sensors Article Computational Load Analysis of a Galileo OSNMA-Ready Receiver for ARM-Based Embedded Platforms † Micaela Troglia Gamba * , Mario Nicola and Beatrice Motella LINKS Foundation, 10138 Turin, Italy;
[email protected] (M.N.);
[email protected] (B.M.) * Correspondence:
[email protected]; Tel.: +39-011-2276-447 † This paper is an extended version of our paper Troglia Gamba, M.; Nicola, M.; Motella, B. Galileo OSNMA: An implementation for ARM-based embedded platforms. In Proceedings of the 2020 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 2–4 June 2020; pp. 1–6, doi:10.1109/ICL-GNSS49876.2020.9115539. Abstract: Many GNSS applications have been experiencing some constantly growing needs in terms of security and reliability. To address some of them, both GPS and Galileo are proposing evolutions of their legacy civil signals, embedding features of authentication. This paper focuses on the Galileo Open Signal Navigation Message Authentication (OSNMA) and describes its implementation within a real-time software receiver for ARM-based embedded platforms. The innovative contributions of the paper include the software profiling analysis for the OSNMA add on, along with the com- parison among performances obtained with different platforms. In addition, specific evaluations on the computational load of the whole receiver complete the analysis. The receiver used for the implementation belongs to the NGene receivers family—real-time fully-software GPS and Galileo receivers, tailored for different platforms and sharing the same core processing. In detail, the paper deals with the introduction of the OSNMA support inside the eNGene, the version of the receiver executable by ARM-based embedded platforms.