The Physics of Supernova 1987A

Total Page:16

File Type:pdf, Size:1020Kb

The Physics of Supernova 1987A The Physics of Supernova 1987A Richard McCray Abstract We describe multiwavelength observations of the evolving spectra and images of Supernova (SN) 1987A, and we review the principles used to infer the physical conditions in the explosion debris. We interpret the early optical and gamma- ray light curves with a simple diffusion model. We review the evidence for dust formation in the debris. We show X-ray and optical observations that enable us to characterize and map the shock fronts caused by of the interaction of the debris with circumstellar matter. We describe how observations of millimeter emission lines due to rotational transitions of CO and SiO enable us to map the distribution, masses, and temperatures of these molecules in the debris. Contents 1 Introduction.............................................................. 2 2 Supernova Energetics...................................................... 3 3 The Light Curve........................................................... 4 4 X-Rays and Gamma Rays................................................... 6 5 Spectral Evolution......................................................... 7 6 Dust Formation........................................................... 8 7 Circumstellar Matter....................................................... 9 8 The Impact............................................................... 10 8.1 Plane-Parallel Shocks................................................. 10 8.2 Blast Wave and Reverse Shocks........................................ 12 9 Radiation from Shocked Gas................................................ 14 9.1 X-Ray Emission from Non-radiative Shocks.............................. 14 9.2 Radiative Shocks: The Hotspots........................................ 19 9.3 Balmer-Dominated Shocks: The Reverse Shock........................... 20 9.4 Doppler Tomography................................................. 21 10 Interior Debris............................................................ 23 10.1 Molecular Emission from Inner Debris................................... 23 10.2 Rotational Transitions of CO and SiO.................................... 25 R. McCray () Department of Astronomy, University of California, Berkeley, CA, USA e-mail: [email protected] © Springer International Publishing AG 2017 1 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernovae, DOI 10.1007/978-3-319-20794-0_96-1 2 R. McCray 10.3 Modeling the Spectral Line Energy Distribution........................... 26 Cross-References.............................................................. 29 References................................................................... 29 1Introduction Supernova 1987A in the Large Magellanic Cloud was first observed on February 23, 1987. It is the brightest supernova since Kepler’s supernova of 1604. By virtue of its proximity, SN is the first supernova to be observed at every band of the electromagnetic spectrum and the first to be observed through its initial flash of neutrinos. SN1987A was classified as a Type II supernova, i.e., its spectrum was dominated by hydrogen lines. But it had an unusual light curve, which continued to brighten for about three months after its initial outburst before it began to fade. We now understand that this behavior was a consequence of the fact that its progenitor was a blue giant rather than a red giant star. Modern supernova surveys show that roughly 1–2% of Type II supernovae display light curves and spectral evolution similar to SN1987A. SN1987A is surrounded by a system of three circumstellar rings (Fig. 1), which evidently were ejected by the progenitor some 20,000 years before the supernova outburst. The cylindrical symmetry of the ring system strongly indicates that the progenitor of SN1987A was a binary star system. The absence of any evidence for a surviving companion star suggests that the two stars merged before the explosion, Fig. 1 SN1987A as seen with the Hubble Space Telescope in 2010 (Courtesy of Peter Challis) The Physics of Supernova 1987A 3 and this scenario may account for the facts that the progenitor was a blue giant and that it ejected the triple ring system. Today, almost 30 years after its discovery, SN1987A has made the transition to the supernova remnant phase, in which its luminosity is dominated by emission from shocks formed where the supernova blast wave encounters the inner circumstellar ring. Although the supernova debris has faded by a factor 107, it is still observable at wavelengths ranging from radio to gamma rays, and it continues to be the most intensively observed supernova in history. In this chapter, I aim to provide a simple framework for understanding the physics of this evolution. To do this, I will rely on rough order-of-magnitude estimates. The reader can find many references to the observations and more details of their interpretation in review articles by Arnett et al. (1989), McCray (1993) and McCray and Fransson (2016). 2 Supernova Energetics SN1987A is a core-collapse supernova, which means that the explosion is the result of the gravitational collapse of the iron core of a massive star. In the final stages of evolution, thermonuclear reactions in the core convert H to He, He to C, O, Ne, Si, and ultimately to Fe. Lacking any source of thermonuclear energy, the iron core cools and shrinks until it is supported by degeneracy pressure of electrons. At this point the core resembles a white dwarf star, having mass comparable to Mˇ, the mass of the Sun, and radius RC 1000 km. The mass of the core continues to increase as a result of thermonuclear reactions in shells surrounding the core. When the core mass exceeds MC D 1:4 Mˇ (the Chandrasekhar limit), electron degeneracy pressure can no longer withstand the pull of gravity. The core collapses 3=2 1=2 on the free-fall timescale, tff RC .GMC / 2 ms. The collapse is halted at a 15 3 radius Rcore 12 km, at which point the density of the core, core 10 gcm , is comparable to that of an atomic nucleus and the nuclear force becomes strongly 2 53 repulsive. The kinetic energy of infall, EG .3=5/GMC =Rcore 3 10 ergs, is converted to heat, which is divided equally among photons, electrons, positrons, and three species of neutrinos and antineutrinos. The temperature of the resulting fireball 4 3 can be estimated from the relationship EG D .43=8/aT Œ4Rcore=3, which yields 3=4 kT 100 MeVŒRcore=10 km . At such a temperature and density, the iron nuclei dissolve into neutrons and protons. Most of the protons are converted to neutrons by inverse beta decay. The result is a nascent neutron star. During the first few seconds after the collapse is halted, the hot neutron star is opaque, even to neutrinos. The neutrinos carry the internal heat by convection to the neutrinosphere, the surface above which the neutrinos can freely stream outward. The convection is violently unstable, and this instability reverses the infall of matter into the neutron star and deposits ESN 1%ofEG as thermal and kinetic energy of outflowing matter. This outflowing matter acts as a piston, driving a shock wave through the envelope of the star. Thermonuclear reactions in the shocked gas synthesize heavy elements, including the radioisotopes 56Ni, 57Ni, and 44Ti. 4 R. McCray Hydrodynamic instabilities during the first few days after the explosion cause the heavy elements to be mixed with the O, C, Ne, Si, etc., that were synthesized during the late stages of evolution of the progenitor star and with the hydrogen/helium of the stellar envelope. This mixing is macroscopic, not microscopic, in the sense that the fragments of different chemical composition do not interact chemically except at their boundaries. Most of the binding energy of the newly formed neutron star emerges as a burst of neutrinos lasting several seconds. In the case of SN1987A, this neutrino flash was detected through flashes of Cerenkov light seen in deep underground tanks of water in Japan and Ohio. The total energy of the neutrino flash was E 5 52 10 ergs, as expected for the formation of a neutron star. (E D EG =6, because the gravitational collapse energy was divided equally among six types of neutrinos, only one of which was detected). The duration, 10 s, and the characteristic temperature of the neutrinos, kT 4 MeV, were also just as predicted for the formation of a neutron star. As mentioned, a small fraction of the energy of the neutrinos is deposited as thermal and kinetic energy in a hot bubble of gas that reverses the flow of matter falling toward the nascent neutron star. This bubble, which resides within the neutrinosphere at 100 km, drives a shock wave through the envelope of the star. The passage of the shock deposits half the energy of the bubble as kinetic energy of the exploding star and half as thermal energy. The thermal energy resides mostly as photons. One can estimate the temperature of the radiation by equating 3 4 51 7 3 1=4 .4R=3/aT0 D 1:5 10 ergs, which gives T0 10 K ŒE51=R12 , where 51 12 E51 D ESN =10 ergs and R12 is the radius of the progenitor in units 10 cm. We may estimate the characteristic expansion velocity, V , of the supernova 2 debris by equating the explosion energy, ESN D MV =2, which yields V D 1=2 1 3200ŒE51=M10 km s , where M10 is the debris mass in units of 10 solar masses. The time for the supernova blast to propagate through the debris is given by 1=2 1=2 t0 D R=V 1 h R12M10 E51 . 3 The Light Curve Figure 2 shows light curves of various components of SN1987A. The optical display of the supernova will commence when the blast arrives at the photosphere, an event called shock breakout. According to the (very rough) estimate above, this event should occur about 1 h after the neutrino flash. At shock 6 breakout, the temperature of the photosphere will suddenly rise to TS 10 K and subsequently decrease rapidly (within a few hours) as the debris expands. The shock breakout yields a flash of ionizing radiation having initial luminosity 45 L0 10 ergs=s and total fluence of ionizing (>13:6 eV) radiation Fi D 2 1057 photons. The net energy of ionizing radiation released at shock breakout, 47 Ei 10 ergs, is negligible compared to the total energy of the supernova explosion, 51 ESN 3 10 ergs.
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • 1 NASA Goddard Space Flight Center
    Source of Acquisition 1 NASA Goddard Space Flight Center \> SN 1987A AFTER 18 YEARS: MID-INFRARED GEMINI and SPITZER OBSERVATIONS OF THE REMNANT Patrice Bouchet1,2, Eli Dwek3, John Danziger4, Richard G. Arendt 5, I. James M. De Buizer', Sangwook Park7, Nicholas B. SuntzefF2, Robert P. Kirshners, and Peter Challis ABSTRACT We present high resolution 11.7 and 18.3 pm mid-IR images of SN 1987A obtained on day 6526 since the explosion with the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope. The 11.7 pm flux has increased significantly since our last observations on day 6067. The images clearly show that all the emission arises from the equatorial ring (ER). Nearly contemporaneous spectra obtained on day 6184 with the MIPS at 24 pm, on day 6130 with the IRAC in 3.6- 8 pm region, and on day 6190 with the IRS in the 12-37 ,urn instruments on board the Spitzer Space Telescope's show that the emission consists of thermal emission from silicate dust that condensed out in the red giant wind of the progenitor star. The dust temperature is 1662:; K, and the emitting dust mass is (2.6:;;:) x MB.Lines of [Ne 111 12.82 pm and [Ne 1111 15.56 pm are clearly present in the Spitzer spectrum, as well as a weak [Si 113 34.8 pm line. We also detect two lines near 26 pm which we tentatively ascribe to [Fe 117 25.99 pm and [0 IV] 25.91 pm. Comparison of the mid-IR Gemini 11.7 pm image with X-ray images obtained by Chandra, UV- optical images obtained by HST, and radio synchrotron images obtained by the ATCA show generally good correlation of the images across all wavelengths.
    [Show full text]
  • Science Fiction and Astronomy
    Sci Fi Science Fiction and Astronomy Many science fiction books include subjects of astronomical interest. Here is a list of some that have been recommended to me or I’ve read. I expect that most are not in the University library but many are available in Kindle and other e-formats. At the top of my list is a URL to a much longer list by Andrew Fraknoi of the Astronomical Society of the Pacific. Each title in his list has a very brief summary indicating the kind of story it is. Andrew Fraknoi’s list (http://www.astrosociety.org/education/resources/scifi.html). Gregory Benford is a plasma physicist who has been rated by some as one of the finest observes and interpreters of science in modern fiction. Note: Timescape [Vista, ISBN 0575600500] In the Ocean of Night [Vista, ISBN 0575600357] Across the Sea of Suns [Vista, ISBN 0575600551] Great Sky River [Gallancy, ISBN 0575058315] Eater and over 2 dozen more available as e-books. Stephen Baxter Titan [Voyager, 1997, ISBN 0002254247] has been strongly recommended by New Scientist as a tense, near future, thriller you shouldn’t miss. David Brin has a PhD in astrophysics with which he brings real understanding of the Universe to his stories. The Crystal Spheres won an award. Fred Hoyle is probably the most famous astronomer to have written science fiction. The Back Cloud [Macmillan, ISBN 0333556011] is his classic, followed by A for Andromeda. Try also October the First is too late. Larry Niven’s stories include plenty of ideas inspired by modern astronomy.
    [Show full text]
  • The Distance to the Large Magellanic Cloud
    Proceedings Astronomy from 4 perspectives 1. Cosmology The distance to the large magellanic cloud Stefan V¨olker (Jena) In the era of modern cosmology it is necessary to determine the Hubble constant as precise as possible. Therefore it is important to know the distance to the Large Mag- ellanic Cloud (LMC), because this distance forms the fundament of the cosmological distance ladder. The determination of the LMC's distance is an suitable project for highschool students and will be presented in what follows. Calculating the distance to the LMC using the supernova SN 1987 A [1, 2] By combining the angular size α of an object with its absolute size R, one can calculate the distance d (at least for our cosmological neighborhood) using the equation R R d = ≈ (1) tan α α and the approximation d R. In the case of the SN 1987 A students can measure the angular size of the circumstellar ring on the Hubble Space Telescope (HST) image (Figure 1). The absolute size of the ring can be derived from the delay time due to light-travel effects seen in the emission light curve (also Figure 1). Once the supernova exploded, the UV-flash started 1,00 0,75 0,50 intensity (normalized) 0,25 0 0 500 1000 time t/d ESA/Hubble tP1' tP2' Figure 1: left: HST picture of the SN 1987 A; right: emission light curve of the circumstellar [2, 3] propagating and reached the whole ring at the same time, which started emitting immediately. The additional distance x is linked to the delay time by the equation x = c · ∆t = c · (t 0 − t 0 ).
    [Show full text]
  • Science Fiction Stories with Good Astronomy & Physics
    Science Fiction Stories with Good Astronomy & Physics: A Topical Index Compiled by Andrew Fraknoi (U. of San Francisco, Fromm Institute) Version 7 (2019) © copyright 2019 by Andrew Fraknoi. All rights reserved. Permission to use for any non-profit educational purpose, such as distribution in a classroom, is hereby granted. For any other use, please contact the author. (e-mail: fraknoi {at} fhda {dot} edu) This is a selective list of some short stories and novels that use reasonably accurate science and can be used for teaching or reinforcing astronomy or physics concepts. The titles of short stories are given in quotation marks; only short stories that have been published in book form or are available free on the Web are included. While one book source is given for each short story, note that some of the stories can be found in other collections as well. (See the Internet Speculative Fiction Database, cited at the end, for an easy way to find all the places a particular story has been published.) The author welcomes suggestions for additions to this list, especially if your favorite story with good science is left out. Gregory Benford Octavia Butler Geoff Landis J. Craig Wheeler TOPICS COVERED: Anti-matter Light & Radiation Solar System Archaeoastronomy Mars Space Flight Asteroids Mercury Space Travel Astronomers Meteorites Star Clusters Black Holes Moon Stars Comets Neptune Sun Cosmology Neutrinos Supernovae Dark Matter Neutron Stars Telescopes Exoplanets Physics, Particle Thermodynamics Galaxies Pluto Time Galaxy, The Quantum Mechanics Uranus Gravitational Lenses Quasars Venus Impacts Relativity, Special Interstellar Matter Saturn (and its Moons) Story Collections Jupiter (and its Moons) Science (in general) Life Elsewhere SETI Useful Websites 1 Anti-matter Davies, Paul Fireball.
    [Show full text]
  • Gas and Dust in the Magellanic Clouds
    Gas and dust in the Magellanic clouds A Thesis Submitted for the Award of the Degree of Doctor of Philosophy in Physics To Mangalore University by Ananta Charan Pradhan Under the Supervision of Prof. Jayant Murthy Indian Institute of Astrophysics Bangalore - 560 034 India April 2011 Declaration of Authorship I hereby declare that the matter contained in this thesis is the result of the inves- tigations carried out by me at Indian Institute of Astrophysics, Bangalore, under the supervision of Professor Jayant Murthy. This work has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: ii Certificate This is to certify that the thesis entitled ‘Gas and Dust in the Magellanic clouds’ submitted to the Mangalore University by Mr. Ananta Charan Pradhan for the award of the degree of Doctor of Philosophy in the faculty of Science, is based on the results of the investigations carried out by him under my supervi- sion and guidance, at Indian Institute of Astrophysics. This thesis has not been submitted for the award of any degree, diploma, associateship, fellowship, etc. of any university or institute. Signed: Date: iii Dedicated to my parents ========================================= Sri. Pandab Pradhan and Smt. Kanak Pradhan ========================================= Acknowledgements It has been a pleasure to work under Prof. Jayant Murthy. I am grateful to him for giving me full freedom in research and for his guidance and attention throughout my doctoral work inspite of his hectic schedules. I am indebted to him for his patience in countless reviews and for his contribution of time and energy as my guide in this project.
    [Show full text]
  • The Drink Tank Sixth Annual Giant Sized [email protected]: James Bacon & Chris Garcia
    The Drink Tank Sixth Annual Giant Sized Annual [email protected] Editors: James Bacon & Chris Garcia A Noise from the Wind Stephen Baxter had got me through the what he’ll be doing. I first heard of Stephen Baxter from Jay night. So, this is the least Giant Giant Sized Crasdan. It was a night like any other, sitting in I remember reading Ring that next Annual of The Drink Tank, but still, I love it! a room with a mostly naked former ballerina afternoon when I should have been at class. I Dedicated to Mr. Stephen Baxter. It won’t cover who was in the middle of what was probably finished it in less than 24 hours and it was such everything, but it’s a look at Baxter’s oevre and her fifth overdose in as many months. This was a blast. I wasn’t the big fan at that moment, the effect he’s had on his readers. I want to what we were dealing with on a daily basis back though I loved the novel. I had to reread it, thank Claire Brialey, M Crasdan, Jay Crasdan, then. SaBean had been at it again, and this time, and then grabbed a copy of Anti-Ice a couple Liam Proven, James Bacon, Rick and Elsa for it was up to me and Jay to clean up the mess. of days later. Perhaps difficult times made Ring everything! I had a blast with this one! Luckily, we were practiced by this point. Bottles into an excellent escape from the moment, and of water, damp washcloths, the 9 and the first something like a month later I got into it again, 1 dialed just in case things took a turn for the and then it hit.
    [Show full text]
  • Frontiers in Coalescent Theory: Pedigrees, Identity-By-Descent, and Sequentially Markov Coalescent Models
    Frontiers in Coalescent Theory: Pedigrees, Identity-by-Descent, and Sequentially Markov Coalescent Models The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Wilton, Peter R. 2016. Frontiers in Coalescent Theory: Pedigrees, Identity-by-Descent, and Sequentially Markov Coalescent Models. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493608 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Frontiers in Coalescent Theory: Pedigrees, Identity-by-descent, and Sequentially Markov Coalescent Models a dissertation presented by Peter Richard Wilton to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts May 2016 ©2016 – Peter Richard Wilton all rights reserved. Thesis advisor: Professor John Wakeley Peter Richard Wilton Frontiers in Coalescent Theory: Pedigrees, Identity-by-descent, and Sequentially Markov Coalescent Models Abstract The coalescent is a stochastic process that describes the genetic ancestry of individuals sampled from a population. It is one of the main tools of theoretical population genetics and has been used as the basis of many sophisticated methods of inferring the demo- graphic history of a population from a genetic sample. This dissertation is presented in four chapters, each developing coalescent theory to some degree.
    [Show full text]
  • Phys 321: Lecture 7 Stellar EvoluOn
    Phys 321: Lecture 7 Stellar Evolu>on Prof. Bin Chen, Tiernan Hall 101, [email protected] Stellar Evoluon • Formaon of protostars (covered in Phys 320; briefly reviewed here) • Pre-main-sequence evolu>on (this lecture) • Evolu>on on the main sequence (this lecture) • Post-main-sequence evolu>on (this lecture) • Stellar death (next lecture) The Interstellar Medium and Star Formation the cloud’s internal kinetic energy, given by The Interstellar Medium and Star Formation the cloud’s internal kinetic energy, given by 3 K NkT, 3 = 2 The Interstellar MediumK andNkT, Star Formation = 2 where N is the total number2 ofTHE particles. FORMATIONwhere ButNNisis the just total OF number PROTOSTARS of particles. But N is just M Mc N c , Our understandingN , of stellar evolution has= µm developedH significantly since the 1960s, reaching = µmH the pointwhere whereµ is the much mean of molecular the life weight. history Now, of by a the star virial is theorem, well determined. the condition for This collapse success has been where µ is the mean molecular weight.due to advances Now,(2K< byU the in) becomes observational virial theorem, techniques, the condition improvements for collapse in our knowledge of the physical | | (2K< U ) becomes processes important in stars, and increases in computational2 power. In the remainder of this | | 3MckT 3 GMc chapter, we will present an overview of< the lives. of stars, leaving de(12)tailed discussions 2 µmH 5 Rc of s3oMmeckTspecia3l pGMhasces of evolution until later, specifically stellar pulsation, supernovae, The radius< may be replaced. by using the initial mass density(12) of the cloud, ρ , assumed here µmH 5 Rc 0 and comtop beac constantt objec throughoutts (stellar theco cloud,rpses).
    [Show full text]
  • Twenty Years of SN 1987A
    Astronomical Science Twenty Years of Supernova 1987A Claes Fransson1 Prize in 2002 (shared with Riccardo scope covers. Some of the smaller tele- Roberto Gilmozzi 2 Giacconi for X-ray astronomy and Ray- scopes took their chance. The 61-cm Per Gröningsson1 mond Davis Jr. for solar neutrinos). Bochum telescope on La Silla was used, Reinhard Hanuschik 2 The most important implication of the on a nearly daily basis for more than Karina Kjær 2 neutrinos was that it confirmed the a year, to measure optical spectroscopy Bruno Leibundgut 2 hydrodynamic core collapse, releasing with photometric accuracy. Since the Jason Spyromilio 2 about 3 × 1053 ergs of gravitational LMC is circumpolar for most southern energy, mainly in neutrinos of all kinds. observatories, this also meant that This confirmed the predictions by Col- we have an uninterrupted record of the 1 Stockholm University gate, Arnett and others from the 1960s. photometry and spectroscopy; else 2 ESO Among many other results, the few we would have missed part of the peak neutrinos showed that the electron-neu- phase, which lasted into May of 1987. trino mass has to be rather small (m ≤ By July, the first conference on SN 1987A ve The unique supernova SN 1987A has 20 eV, superseded in the meantime by had already taken place at ESO in Gar- been a bonanza for astrophysicists. direct experiments) as no time-delay ching (Danziger 1987) to be followed by It provided several observational ‘firsts’, effects could be measured. Also, the fact several others during that year and fol- like the detection of neutrinos from that there is no structure in the neutrino lowing years.
    [Show full text]
  • The Star Newsletter
    THE HOT STAR NEWSLETTER ? An electronic publication dedicated to A, B, O, Of, LBV and Wolf-Rayet stars and related phenomena in galaxies No. 41 June/July 1998 editor: Philippe Eenens http://www.astro.ugto.mx/∼eenens/hot/ [email protected] http://www.star.ucl.ac.uk/∼hsn/index.html Contents of this newsletter From the Editor . 1 Abstracts of 24 accepted papers . 2 Abstracts of 2 submitted paper . 16 Abstracts of 2 proceedings papers . 17 Book ......................................................................18 Meetings ...................................................................20 From the editor This issue covers two months of publications and is dominated by η Car, other LBVs and B[e] stars. Other papers tell us about massive stars in the Galactic Center and R136, OB stars, polarimetry, wind models and [WC] central stars of Planetary Nebulae. We also present a book and remind readers about future meetings: two special sessions during IAU symposium 193 in Mexico (on HD5980 and on the XMEGA campaign) as well as IAU colloquium 175 in Spain in June 1999 (on Be stars). 1 Accepted Papers On the Multiplicity of η Carinae Henny J.G.L.M. Lamers1,2, Mario Livio1, Nino Panagia1,3, & Nolan R. Walborn1 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute and SRON Laboratory for Space Research, Princetonplein 2, 3584CC Utrecht, The Netherlands 3 On assignment from the Astrophysics Division, Space Science Department of ESA. The nebula around the luminous blue variable η Car is extremely N-rich and C,O-poor, indicative of CNO-cycle products. On the other hand, the recent HST-GHRS observation of the nucleus of η Car shows the spectrum of a star with stellar-wind lines of C ii,C iv, Si ii, Si iv etc.
    [Show full text]
  • Astroparficle,Physics,, With,Mev,Neutrinos
    University(of(Virginia,(HEP(Seminar,(April(21st(2015( Astropar(cle,physics,, with,MeV,neutrinos, Shunsaku(Horiuchi(( (Center(for(Neutrino(Physics,(Virginia(Tech)( Image(credit:(NASA/ESA( Contents, • IntroducJon:(why(astrophysical(neutrinos(now?( • Topic(1:(Supernova(neutrinos( – GalacJc(events:(rich(physics(and(astronomy( – Detectability(beyond(GalacJc(events( • Topic(2:(Dark(maPer(neutrinos( – Two(searches,(two(constraints( • Summary( UVa,(April(21st(2015( Shunsaku(Horiuchi((Virginia(Tech)( 2( Neutrinos,as,messenger,par(cles Neutrinos(are(great(messenger(parJcles:( • allow(us(to(see(opJcally(thick((to(photons)(regions( • experience(liPle(aPenuaJon(through(cosmic(space( • travel(in(straight(lines( Source Neutrinos gamma(rays( Cosmic(raysCosmic(rays( MagneJc(field UVa,(April(21st(2015 Shunsaku(Horiuchi((Virginia(Tech) 3( Neutrino,detec(on:,Cherenkov,, Use(the(Cherenkov(light(to(reconstruct(the(original(neutrino( ν" IceCube( Eν >(10(GeV( Muon(range(increases( the(effecJve(volume(( lepton( e( Du>a,et,al,,PRD,(2001),, SuperVKamiokande( Eν(>(few(MeV(( Volume(~(50(kton(of(water( Volume(~(1(Gton(of(ice( UVa,(April(21st(2015( Shunsaku(Horiuchi((Virginia(Tech)( 4( Neutrino,sources, RadioacJve(decay( Sun((x1)( Nuclear( Supernova((x1)( reactors( ParJcle( Astrophysical( accelerator( accelerator( Likely' Cosmic(background( Atmospheric( +(others?( UVa,(April(21st(2015(Shunsaku(Horiuchi((IPMU)((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Shunsaku(Horiuchi((Virginia(Tech)(
    [Show full text]