1945-1952) and 1 Two good examples are John Lewis Gaddis, The Cold War: A New History (New York: Penguin Books, 2005), and Odd Arne Westad, The Cold War: A World History (New York: Basic Books, 2017). -
ESSAYS 2010 Nagoya Women’S Studies Research Group JAPAN
ESSAYS 2010 Nagoya Women’s Studies Research Group JAPAN 名古屋女性学グループ 藤沢邦子 (Kuniko Fujisawa) Yae Neesima and Her Accomplishments 秦野康子 (Yasuko Hatano) A Woman Scientist and the Daigo Fukuryū-maru Accident (1954) 石河敦子 (Atsuko Ishikawa) Young Rural Women Factory Workers in Early Twentieth Century Japan 多田倫子 (Noriko Tada) The Wartime School Lives of Three Girls’ High School Students: 1938-1945 Japan 高橋登紀恵 (Tokie Takahashi) The Influence of Kyōiku-chokugo (the Imperial Rescript on Education) 渡辺敬子 (Keiko Watanabe) The Adolescence of Teruko of the Early Shōwa Era 山本順子 (Junko Yamamoto)A Woman’s life in Wartime Beverley Curran & 青山静子(編集) Edited by Beverley Curran, Ph.D. and Shizuko Aoyama, Ph.D. Contents Yae Neesima and Her Accomplishments Kuniko Fujisawa ……………………………………………………………..3 Katsuko Saruhashi (1920-2007): A Woman Scientist and the Daigo Fukuryū-maru Accident (1954) Yasuko Hatano ……………………………………………………………..14 Young Rural Women Factory Workers in Early Twentieth Century Japan Atsuko Ishikawa ……………………………………………………………25 The Wartime School Lives of Three Girls’ High School Students: 1938-1945 Japan Noriko Tada ……………………………………………………………...38 The Influence of Kyōiku-chokugo (the Imperial Rescript on Education) Tokie Takahashi ……………………………………………………………..48 The Adolescence of Teruko of the Early Shōwa Era Keiko Watanabe ……………………………………………………………...59 A Woman’s Life in Wartime Junko Yamamoto ……………………………………………………………...70 Copyright: Essays 2010 remains copyright Nagoya Women’s Studies Research Group JAPAN and cannot be reproduced in whole or in part without written permission of the Copyright Holder. Nagoya Women’s Studies Research Group 2-33-3 Shiroyama-chō, Chikusa-ku, Nagoya 464-0045 JAPAN 2 Yae Neesima and Her Accomplishments Kuniko Fujisawa Yae Neesima1 (1845-1932, nee Yamamoto) was born to a samurai family of the pro-shogunate Aizu Domain (now Fukushima) during the turbulent late Edo period, when Japan’s national seclusion under the feudal Tokugawa shogunate (1603-1867) was to lapse and imperial rule was to be restored on the cusp of national modernization. -
X Rays and Radioactivity : a Complete Surprise
ÏLABORATOIRE ATIONAL ATURNE 91191 Gif-$ur-Yvette Cedex France X rays and Radioactivity : a complete surprise Pierre Radvanyi (Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex) and Monique Bordry (Musée et Archives de l'Institut du Radium, 75231 Paris Cedex 05) Contribution to the Conference on LHS/FH/95-05 the "Emergence of Modem Physics" W - ™W>™ Berlin, 22-24 March 1995 Centre National de la Recherche Scientifique OGO Commissariat à l'Energie Atomique 3>HÉ * **«*«» *r ILABORATOIRE ATIONAL ATURNE 91191 Gif-sur-Yvette Cedex France X rays and Radioactivity : a complete surprise Pierre Radvanyi (Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex) and Monique Bordry (Musée et Archives de l'Institut du Radium, 75231 Paris Cedex 05) Contribution to the Conference on the "Emergence of Modem Physics" ^ - ws/ph/95-os Berlin, 22-24 March 1995 m/fi Centre National de la Recherche Scientifique 093 Commissariat à l'Energie Atomique Berin, 23 March 1995 X rays and radioactivity : a complete surprise Pierre Radvanyi Laboratoire National Saturne, 91191 Gif-sur-Yvette Cedex and Monique Bordry Musée et Archives de l'Institut du Radium, 75231 Paris Cedex 05 Abstract The discoveries of X rays and of radioactivity came as complete experimental surprises; the physicists, at that time, had no previous hint of a possible structure of atoms. It is difficult now, knowing what we know, to replace ourselves in the spirit, astonishment and questioning of these years, between 1895 and 1903. The nature of X rays was soon hypothesized, but the nature of the rays emitted by uranium, polonium and radhim was much more difficult to disentangle, as they were a mixture of different types of radiations. -
Newly Opened Correspondence Illuminates Einstein's Personal Life
CENTER FOR HISTORY OF PHYSICS NEWSLETTER Vol. XXXVIII, Number 2 Fall 2006 One Physics Ellipse, College Park, MD 20740-3843, Tel. 301-209-3165 Newly Opened Correspondence Illuminates Einstein’s Personal Life By David C. Cassidy, Hofstra University, with special thanks to Diana Kormos Buchwald, Einstein Papers Project he Albert Einstein Archives at the Hebrew University of T Jerusalem recently opened a large collection of Einstein’s personal correspondence from the period 1912 until his death in 1955. The collection consists of nearly 1,400 items. Among them are about 300 letters and cards written by Einstein, pri- marily to his second wife Elsa Einstein, and some 130 letters Einstein received from his closest family members. The col- lection had been in the possession of Einstein’s step-daughter, Margot Einstein, who deposited it with the Hebrew University of Jerusalem with the stipulation that it remain closed for twen- ty years following her death, which occurred on July 8, 1986. The Archives released the materials to public viewing on July 10, 2006. On the same day Princeton University Press released volume 10 of The Collected Papers of Albert Einstein, con- taining 148 items from the collection through December 1920, along with other newly available correspondence. Later items will appear in future volumes. “These letters”, write the Ein- stein editors, “provide the reader with substantial new source material for the study of Einstein’s personal life and the rela- tionships with his closest family members and friends.” H. Richard Gustafson playing with a guitar to pass the time while monitoring the control room at a Fermilab experiment. -
Oceanography
Department of OCEANOGRAPHY PROGRESS REPORT Ecological Studies of Radioactivity in the Columbia River Estuary and Adjacent Pacific Ocean Norman Cutshall, SCHOOL OF SCIENCE Principal Investigator Compiled and Edited by James E. McCauley Atomic Energy Commission Contract AT(45-1) 2227 Task Agreement 12 OREGON STATE UNIVERSITY RLO 2227-T12-10 Reference 71-18 1 July 1970 through 30 June 1971 ECOLOGICALSTUDIESOF RADIOACTIVITYIN THE COLUMBIA RIVER ESTUARY AND ADJACENTPACIFIC OCEAN Compiled andEdited by James E. McCauley Principal Investigator: NormanCutshall Co-investigators: Andrew G. Carey, Jr. James E. McCauley William G. Pearcy William C. Renfro William 0. Forster Department of Oceanography Oregon State University Corvallis, Oregon 97331 PROGRESS REPORT 1 July 1970 through 30 June 1971 Submitted to U.S. Atomic Energy Commission ContractAT(45-1)2227 Reference 71-18 RLO 2227-T-12-10 July 1971 ACKNOWLEDGMENTS A major expense in oceanographic research is "time at sea." Operations on the R/V YAQUINA, R/V CAYUSE, R/V PAIUTE, AND R/V SACAJEWEA were funded by several agencies, with the bulk coming from the National Science Founda- tion and Office of Naval Research. Certain special cruises of radiochemical or radioecological import were funded by the Atomic Energy Commission, as was much of the equipment for radioanalysis and stable element analysis. Support for student research, plussome of the gamma ray spectometry facilities, were provided by the Federal Water Quality Administration. We gratefully acknowledge the role of these agencies insupport of the research reported in the following pages. We also wish to express our thanks to the numerous students and staff who contributed to the preparation of thisprogress report. -
Otto Stern Annalen 22.9.11
September 22, 2011 Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental determination of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Konrad Röntgen, Ernest Rutherford, Max von Laue, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.