<<

E UROpA CLIppER

Mission Status Robert Pappalardo / Barry Goldstein Jet Propulsion Laboratory, California Institute of Technology Copyright 2017 California Institute of Technology. Government sponsorship acknowledged ""'  "!  

  )  !"%"  '!# ' " ) !!!%""! #'"    )  """%""  " ~ 100 K  )   !# " !"!"! ' "    )  '#!#!" ) #  " "!&"! ) " %"  "!# " #""! ' "  ! "("     ) "$"'*!" !" "+ ) !!'"$"'!""                (+$*(,$-%2/-. (00(-,"($,"$$%(,(1(-,

7 2/-. /!(1$/"($,"$$%(,(1(-,$ + 

7 "($,"$1/ 1$&6%-/1'$5.*-/ 1(-,-%2/-.    1(-, *$0$ /"'-2,"(* 

7  +. (&,"($,"$-/)(,&/-2.-, /$!(-1("'$+(01/6(,1'$-* /601$+ 

7 $4/-,1($/0(,-* /601$+5.*-/ 1(-,$" # *2/3$6

7 2.(1$/"6--,0/!(1$/"($,"$$%(,(1(-,$ + 

7 "($,1(%("- *0 ,# 1'4 60%-/5.*-/ 1(-, -%1'$21$/-* /601$+ 

7 -* /601$+5.*-/ 1(-,- #+ . 

7 2/-. 5.*-/$/$.-/1 

7 2.(1$/2/-. /!(1$/(00(-,(, *$.-/1 

7 2/-. 12#6$.-/1

                      

3    

"       "    #       !                     

#             

#                !   

#         !           

   !         

4      

      

     

 Comparison: vs. Clipper (Animation)

Spacecraft Trajectory

25 km ≤ ralt ≤ 50 km

50 km < ralt≤ 400 km

400 km < ralt≤ 1000 km

1000 km < ralt≤ 4000 km   

                

    

    

     

17F12 17F13 Callitso Ganymede Callitso 10,000 100,000 37,128 37,701 10,000 10,000 3,237 2,679 6,323 1,629 10,000 4,178 1,000 608 608 800 458 400 1,000 458 400 1,000 414 300 1,000 300 293 1,000 100 199 257 100 100 100 100 100 100 100 100

Flyby Altitude (km) Flyby Altitude 10 10 10 Flyby Altitude (km) 10

1 1 1 1 G00 G00 01G01 04G02 05G03 06G04 39C01 44C02 48C03 49C04 51C05 52C06 53C07 56C08 33C01 36C02 37C03 38C04 39C05 39C06 42C07 45C08 01G01 04G02 05G03 06G04 7    

Earliest Launch Cruise: Orbit Insertion Jovian System Operations *Period: 6/4/22 – 6/24/22 (SLS) 2.5 Years (SLS) 12/24/24 or 5/1/25 (SLS) Transition to Europa Science: 12 months *Period: 6/18/22 – 7/8/22 (EELV) 7.4 Years (EELV) 11/26/29 (EELV) Prime Europa Flyby Campaign: 36 months

* - Dependent on Funding  Project Category 1 LCC > $1B  Mission Risk Class A (Tailored)  NPR 7120.5E Compliant  S/C design compatible with both SLS and EELV        

Kennedy Space Center: LSP office – EELV Interface GSDO – SLS Launch Site Support

*Jet Propulsion Laboratory & Goddard Space Flight Center: Marshall Space Flight Center: Applied Physics Laboratory Propulsion Subsystem lead Program managing center Project Management Launch service provider (SLS) Science Propulsion Subsystem component engineering System Engineering Navigation : Mission Operations High Gain Antenna testing and calibration Payload Management

*-Lead Center Science Investigations

Ice Penetrating Radar Mass Spectrometer Dust Detector/Analyzer Thermal Imager (REASON) (EIS) (MASPEX) (ICEMAG) (SUDA) (E-THEMIS) Dr. Donald Blankenship Dr. Dr. Hunter Waite Dr. Carol Raymond Dr. Sascha Kempf Dr.

Plasma Instrument Europa Short Wave (PIMS) Spectrograph Spectrometer Dr. Joe Westlake (Europa UVS) (MISE) Dr. Kurt Retherford Dr. Diana Blaney              

/,*+/'.%'2 2%--%*)+ " ,#.                                                                                                                                        (*  (*   (*  (* 

"0%"1-             ,*&" ."0%"1-      ,*&" .  ,*&" .         /) $      + " ,#.          $*       $.    $*"+$'&)$    $* $. ! $"#&)$++ $.&$/ 

    

10                

42 E UROPA FLYBYS 4 G ANYMEDE FLYBYS 8 C ALLISTO FLYBYS

   21 Day launch period opens June2022  //Earth/Earth  Arrive Jovian System January, 2030 (7.5 Years)          

MAY 2026 – N OV 2028

DEC 2024 OR M AY 2025  %#%%       !% (&  "

42 E UROPA F LYBYS JAN 2023 – M AR 2023 4 G ANYMEDE F LYBYS 8 C ALLISTO F LYBYS

   %$       %#%%       %#%'!% ( " $%      

Galileo Cassini Planned Launch Mass: 2,562 kg Launch Mass: 5,655 kg Launch Mass: 6,000 kg

 Clipper Spacecraft

 %  &* && -

,#'&#)+$*  #('#&* &)*(+% &*)

  &* &&)  - '$( ((. %#!"#& & $) &* && -%- % " %  / % (  ''%

    "(+)* ()     -    

15         

                     

                       

                      

            

    

                 

Solar Cells in test fixture

                   

         

         

                

                      

    

        

                     

               

  

  

                

           NASA-Selected

Europa Instruments Radiation Science Working Group (Phase A) radiation environment

MASPEX Mass Spectrometer SUDA sniffing atmospheric Dust Analyzer ICEMAG composition surface & plume PIMS composition sensing Faraday Cups Europa-UVS properties environment UV Spectrograph surface & plume/ EIS composition Narrow-Angle Camera + Wide-Angle Camera E-THEMIS MISE mapping alien landscape Thermal Imager IR Spectrometer in 3D & color searching for hot spots surface chemical fingerprints

REASON Ice-Penetrating Radar plumbing the ice shell

Gravity Science Working Group (Phase A) confirming an ocean

Remote Sensing In Situ  E u R o p A Europa Ultraviolet Spectrograph (Europa-UVS) UV Kurt Retherford, Southwest Research Institute (SwRI), San Antonio

 Atmosphere: Composition & , source simulation & sinks, structure, & variability equator to pole  Plumes: Distribution, structure, composition, and variability of active plumes  Surface: Explore surface composition & microphysics and relation to endogenic & exogenic processes Plume Detection  Plasma Environment: Investigate and Density Model and mass flow into Europa’s atmosphere, neutral Plasma Environment (high resolution mode) cloud & plasma torus from Oxygen Emissions

 Spatial and spectral UV imaging Key instrument Parameters

 High spatial resolution mode allows for Wavelength Range 55 – 210 nm imaging of detailed surface and plume Spatial Resolution 0.16° (low res); 0.04° (high res) Nyquist structures sampled  Performs solar and stellar occultations Spectral Resolution λ/Δλ = 220; <0.6 nm FWHM (point source) to determine composition Spectral Cube Size 2048 (spectral) x 512 (spatial)

28 Europa Imaging System (EIS) VIS Zibi Turtle, Johns Hopkins U. Applied Physics Laboratory (APL)

 Constrain the formation of surface features and potential for current activity  Characterize the ice shell  Characterize the surface regolith at small scales

 NAC: high-resolution, imaging, Key Instrument Parameters color NAC WAC  NAC gimbal permits independent targeting, Detector 4096 × 2048 rad-hard CMOS enabling near-global mapping, including Wavelength Panchromatic plus 6 filters (350 – 1050 nm) stereo, and high-phase observations to Range search for potential plumes Instantaneous 10 μrad 218 μrad Field of View (0.5 m/pixel at 50 (11 m/pixel at 50 km)  WAC: along-track stereo & color context km) imaging Field of View 2.347 × 1.173 48 × 24  WAC supports cross-track clutter TDI Typically ≤18 lines of Time Delay Integration characterization for ice-penetrating radar 29 Europa Thermal Imaging System (E-THEMIS) MIR Philip Christensen,

 Detect and characterize Thermal mapping Regolith thermal anomalies that may Boulderssimulation indicate recent activity  Identify active plumes  Determine the regolith particle Surface size, block abundance and characterization subsurface layering for surface process studies 41 m/pixel

Key instrument Parameters  High-resolution thermal images Filters 7–14, 14–28, 28–70 μm  Uncooled microbolometer array with Resolution 5 – 35 m at 25 km range three spectral channels Image width 5.7° cross-track (720 pixels)  Time-delay integration (TDI) for Radiometric Precision 1 K for global-scale observations; measuring low temperatures 2 K for local-scale observations Radiometric accuracy 1.25% Time Delay Integration 16 lines

30 Mapping for Europa (MISE) IR Diana Blaney, Jet Propulsion Laboratory (JPL)

 Assess the habitability of Key compounds at MISE spectral resolution and sampling Europa’s ocean by understanding : the inventory and distribution of surface compounds  Investigate the geologic history of Europa’s surface  Search for areas that are currently geologically active

Key instrument Parameters Wavelength Range 0.8 to 5.0 µm (800 – 5000 nm) Spatial Resolution 10km/pixel full-disk images at 40,000 km range 25 m/pixel at 100 km range Spectral Resolution 10 nm  Spectral Cube Size 300 lines x 80 to 300 samples x 451 spectral channels Ice and salt chemistry Trace organics Cubes Collected Up to 8 per flyby Signal-to-noise >100:1 from 0.8–2.6 μm, 10:1 between 2.6 and Ratio 3.2 μm, >25 from >3.2 μm

31 Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) RADAR Don Blankenship, University of Texas Institute for Geophysics, Austin

 Characterize the distribution of any shallow subsurface        Search for an ice-ocean interface and characterize the

ice shell’s global thermophysical structure     Investigate the processes governing material exchange among the ocean, ice shell, surface, and atmosphere      Constrain the amplitude and phase of the tides        Characterize scientifically compelling sites, and hazards, for a potential future landed mission     

 Simultaneous high resolution, Key instrument Parameters shallow sounding, altimetry, Dual 60 MHz (λ = 5 m) Very High Frequency (VHF) globally, and and reflectometry Frequencies 9 MHz (λ = 33.3 m) High Frequency (HF) anti-Jovian Vertical Shallow sounding: VHF with <15 m resolution from depths of 300 m to 3 km; along with lower resolution Resolution Full-depth sounding: VHF or HF with <150 m resolution from 1 to 30km depths; full-depth sounding of the ice Altimetry: VHF with <15m resolution shell and plasma Antenna 2 deployable HF and 4 VHF dipole antennas mounted on solar array measurements Radiated Power 10 - 30 W

32 Europa Remote Sensing Fields of View Pixel scales     from 100 km: $   UVS: 35 m &    WAC: 22 m NAC: 1 m    MISE: 25 m !%  ! E-THEMIS: 20    m  " $    ! %#!      "$ !    # Along-track Cross-track  #  ! " "$  "  "&  '   !  $  & %' MAss Spectrometer for Planetary EXploration (MASPEX) Jack “Hunter” Waite, Southwest Research Institute (SwRI), San Antonio

 Determine the distribution of major Cryotrap Calibration Gas Radiator Detector Gas Inlet volatiles and key organic compounds Reflectron in Europa’s /plumes and System their association with geological features (H2O, H2 , CH4, C2H4, C2H6, 40 HCN, H2O/ Ar)  Determine the relative abundances of key compounds to constrain the chemical conditions of Europa’s ocean

 Multi-bounce time-of-flight mass spectrometer Key instrument Parameters Capability (Driving Requirements)  Region-of-Interest scanning for high resolution Mass Range 2 – 1000 u over a broad mass range Mass Resolution m/m up to 24,500  Cryotrap allows storage for high-resolution Dynamic range 1010 40 analysis at apoapse (for trace organics and Ar) Min. Density 5x105/m3

34 SUrface Dust Analyzer (SUDA) Sascha Kempf, U. Colorado, Boulder

 Map the surface composition of Europa

 Characterize the alteration of Europa’s Salts & Minerals surface via exogenous dust Incoming Particle  Determine the composition of the particulate matter in active plumes

TOFMS

Key instrument Parameters  Mass Time-of-flight mass spectrometer (TOFMS) m/Δm ≥ 200 for m ≤ 150 u Resolution  Composition of particles ejected from surface can Impact Speed Range: 0.5 – 10 km/s (Δ ≤ 1%) Dust Grain Charge Sensitivity ≥ 0.15 fC (Δ≤ 10%) be correlated with geologic features Properties Grain Size Range: 0.2 – 10 μm (Δ ≤ 25%)  Trace amounts of complex organics can be Surface Better than spacecraft altitude detected in ice grains (better than 0.1 ppm) Resolution Detection 40 ejecta per second Limits 35 Interior Characterization of Europa using Magnetometry (ICEMAG) Carol Raymond, Jet Propulsion Laboratory (JPL)

 Determine the location, thickness, and salinity of Europa’s ocean by magnetic field induction at multiple frequencies Europa  Identify sources of Europa’s atmosphere and atmospheric loss processes by characterizing any active vents, plumes, and ionized plasma trails  Understand coupling of Europa to Jupiter’s , and coupling of plumes to flowing plasma                   ICEMAG will characterize the complex magnetic environment at Europa

 Combines flux gate magnetometers & self-calibrating Key instrument Parameters

helium magnetometers Vector magnetic field accuracy < 0.8 nT  Performs dynamical removal of the fluctuating spacecraft Range ± 1500 nT field, relaxing magnetic cleanliness requirement Precision 0.01 nT  No need for special spacecraft maneuvers for calibration Baseline stability < 0.1 nT over > 3 yr Spacecraft magnetic field knowledge < 0.5 nT Sampling rate 16 samples / sec 36 Plasma Instrument for Magnetic Sounding (PIMS) Joseph Westlake, Johns Hopkins U. Applied Physics Laboratory (APL)

 Determine Europa’s magnetic induction response, corrected for plasma contributions, to estimate ocean ratio salinity and thickness  Understand mechanisms of weathering and releasing material from Europa's surface into the atmosphere  Understand how Europa influences its local space environment and Jupiter’s

Plasma near Europa has a strong contribution to the observed magnetic field and masks the induction response from the subsurface ocean.  2 sensors, each with 2 Faraday Cups with 90° of view  Instruments measure: Key instrument Parameters – ion density, temperature, & velocity Ion Energy Range 0.1 − 50 eV, 0.02 − 7 keV – electron density & temperature Electron Energy range 0.1 − 50 eV, 0.01 − 2 keV  Sensors are immune to degradation and background noise from Energy Resolution <15% penetrating radiation Sensitivity 0.5 − 105 pA/cm2 Time Resolution 1 – 4 s 37 Gravity Science Investigation Sean Solomon, Chair, Gravity Science Working Group, for Phase A

Fanbeam FOV (x3)  Characterize Europa’s time-varying gravitational tides Low-Gain Antenna FOV (x2) (k2)  Confirm the existence of Europa’s subsurface ocean

 In combination with radar altimetry (h2), constrain ice shell thickness

Key Parameters  Three Fixed Fanbeam (FB) antennas, plus utilizes two low-gain Gain 4 - 10 dB-Hz min @D/L antennas (LGAs) to fill in coverage esp. for high-latitude fly-bys Fanbeam FOV ±15˚ by ±50˚  X-band up & down Resolution 0.07 mm s-1 (60 s integration time)  Radio Science Receivers used at DSN  Opportunities for arraying DSN antennas and augmenting DSN with ESA antennas  Non-intrusive with the suite of science instruments during flyby

38 %" !##  $&#  +        "$"*$#  )#%#%"'$" % $" $"  $)  !" !"$# $ $%" #%"   (  +        , "$"*$#$"%$   )# '#%#%"'$" $ #$"%$%" $)#    , $"   # $) $ ##       , #$" $"    $ ##$ ' ) # $#      !      , &#$$!" ### &"   $"(  $   ##%" $ #!"         39 #   !!"$!  (         !""""& #  !" # !" !" & (        )  " '" !"!" &" ! "!# ""!  # "" #!           ) " " " "  !$ " "  !!""!   !# " !         )  " '"  !" "%&!"       

40 "    !#  " &         !! ! " !"  " !  ! " !!#!$ ! % !  ! ! &        ' !  !  ! !!#!$"!! "  ! %!  !  ! !!"!"  !    !        ' ! ! !!    !  ! ! !!!      ' # !!       !! !  !$   ! ! "    !     41      

      !   

 

   "     $     Composition   $ # ! Ice & Ocean

42 !      !                )22).-),%+)-%("2%25%-32

              

)1%#314)2% .41 )2/.2"+  8%"12  8%"12  8%"12

 )1%#3)22).-6"++)23. )2/.2"+     8%"12      

 14)2% .41 )2/.2"+ 8%"12  8%"12  8%"12

  )22).-6"++)23. )2/.2"+   8%"12 %1)5%$%04)1%,%-32 9    !)-),4,)&%3),%/"#%#1"&3:  8%"12 9    !)-),4,)&%3),%+)'(3823%,:  8%"12 9    !"7),4,1"*%#3.1841"3).-+"--%$1"* 9    !"7),4,)22).-41"3).-)22).-:  8%"12 9   !+)'(3823%,)2/.2"+41"3).-+"--%$1"*

47    

  3.0 16F1116F11  17F1217F12    * 2.5 17F13   )  )

2.0  (  (

1.5  '  

TID (MRad) TID      !%+%&" 1.0    !%+%'"        !%+%&"  '!%+%'" 0.5  &  &

   % 0.0  % 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Years from JOI #     

Pre-decisional, for information and discussion purposes only. 48 :745'3)4:39+7;+7;/+<

(E3 example)    3)4:39+789'798'9  *'>8    3)4:39+7+3*8'9  *'>8    *'>8

   :745'8)/+3)+')6:/8/9/43 3-4/3-'3* !+3-4/3-'3* !+3;/7432+39'1243/947/3-3;/7432+39'1243/947/3- !#!:7;+> 5/84*/))'1/(7'9/43 +)439'2/3'9/438 1'>(')0'3*!2'/39+3'3)+ "8 $ %(/'8/3-5489'5574')."'3**:7/3-+5'79:7+57/4794'5574')."'3**:7/3-+5'79:7+ 5.+2+7/8#5*'9+

    2? *:9>)>)1+ "/)0'708 = '3*= &('3*,47-7';/9>8)/+3)+

 .4:78 = &('3*,47"8  *'> &('3*,47,/3'1)439')957/4794 '('3*

 ! /#10   "$! !   !   '! /#10  !   # "$!   '!

2 ! 2 "$!2 '!2 ! 2 2 2 1 2   ! #(  ! #( #  /# 0 ! #( ! #(  ! #(  ! #( ! #(  ! #( $!  # "#!)(  #!"!   "$!%%-  " # ! %! "#! "#. !%#" #!# !(# "$!  ##  ! !#  % ! !#  #  #  !#$! $! !!#  # "$"$! 

$!   "!" "#.  "!"  %!  "!"  "!""-  "!"  "!"   #.   . $%!," $! !$"-# $! !$   #"#  # " #  ! %!  %!  &# !#  (""   #%#( /$#!#"* ' "$! %!  # $! $%! #!'#  "#!$#  $! #"  "!" !(* "-"$!" #!" $!"/++ $#  "! "$"$! ! ! $# 0 $! !. !# "*"- ! #(   "!" !" #!"!   !&!*  #  #"# "$!%%#( "" ! #! 0 #!# !( ' "$!# " /%$$*  "!" &#!#%#(* "$! ! %! # 0 $%! $!"  "!"  ##  /% #(*0 (""   & !# 50 #    # ("" $!# Pre-decisional, for information and discussion purposes only.