Concentration and Fractionation of Rare Earth Elements in Alkaline Complexes : the Role of Fluids Cyrielle Bernard

Total Page:16

File Type:pdf, Size:1020Kb

Concentration and Fractionation of Rare Earth Elements in Alkaline Complexes : the Role of Fluids Cyrielle Bernard Concentration and fractionation of Rare Earth Elements in alkaline complexes : the role of fluids Cyrielle Bernard To cite this version: Cyrielle Bernard. Concentration and fractionation of Rare Earth Elements in alkaline complexes : the role of fluids. Hydrology. Université Paul Sabatier - Toulouse III, 2020. English. NNT: 2020TOU30187. tel-03179382 HAL Id: tel-03179382 https://tel.archives-ouvertes.fr/tel-03179382 Submitted on 24 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSETHÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Présentée et soutenue le 23 octobre 2020 par : Cyrielle BERNARD Concentration et fractionnement des Terres Rares dans les complexes alcalins : le rôle des fluides JURY Kathryn GOODENOUGH British Geological Survey Rapportrice Alexandre TARANTOLA Université de Lorraine Rapporteur Michel GRÉGOIRE Université Toulouse 3 Examinateur Anne-Sylvie ANDRÉ-MAYER Université de Lorraine Examinatrice Didier BÉZIAT Université Toulouse 3 Directeur de thèse Guillaume ESTRADE Université Toulouse 3 Co-directeur de thèse Stefano SALVI Université Toulouse 3 Invité Julien BERGER Université Toulouse 3 Invité École doctorale et spécialité : SDU2E : Sciences de la Terre et des Planètes Solides Unité de Recherche : Géosciences Environnement Toulouse (UMR5563) Directeurs de Thèse : Didier BÉZIAT, Guillaume ESTRADE et Stefano SALVI iii Acknowledgements Although this manuscript is written in English, you will have to forgive me but I would like to thank everyone who accompanied me during these three years in French, my native language. J’adresse tout d’abord un immense merci à mes encadrants, MM. Guillaume Estrade, Stefano Salvi et Didier Béziat. Guillaume, pour ton guidage constant, depuis les couloirs labyrinthiques de l’OMP lors de notre première rencontre jusqu’à l’aboutissement de ce manuscrit, tu m’as permis de trouver la sortie sans me brûler les ailes. Stefano, pour avoir toujours trouvé du temps pour moi, même au beau milieu d’une pandémie, entre un HDR, un conseil de laboratoire et 3 articles à relire. Et Didier, pour tes conseils avisés, même après la retraite : vers l’infini et au-delà ! Je remercie beaucoup Kathryn Goodenough et Alexandre Tarantola pour avoir accepté d’être les rapporteurs de ce travail. Votre lecture attentive et vos commentaires ont permis d’améliorer la version finale de ce travail de longue haleine. Je remercie également les nombreuses personnes qui contribué à la bonne réalisation des analyses dans ce travail. Merci à Philippe de Parseval et Sophie Gouy pour leur implication et leur curiosité constante sur mon travail. Merci aussi à Thierry Aigouy pour son aide et sa réactivité lors des séances MEB, pour le meilleur et pour le pire (!). Merci également à Fabienne de Parseval pour la fabrication des lames minces sur lesquelles j’ai passé tant d’heures. Merci à David Chew et Foteini Drakou du Trinity College, Irlande, pour leur aide dans la réalisation de cartographies ICPMS. Merci à Chris Harris de l’Université de Cape Town, Afrique du Sud, ainsi que Etienne Deloule, Gaston Giuliani, Michel Champenois et Nordine Bouden du CRPG Nancy pour les analyses isotopiques. J’aimerais également remercier toutes les personnes qui m’ont aidée ponctuellement dans mes analyses : Sabine Choy pour l’accompagnement au broyage et à la séparation magnétique de mes roches, François Martin pour les analyses Mössbauer des pyroxènes, Claudie Josse et Teresa Hungria pour les observations MET dans ces mêmes pyroxènes, Yves Auda pour son accompagnement patient dans l’écriture iv du programme informatique pyroxènes, Corinne Routaboul pour les analyses de spectroscopie infrarouge sur les elpidites, Franck Poitrasson pour son aide à propose d’Evisa, et Aurélie Marquet pour les analyses LA-ICPMS. J’adresse ma gratitude à Marc de Rafélis pour son tutorat en tant qu’enseignant. Enfin, j’aimerais remercier Margot Munoz, Loïc Drigo, Carine Baritaud et Anne-Marie Cousin qui, même sans être directement connectés à mon doctorat, ont toujours été disponibles et souriants en toute situation. Un doctorat ne peut s’effectuer sans compagnons de route avec qui partager les bons et les moins bons moments. J’ai eu la chance de partager un bureau international et soudé avec Salomé, Aruã, Gina et Benjamin. Merci pour votre bonne humeur, le bureau H137 n’a pas fini d’entendre des discussions passionnées la bouche pleine de gâteaux ! J’adresse une pensée particulière à Salomé : nous avons commencé notre thèse en même temps et, quelques guacamoles plus tard, nous la finissons ensemble. Je remercie également Steven et Gaétan qui m’ont, entre autres, suivie dans la folle aventure du Student Chapter. Nos péripéties espagnoles défilent dans ma tête... à une vitesse plus ou moins raisonnable ! Je remercie aussi Adrien, stagiaire devenu camarade par son sérieux et sa gentillesse. Merci également à tous ceux que j’ai côtoyés le temps d’une discussion ou d’un café : Anissa, Dahédrey, Sylvain, Rémi, Paty, Beatriz, Loïs, Vianney, et les autres. Enfin, merci à ceux qui étaient là avant : Samuel, mon jumeau semi-géologue; Aurélie, qui j’en ai bien peur ne comprendra jamais ma passion pour "les cailloux"; et Guilhem et Stellina, les meilleurs colocataires que l’on puisse souhaiter. Je ne peux évidement pas conclure ces remerciements sans envoyer une vague de gratitude à ma famille. Merci à mes parents, Nicole et Frédéric, qui ont cru en moi depuis le tout début. Vous avez été présents à chaque nouvelle étape de ma vie, encourageants et fiers quoi qu’il arrive. Vous m’avez donné les moyens de naviguer par moi-même dans ce monde et pour ça je ne vous remercierai jamais assez. Merci à mes sœurs, Candice et Lucile. Vous êtes le moteur qui me permet d’avancer, et je suis fière de vous. Enfin, merci à toi Nicolas, qui m’accompagne depuis déjà bien trop longtemps. Ton soutien indéfectible m’a permis d’aller plus loin que jamais. v Abstract The rare earth elements (REE) are critical resources used in many modern technologies, including high tech and renewable energy infrastructure. Their worldwide production is currently mostly restricted to China and Australia. The REE are divided in two groups, i.e. light REE (LREE, La-Eu) and heavy REE (HREE, Gd-Lu), the latter being rarer and with more industrial uses. REE deposits can be primary high temperature (igneous, carbonatites and alkaline systems) or secondary low temperature (placers and ion-adsorption). Type and grade of REE resources depends on many parameters including primary igneous source, magmatic processes, hydrothermal fluids circulation, and/or weathering. Among primary high temperature deposits, alkaline granites and associated pegmatites are the richest in HREE. Although it is accepted that magmatic processes are fundamental in concentrating the REE, the role of hydrothermal fluids in concentrating and fractionating these elements remains unclear. This manuscript investigates the importance and characteristics of hydrothermal fluids in concentrating and fractionating the REE relatively to magmatic and source processes. To do so, petrography and fluid inclusions are studied in six alkaline complexes worldwide, namely Amis (Namibia), Evisa (Corsica), Khan Bogd (Mongolia), Strange Lake (Canada), and Ambohimirahavavy and Manongarivo (Madagascar). The comparison of these complexes allows to draw general conclusions about REE enrichment and fractionation in alkaline complexes. This study shows that the main mineralogy is similar in all complexes and is made of quartz, alkali feldspar, Na-amphiboles, aegirine, and a complex zirconosilicate (elpidite or an eudialyte-group-mineral, EGM). Despite local variations, many accessory minerals are also common to most of these alkaline complexes, such as pyrochlore-group-minerals, zircon, and Fe and/or Ti-oxides. Amphibole, EGM, elpidite and feldspars grew exclusively during magmatic stage. Quartz and aegirine are zoned and grew from magmatic to hydrothermal stages; feldspars and primary zirconosilicates got hydrothermally altered. Primary vi zirconosilicates are commonly replaced by an assemblage of secondary minerals forming pseudomorphs. They present a wide variety of chemistries (silicates, oxides, halides, carbonates, phosphates). The detailed study of zoning and alteration of amphiboles and aegirine, which is the topic of a published paper, shows that hydrothermal fluids do mobilize and fractionate the REE. A quantitative estimation confirms their high importance compared with magmatic processes. A similar study of zircon highlights the local influence of these processes, as the REE composition of zircon in pseudomorphs depends on the REE composition of the replaced mineral. These observations point out the importance of studying rock-forming minerals such as pyroxenes and amphiboles to unravel geological events controlled by common processes. Composition and origin of hydrothermal fluids is explored through microthermometric and SEM studies of fluid inclusions in quartz of the six complexes. They reveal that although their salinity varies a lot, fluids circulate at a relatively low temperature (< 400 ◦C). All investigated complexes experienced the circulation of at least two fluids, one Na- and K-rich, and one Ca- and Na-rich. At the Malagasy complexes and Strange Lake, it has been established that the Na-K-bearing fluid is orthomagmatic and the Ca-Na-bearing one is secondary. In conclusion, this work shows that REE enrichment and fractionation in alkaline granites and associated pegmatites is linked to the circulation of a Na-K-rich and a Ca-Na-rich fluid, at temperatures below 400 ◦C. This fluid contains REE ligands such as F, OH, Cl that fractionate the REE.
Recommended publications
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
    minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]
  • A New Beryllium Silicate Mineral Species from Mont Saint-Hilaire, Quebec
    193 The Canadian Mineralogist Vol. 47, pp. 193-204 (2009) DOI : 10.3749/canmin.47.1.193 BUSSYITE-(Ce), A NEW BERYLLIUM SILICATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§, RALPH ROWE AN D GLENN POIRIER Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ALLEN PRATT CANMET, Mining and Mineral Sciences Laboratories, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada JAMES FRANCIS Surface Science Western, University Western Ontario, London, Ontario N6A 5B7, Canada ABS tr A ct Bussyite-(Ce), ideally (Ce,REE,Ca)3(Na,H2O)6MnSi9Be5(O,OH)30(F,OH)4, a new mineral species, was found in the Mont Saint-Hilaire quarry, Quebec. The crystals are transparent to translucent, pale pinkish orange in color, with a white streak and vitreous luster. Bladed crystals are prismatic, having forms {111} and {101}; they are elongate on [101], up to 10 mm in length. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, gonnardite, hydrotalcite, kupletskite, leucophanite, microcline, nenadkevichite, polylithionite, serandite and sphalerite. Bussyite-(Ce) is monoclinic, space group C2/c, with unit-cell parameters refined from powder-diffraction data: a 11.654(3), b 13.916(3), c 16.583(4) Å, b 95.86(2)°, V 3 2675.4(8) Å and Z = 4. Electron-microprobe and secondary-ion mass spectrometric analyses give the average and ranges: Na2O 7.63 (9.40–6.62), K2O 0.05 (0.13–0.0), BeO 8.33 (SIMS), CaO 5.35 (5.95–4.17), MgO 0.03 (0.11–0.00), MnO 2.49 (3.00–1.71), Al2O3 0.82 (1.54–0.39), Y2O3 1.97 (2.68–1.51), La2O3 2.65 (3.11–2.16), Ce2O3 9.77 (11.22 –8.15), Pr2O3 1.23 (1.49 –0.74), Nd2O3 4.54 (5.13–3.91), Sm2O3 0.99 (1.25–0.68), Eu2O3 0.010 (0.25–0.0), Gd2O3 1.03 (1.23–0.81), SiO2 38.66 (39.94–37.66), ThO2 3.31 (4.59–2.12), F 3.67 (6.39–2.54), S 0.03 (0.08–0), H2O 4.12 (determined from crystal-structure analysis), for a total of 95.21 wt.%.
    [Show full text]
  • Combined Single-Crystal X-Ray and Neutron Powder Diffraction Structure
    American Mineralogist, Volume 95, pages 519–526, 2010 Combined single-crystal X-ray and neutron powder diffraction structure analysis exemplified through full structure determinations of framework and layer beryllate minerals JENNIFER A. ARMSTRONG ,1 HENRIK FRIIS,2 ALEX A NDR A LIEB ,1,* ADRI A N A. FINC H ,2 A ND MA RK T. WELLER 1,† 1School of Chemistry, University of Southampton, Highfield, Southampton, Hampshire SO17 1BJ, U.K. 2School of Geography and Geosciences, Irvine Building, University of St. Andrews, North Street, St. Andrews, Fife KY16 9AL, U.K. ABSTR A CT Structural analysis, using neutron powder diffraction (NPD) data on small quantities (<300 mg) and in combination with single-crystal X-ray diffraction (SXD) data, has been employed to determine accurately the position of hydrogen and other light atoms in three rare beryllate minerals, namely bavenite, leifite/IMA 2007-017, and nabesite. For bavenite, leifite/IMA 2007-017, and nabesite, sig- nificant differences in the distribution of H, as compared to the literature using SXD analysis alone, have been found. The benefits of NPD data, even with small quantities of H-containing materials, and, more generally, in applying a combined SXD-NPD method to structure analysis of minerals are discussed, with reference to the quality of the crystallographic information obtained. Keywords: Hydrogen, beryllium, minerals, powder neutron diffraction INTRODUCTION lower cation charge, Be2+ vs. Si4+. Thus, a bridging or terminal Information on crystal structure of minerals, including the O forming part of a Beϕ4 tetrahedron is under-bonded compared localization of light atoms such as H and Be, is of considerable to the equivalent Siφ4 unit leading to the prevalence of Be-OH importance because it allows a better understanding of the min- and Be-F in beryllate minerals (Hawthorne and Huminicki eral behavior under natural conditions.
    [Show full text]
  • Stability of Na–Be Minerals in Late-Magmatic Fluids of the Ilímaussaq Alkaline Complex, South Greenland
    Stability of Na–Be minerals in late-magmatic fluids of the Ilímaussaq alkaline complex, South Greenland Gregor Markl Various Na-bearing Be silicates occur in late-stage veins and in alkaline rocks metasomatised by late-magmatic fluids of the Ilímaussaq alkaline complex in South Greenland. First, chkalovite crys- tallised with sodalite around 600°C at 1 kbar. Late-magmatic assemblages formed between 400 and 200°C and replaced chkalovite or grew in later veins from an H2O-rich fluid. This fluid is also recorded in secondary fluid inclusions in most Ilímaussaq nepheline syenites. The late assem- blages comprise chkalovite + ussingite, tugtupite + analcime ± albite, epididymite + albite, bertrandite ± beryllite + analcime, and sphaerobertrandite + albite or analcime(?). Quantitative phase diagrams involving minerals of the Na–Al–Si–O–H–Cl system and various Be minerals show that tugtupite co-exists at 400°C only with very Na-rich or very alkalic fluids [log 2 (a /a ) > 6–8; log (a 2+/(a ) ) > –3]. The abundance of Na-rich minerals and of the NaOH-bear- Na+ H+ Be H+ ing silicate ussingite indicates the importance of both of these parameters. Water activity and silica activity in these fluids were in the range 0.7–1 and 0.05–0.3, and XNaCl in a binary hydrous fluid was below 0.2 at 400°C. As bertrandite is only stable at < 220°C at 1 kbar, the rare formation of epididymite, eudidymite, bertrandite and sphaerobertrandite by chkalovite-consuming reactions occurred at still lower temperatures and possibly involved fluids of higher silica activity. Institut für Mineralogie, Petrologie und Geochemie, Eberhard-Karls-Universität, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
    [Show full text]
  • Spring 2012 Gem News International
    Editor Brendan M. Laurs ([email protected]) Contributing Editors Emmanuel Fritsch, CNRS, Team 6502, Institut des Matériaux Jean Rouxel (IMN), University of Nantes, France ([email protected]) Michael S. Krzemnicki, Swiss Gemmological Institute SSEF, Basel, Switzerland ([email protected]) Franck Notari, GGTL GemLab –GemTechLab, Geneva, Switzerland ([email protected]) Kenneth Scarratt, GIA, Bangkok, Thailand ([email protected]) stones, many rarities such as pallasitic peridot (figure 1) and TUCSON 2012 hibonite (figure 2) were seen at the shows. Cultured pearls continued to have a strong presence, and particularly impres - This year’s Tucson gem and mineral shows saw brisk sales sive were the relatively new round beaded Chinese freshwater of high-end untreated colored stones (and mineral specimens) products showing bright metallic luster and a variety of natural as well as some low-end goods, but sluggish movement of colors (figure 3). An unusual historic item seen in Tucson is mid-range items. In addition to the more common colored the benitoite necklace suite shown in figure 4. Several additional notable items present at the shows are described in the following pages and will also be documented in future issues of G&G . The theme of this year’s Tucson Gem and Mineral Society show was “Minerals of Arizona” in honor of Arizona’s Centennial, and next year’s theme will be “Fluorite: Colors of the Rainbow.” Figure 2. This exceedingly rare faceted hibonite from Myanmar weighs 0.96 ct and was recently cut from a crystal weighing 0.47 g, which also yielded a 0.26 ct stone.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • TELYUSHENKOITE Csna6[Be2(Si,A1,Zn)18O39F2] — a NEW CESIUM MINERAL of the LEIFITE GROUP Atali A
    New data on minerals. M.: 2003. Volume 38 5 UDC 549.657.42 TELYUSHENKOITE CsNa6[Be2(Si,A1,Zn)18O39F2] — A NEW CESIUM MINERAL OF THE LEIFITE GROUP Atali A. Agakhanov Fersman Mineralogical Museum Russian Academy of Sciences, Moscow, Russia Leonid A. Pautov Fersman Mineralogical Museum Russian Academy of Sciences, Moscow, Russia Dmitriy I. Belakovskiy Fersman Mineralogical Museum Russian Academy of Sciences, Moscow, Russia Elena V. Sokolova Department of Geological Sciences, University of Manitoba, Winnipeg, Canada Frank C. Hawthorne Department of Geological Sciences, University of Manitoba, Winnipeg, Canada A new mineral, telyushenkoite, was discovered in the DaraiPioz alkaline massif (Tajikistan). It occurs as white or colorless vitreous equant anhedral grains up to 2cm wide in coarsegrained boulders of reedmergnerite associated with microcline, polylithionite, shibkovite and pectolite. The mineral has distinct cleavage, Mohs 2 3 hardness = 6, VHN100 = 714(696737) kg/mm , Dmeas. = 2.73(1), Dcalc. = 2.73g/cm . In transmitted light, telyushenkoite is colorless and transparent. It is uniaxial positive, ω = 1.526(2), ε = 1.531(2). Singlecrystal Xray study indicates trigonal symmetry, space group P3m1, a = 14.3770(8), c = 4.8786(3) Å, V = 873.2(1) Å3, Z = 1. The strongest lines in the powderdiffraction pattern are [d(I,hkl)]: 12.47(7,010), 6.226(35,020), 4.709(21,120), 4.149(50,030), 3.456(40,130), 3.387(75,121), 3.161(100,031), 2.456 (30,231). The chemical compo- sition (electron microprobe, BeO by colorimetry) is SiO2 64.32, Al2O3 7.26, BeO 3.53, ZnO 1.71, Na2O 13.53, K2O 0.47, Cs2O 6.76, Rb2O 6.76, F 2.84, O = F 1.20, total 99.37 wt.%, corresponding to (Cs0.69Na0.31K0.14Rb0.02)1.16Na6.00 [Be2.04(Si15.46Al2.06Zn0.30)17.82O38.84F2.16].
    [Show full text]
  • NACARENIOBSITE-(Ce) and BRITHOLITE-(Ce) in PERALKALINE GRANITES from the MORRO REDONDO COMPLEX, GRACIOSA PROVINCE, SOUTHERN BRAZIL: OCCURRENCE and COMPOSITIONAL DATA
    313 The Canadian Mineralogist Vol. 51, pp. 313-332 (2013) DOI : 10.3749/canmin.51.2.313 NACARENIOBSITE-(Ce) AND BRITHOLITE-(Ce) IN PERALKALINE GRANITES FROM THE MORRO REDONDO COMPLEX, GRACIOSA PROVINCE, SOUTHERN BRAZIL: OCCURRENCE AND COMPOSITIONAL DATA FREDERICO C. J. VILALVA§ AND SIlvIO R.F. VLACH Instituto de Geociências, Universidade de São Paulo, São Paulo SP 05508-080, Brazil ANTONIO SIMONETTI Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame IN 46556, USA ABSTRACT Nacareniobsite-(Ce), Na3Ca3(REE)Nb(Si2O7)2OF3, and britholite-(Ce), (Na,Ca,REE)10(Si,P)6O24(OH,F)2, formed during the late stages of crystallization of the most evolved peralkaline granites from the Morro Redondo Complex, Graciosa Province (Southern Brazil). Nacareniobsite-(Ce) compositions are very close to ideal, with Na2O and Nb2O5 contents up to 11.1 and 15.5 wt.%, respectively, corresponding to an average formula of Na3.0(Ca2.75Sr0.01)S2.76 (REE,Y)1.16 (Nb0.95Ta0.02Ti0.04)S1.01 Si3.99O14(O1.11F2.89)S4. Compared to the host rock composition, trace-element patterns for nacareniobsite-(Ce) indicate enrichment in REEs and Sr, and depletion in alkali metals and Zr. The available chemical data are in excellent agreement with a complete +4 2+ 5+ + 2+ 3+ + solid solution series between rinkite and nacareniobsite-(Ce), controlled by [M M ]–1[M Na ] and, in part, [M ]–2[REE Na ] +4 2+ 3+ and [M M ]–1[REE ]2 exchange vectors. Britholite-(Ce) compositions are amongst the most (REE,Y)-enriched reported to date, with REE + Y contents up to 73.6 wt.% oxide.
    [Show full text]
  • VLASOVITE, Na2 Zr (Si4o11), from the KIPAWA ALKALINE COMPLEX, QUEBEC, CANADA: CRYSTAL-STRUCTURE REFINEMENT and INFRARED SPECTROSCOPY
    1349 The Canadian Mineralogist Vol. 44, pp. 1349-1356 (2006) VLASOVITE, Na2 Zr (Si4O11), FROM THE KIPAWA ALKALINE COMPLEX, QUEBEC, CANADA: CRYSTAL-STRUCTURE REFINEMENT AND INFRARED SPECTROSCOPY ELENA SOKOLOVA§, FRANK C. HAWTHORNE AND NEIL A. BALL Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ROGER H. MITCHELL Department of Geological Sciences, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada GIANCARLO DELLA VENTURA Dipartimento di Scienze Geologiche, Università Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy ABSTRACT The crystal structure of vlasovite, Na2 Zr (Si4O11), from the Kipawa alkaline complex, Quebec, Canada, monoclinic, a 11.0390(5), b 10.0980(3), c 8.5677(4) Å, ␤ 100.313(1)°, V 939.6(1) Å3, space group C2/c, Z = 4, D (calc.) = 3.008 g.cm–3, was refi ned to an R1 index of 1.9% based on 1352 observed [|Fo| > 4␴F] unique refl ections measured with MoK␣ X-radiation on a Bruker P4 diffractometer equipped with a 4K CCD detector. An electron-microprobe analysis gave the composition Na1.98 Zr1.00 (Si4O11) based on 11 O apfu. In the crystal structure, there are two tetrahedrally coordinated Si sites with a grand <Si–O> distance of 1.612 Å, and one octahedrally coordinated Zr site with <Zr–O> = 2.085 Å. There are two Na sites: the Na(1) site is [7]-coordinated with <Na(1)–O> = 2.620 Å. The Na(2) site is split into two subsites, Na(2A) and Na(2B), with a separation of 0.829 Å, and the symmetry-related Na(2B) sites are separated by 1.525 Å.
    [Show full text]
  • Symmetry-Entropy-Volume Relationships in Polymorphism
    565 Symmetry-entropy-volume relationships in polymorphism By R. G. J. ST~ENS ~ Department of Earth Sciences, The University, Leeds 2 [Taken as read 3 November 1966] Summary. Group theoretical analysis of the normal vibrations of isolated mole- cules and of macroscopic crystals indicates that the principal effect of symmetry reduction is to remove the degeneracy of the normal vibrations, thus reducing the number of microscopic complexions of the phonon distribution, and reducing the entropy. This mechanism is effective only in point groups containing a rotation axis of order 3 or greater, and may play a part in the high-low cordierite transition. Two other symmetry-related entropy contributions are discussed : the first is the loss of positional degeneracy in systems in which the number of available positions exceeds the number of atoms, as in high-low quartz, vlasovite, and many ferro- electrics. The second is the loss of positional degeneracy in a solid solution, which leads to unnfixing, as in high-low albite, microcline-sanidine, and high-low cordier- ite transitions. These mechanisms are effective in all point groups down to 1 ~ C1, and can proceed even within C1 by a change in the unit cell volume. Consideration of entropy-volume relationships suggests that the glaucophane I-II transition has less order-disorder character than previously supposed. It is suggested that zoisite-clinozoisite, anthophyllite-cummingtonite and enstatite- clinoenstatite relationships are polytypic rather than polymorphic in the usual sense, and the mechanisms responsible for producing the stacking order are discussed. The implications of the differences between the behaviour of the classical double oscillator (often used as a model for displacive transitions) and its quantized ana- logue are discussed.
    [Show full text]