Triggering Rowhammer Hardware Faults on ARM: a Revisit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bootstomp: on the Security of Bootloaders in Mobile Devices
BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/redini This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX BootStomp: On the Security of Bootloaders in Mobile Devices Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna fnredini, machiry, dipanjan, yanick, antoniob, edg, yans, chris, [email protected] University of California, Santa Barbara Abstract by proposing simple mitigation steps that can be im- plemented by manufacturers to safeguard the bootloader Modern mobile bootloaders play an important role in and OS from all of the discovered attacks, using already- both the function and the security of the device. They deployed hardware features. help ensure the Chain of Trust (CoT), where each stage of the boot process verifies the integrity and origin of 1 Introduction the following stage before executing it. This process, in theory, should be immune even to attackers gaining With the critical importance of the integrity of today’s full control over the operating system, and should pre- mobile and embedded devices, vendors have imple- vent persistent compromise of a device’s CoT. However, mented a string of inter-dependent mechanisms aimed at not only do these bootloaders necessarily need to take removing the possibility of persistent compromise from untrusted input from an attacker in control of the OS in the device. -
Anurag Sharma | 1 © Vivekananda International Foundation Published in 2021 by Vivekananda International Foundation
Anurag Sharma | 1 © Vivekananda International Foundation Published in 2021 by Vivekananda International Foundation 3, San Martin Marg | Chanakyapuri | New Delhi - 110021 Tel: 011-24121764 | Fax: 011-66173415 E-mail: [email protected] Website: www.vifindia.org Follow us on Twitter | @vifindia Facebook | /vifindia All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Anurag Sharma is a Research Associate at Vivekananda International Foundation (VIF). He has completed MPhil in Politics and International Relations on ‘International Security’ at the Dublin City University in Ireland, in 2018. His thesis is titled as “The Islamic State Foreign Fighter Phenomenon and the Jihadi Threat to India”. Anurag’s main research interests are terrorism and the Internet, Cybersecurity, Countering Violent Extremism/Online (CVE), Radicalisation, Counter-terrorism and Foreign (Terrorist) Fighters. Prior to joining the Vivekananda International Foundation, Anurag was employed as a Research Assistant at Institute for Conflict Management. As International affiliations, he is a Junior Researcher at TSAS (The Canadian Network for Research on Terrorism, Security, And Society) in Canada; and an Affiliate Member with AVERT (Addressing Violent Extremism and Radicalisation to Terrorism) Research Network in Australia. Anurag Sharma has an MSc in Information Security and Computer Crime, major in Computer Forensic from University of Glamorgan (now University of South Wales) in United Kingdom and has an online certificate in ‘Terrorism and Counterterrorism’ from Leiden University in the Netherlands, and an online certificate in ‘Understanding Terrorism and the Terrorist Threat’ from the University of Maryland, the United States. -
FAN53525 3.0A, 2.4Mhz, Digitally Programmable Tinybuck® Regulator
FAN53525 — 3.0 A, 2.4 MHz, June 2014 FAN53525 3.0A, 2.4MHz, Digitally Programmable TinyBuck® Regulator Digitally Programmable TinyBuck Digitally Features Description . Fixed-Frequency Operation: 2.4 MHz The FAN53525 is a step-down switching voltage regulator that delivers a digitally programmable output from an input . Best-in-Class Load Transient voltage supply of 2.5 V to 5.5 V. The output voltage is 2 . Continuous Output Current Capability: 3.0 A programmed through an I C interface capable of operating up to 3.4 MHz. 2.5 V to 5.5 V Input Voltage Range Using a proprietary architecture with synchronous . Digitally Programmable Output Voltage: rectification, the FAN53525 is capable of delivering 3.0 A - 0.600 V to 1.39375 V in 6.25 mV Steps continuous at over 80% efficiency, maintaining that efficiency at load currents as low as 10 mA. The regulator operates at Programmable Slew Rate for Voltage Transitions . a nominal fixed frequency of 2.4 MHz, which reduces the . I2C-Compatible Interface Up to 3.4 Mbps value of the external components to 330 nH for the output inductor and as low as 20 µF for the output capacitor. PFM Mode for High Efficiency in Light Load . Additional output capacitance can be added to improve . Quiescent Current in PFM Mode: 50 µA (Typical) regulation during load transients without affecting stability, allowing inductance up to 1.2 µH to be used. Input Under-Voltage Lockout (UVLO) ® At moderate and light loads, Pulse Frequency Modulation Regulator Thermal Shutdown and Overload Protection . (PFM) is used to operate in Power-Save Mode with a typical . -
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware
Microkernel Mechanisms for Improving the Trustworthiness of Commodity Hardware Yanyan Shen Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science and Engineering Faculty of Engineering March 2019 Thesis/Dissertation Sheet Surname/Family Name : Shen Given Name/s : Yanyan Abbreviation for degree as give in the University calendar : PhD Faculty : Faculty of Engineering School : School of Computer Science and Engineering Microkernel Mechanisms for Improving the Trustworthiness of Commodity Thesis Title : Hardware Abstract 350 words maximum: (PLEASE TYPE) The thesis presents microkernel-based software-implemented mechanisms for improving the trustworthiness of computer systems based on commercial off-the-shelf (COTS) hardware that can malfunction when the hardware is impacted by transient hardware faults. The hardware anomalies, if undetected, can cause data corruptions, system crashes, and security vulnerabilities, significantly undermining system dependability. Specifically, we adopt the single event upset (SEU) fault model and address transient CPU or memory faults. We take advantage of the functional correctness and isolation guarantee provided by the formally verified seL4 microkernel and hardware redundancy provided by multicore processors, design the redundant co-execution (RCoE) architecture that replicates a whole software system (including the microkernel) onto different CPU cores, and implement two variants, loosely-coupled redundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), for the ARM and x86 architectures. RCoE treats each replica of the software system as a state machine and ensures that the replicas start from the same initial state, observe consistent inputs, perform equivalent state transitions, and thus produce consistent outputs during error-free executions. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
Streaming Integrated Amplifier User’S Manual U S E’ S M an U a L
OmniaOmnia A300 Streaming Integrated Amplifier User’s Manual U S E’ S M AN U A L Table of Contents FCC NOTICE - DECLARATION OF CONFORMITY INFORMATION .................................................................... 2 EU DECLARATION OF CONFORMITY ........................................................................................................... 3 SAFETY INSTRUCTIONS ............................................................................................................................. 4 WHAT’S IN THE BOX .................................................................................................................................. 7 QUICK SETUP GUIDE .............................................................................................................................. 8 WIRELESS AUTO SETUP ............................................................................................................................. 9 CONTROLLING MULTIPLE A300 AND RE-STREAMING ........................................................................ 14 WIRELESS MANUAL SETUP ................................................................................................................. 16 INTRODUCTION ................................................................................................................................... 17 TECHNICAL HIGHLIGHTS ......................................................................................................................... 17 LISTENING OPTIMIZATION ..................................................................................................................... -
Prohibited Agreements with Huawei, ZTE Corp, Hytera, Hangzhou Hikvision, Dahua and Their Subsidiaries and Affiliates
Prohibited Agreements with Huawei, ZTE Corp, Hytera, Hangzhou Hikvision, Dahua and their Subsidiaries and Affiliates. Code of Federal Regulations (CFR), 2 CFR 200.216, prohibits agreements for certain telecommunications and video surveillance services or equipment from the following companies as a substantial or essential component of any system or as critical technology as part of any system. • Huawei Technologies Company; • ZTE Corporation; • Hytera Communications Corporation; • Hangzhou Hikvision Digital Technology Company; • Dahua Technology company; or • their subsidiaries or affiliates, Entering into agreements with these companies, their subsidiaries or affiliates (listed below) for telecommunications equipment and/or services is prohibited, as doing so could place the university at risk of losing federal grants and contracts. Identified subsidiaries/affiliates of Huawei Technologies Company Source: Business databases, Huawei Investment & Holding Co., Ltd., 2017 Annual Report • Amartus, SDN Software Technology and Team • Beijing Huawei Digital Technologies, Co. Ltd. • Caliopa NV • Centre for Integrated Photonics Ltd. • Chinasoft International Technology Services Ltd. • FutureWei Technologies, Inc. • HexaTier Ltd. • HiSilicon Optoelectronics Co., Ltd. • Huawei Device Co., Ltd. • Huawei Device (Dongguan) Co., Ltd. • Huawei Device (Hong Kong) Co., Ltd. • Huawei Enterprise USA, Inc. • Huawei Global Finance (UK) Ltd. • Huawei International Co. Ltd. • Huawei Machine Co., Ltd. • Huawei Marine • Huawei North America • Huawei Software Technologies, Co., Ltd. • Huawei Symantec Technologies Co., Ltd. • Huawei Tech Investment Co., Ltd. • Huawei Technical Service Co. Ltd. • Huawei Technologies Cooperative U.A. • Huawei Technologies Germany GmbH • Huawei Technologies Japan K.K. • Huawei Technologies South Africa Pty Ltd. • Huawei Technologies (Thailand) Co. • iSoftStone Technology Service Co., Ltd. • JV “Broadband Solutions” LLC • M4S N.V. • Proven Honor Capital Limited • PT Huawei Tech Investment • Shanghai Huawei Technologies Co., Ltd. -
Mediatek Linkit™ Development Platform for RTOS Get Started Guide
MediaTek LinkIt™ Development Platform for RTOS Get Started Guide Version: 3.0 Release date: 30 June 2016 © 2015 - 2016 MediaTek Inc. This document contains information that is proprietary to MediaTek Inc. (“MediaTek”) and/or its licensor(s). MediaTek cannot grant you permission for any material that is owned by third parties. You may only use or reproduce this document if you have agreed to and been bound by the applicable license agreement with MediaTek (“License Agreement”) and been granted explicit permission within the License Agreement (“Permitted User”). If you are not a Permitted User, please cease any access or use of this document immediately. Any unauthorized use, reproduction or disclosure of this document in whole or in part is strictly prohibited. THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS ONLY. MEDIATEK EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES OF ANY KIND AND SHALL IN NO EVENT BE LIABLE FOR ANY CLAIMS RELATING TO OR ARISING OUT OF THIS DOCUMENT OR ANY USE OR INABILITY TO USE THEREOF. Specifications contained herein are subject to change without notice. MediaTek LinkIt™ Development Platform for RTOS Get Started Guide Document Revision History Revision Date Description 1.0 24 March 2016 Initial version. 2.0 17 May 2016 Move the contents relative to flash, HDK, and build comments to corresponding documents. Add the support of Keil 3.0 30 June 2016 Add the support of IAR. Refine the architecture and provide more information on the SDK usage. © 2015 - 2016 MediaTek Inc. Page i of v This document contains information that is proprietary to MediaTek Inc. -
Undersampled Pulse Width Modulation for Optical Camera Communications
Undersampled Pulse Width Modulation for Optical Camera Communications Pengfei Luo1, Tong Jiang1, Paul Anthony Haigh2, Zabih Ghassemlooy3,3a, Stanislav Zvanovec4 1Research Department of HiSilicon, Huawei Technologies Co., Ltd, Beijing, China E-mail: {oliver.luo, toni.jiang}@hisilicon.com 2Department of Electronic and Electrical Engineering, University College London, London, UK Email: [email protected] 3Optical Communications Research Group, NCRLab, Faculty of Engineering and Environment, Northumbria University, Newcastle-upon-Tyne, UK 3aQIEM, Haixi Institutes, Chinese Academy of Sciences, Quanzhou, China Email: [email protected] 4Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague, 2 Technicka, 16627 Prague, Czech Republic Email: [email protected] Abstract—An undersampled pulse width modulation (UPWM) According to the Nyquist sampling theorem, if these FRs are scheme is proposed to enable users to establish a non-flickering adopted for sampling, the transmitted symbol rate Rs must be optical camera communications (OCC) link. With UPWM, only a lower than half the sampling rate. However, this will clearly digital light emitting diode (LED) driver is needed to send signals lead to light flickering due to the response time of the human using a higher order modulation. Similar to other undersample- eye. Therefore, a number of techniques have been proposed to based modulation schemes for OCC, a dedicated preamble is support non-flickering OCC using low speed cameras (e.g., ≤ required to assist the receiver to indicate the phase error 60 fps). More precisely, there are three main modulation introduced during the undersampling process, and to compensate categories for LFR-based OCC using both global shutter (GS) for nonlinear distortion caused by the in-built gamma correction and rolling shutter (RS) digital cameras: i) display-based [3], ii) function of the camera. -
SMASH: Synchronized Many-Sided Rowhammer Attacks from Javascript
SMASH: Synchronized Many-sided Rowhammer Attacks from JavaScript Finn de Ridder Pietro Frigo Emanuele Vannacci Herbert Bos ETH Zurich VU Amsterdam VU Amsterdam VU Amsterdam VU Amsterdam Cristiano Giuffrida Kaveh Razavi VU Amsterdam ETH Zurich Abstract has instead been lagging behind. In particular, rather than Despite their in-DRAM Target Row Refresh (TRR) mitiga- addressing the root cause of the Rowhammer bug, DDR4 in- tions, some of the most recent DDR4 modules are still vul- troduced a mitigation known as Target Row Refresh (TRR). nerable to many-sided Rowhammer bit flips. While these TRR, however, has already been shown to be ineffective bit flips are exploitable from native code, triggering them against many-sided Rowhammer attacks from native code, in the browser from JavaScript faces three nontrivial chal- at least in its current in-DRAM form [12]. However, it is lenges. First, given the lack of cache flushing instructions in unclear whether TRR’s failing also re-exposes end users to JavaScript, existing eviction-based Rowhammer attacks are TRR-aware, JavaScript-based Rowhammer attacks from the already slow for the older single- or double-sided variants browser. In fact, existing many-sided Rowhammer attacks and thus not always effective. With many-sided Rowhammer, require frequent cache flushes, large physically-contiguous mounting effective attacks is even more challenging, as it re- regions, and certain access patterns to bypass in-DRAM TRR, quires the eviction of many different aggressor addresses from all challenging in JavaScript. the CPU caches. Second, the most effective many-sided vari- In this paper, we show that under realistic assumptions, it ants, known as n-sided, require large physically-contiguous is indeed possible to bypass TRR directly from JavaScript, memory regions which are not available in JavaScript. -
– Amlogic S905X2 Chipset – Armv8-A Architecture – ARM G31
NV-720 series IPTV Set-Top Boxes Data Sheet Integrated Networking Solutions – Amlogic S905X2 chipset – ARMv8-A architecture – ARM G31 MP2 graphic accelerator – 2D/3D accelerators, support for OpenGL 3.2 – OS Android 9 – App store – Support for widely used Middleware – Android API, SDK – H.265 – 4Kp60 decoding – Wi-Fi 802.11a/b/g/n/ac – HDMI 2.1 NV-720 IPTV set-top boxes on Android ensure a new Peer-to-Peer TV level of service provision. NV-720 series set-top boxes support real-time NV-720 is an excellent way to promote digital television playback of media files via DC++ protocol without a services and to attract new customers. PC or files preloading to a local disk. There is an opportunity of downloaded files queue creation, Android platform background downloading and organization of an NV-711 Android allows the creation of a single universal illustrated page (catalogue) for media content. platform for access to services including AndroidTV interface. Basic services – HD/UHD IPTV Customized app store creation – OTT The open platform and development tools (SDK, API) – VoD make it possible to create new operator services. – Media Player (files playback from external storage media and a local network) Hardware – Electronic program guide (EPG) Quad-core Amlogic media processor supports a wide – Support for cloud services range of audio and video formats. – Online sources: YouTube, Internet radio, etc. – Provider’s app store Up-to-date Wi-Fi technologies – Support for HLS NV-720-WB set-top boxes support up-to-date Wi-Fi – Peer-to-Peer TV (streaming via DC++) standards: 802.11a/b/g/n/ас. -
Apple Ipad Pro Wi-Fi Cellular 10.5" 512GB Guld Apple Ios 12 Beskrivelse Apple Ipad Pro 10.5" Wifi + 4G 512GB - Gold
Apple iPad Pro Wi-Fi Cellular 10.5" 512GB Guld Apple iOS 12 Beskrivelse Apple iPad Pro 10.5" WiFi + 4G 512GB - Gold Features Den mest avancerede skærm på hele kloden iPad har altid været den ultimative Multi-Touch-oplevelse. Og den redesignede Retina-skærm på iPad Pro sætter en helt ny standard. Ikke alene har den højere lysstyrke og mindre genskin - den har også langt hurtigere reaktionstid end nogen forgænger. Uanset om du scroller løs i Safari eller spiller tunge 3D-spil, går alt så utroligt jævnt og hurtigt, at du helt sikkert bliver revet med. Stærkere end de fleste computere A10X Fusion-chippen med 64-bit-arkitektur og seks kerner giver dig masser af power mellem hænderne. Så meget at du kan redigere 4K-video på farten. Rendere en detaljeret 3D-model. Eller oprette og markere i komplekse dokumenter og præsentationer. Helt nemt - og på en enhed, der stadig har batteritid til en hel dag. Yderst spidskompetent iPad Pro-skærmens opdateringsfrekvens er blevet forbedret, så Apple Pencil gengiver dine strøg endnu mere præcist og naturligt. Apple Pencil er det eneste digitale skriveredskab, der giver dig mulighed for at skrive, lave markeringer og tegne med så præcist et pixel-niveau. Et kæmpe spring for iPad iOS 11 får alt på din iPad til at virke mere levende end nogensinde før. De nye funktioner og muligheder gør, at du kan endnu mere, både hurtigere og nemmere, så du får en endnu mere personlig iPad-oplevelse med masser af power. Brug den til lige præcis det, du vil. For det kan du nu.