Houseplants Guide Houseplants Add a Wonderful Dimension to Your Home Or Work Space

Total Page:16

File Type:pdf, Size:1020Kb

Houseplants Guide Houseplants Add a Wonderful Dimension to Your Home Or Work Space 33 El Pueblo Road, Scotts Valley, CA 95066 (831) 438-4106 www.ScarboroughGardens.com Houseplants Guide Houseplants add a wonderful dimension to your home or work space. They contribute many positive attributes. Besides helping to bring a sense of the outdoors-in, they also function as air purifiers and decorative accents. We’ve compiled lists that may be helpful in determining the right choice based on the plants lighting requirements. We have also added a list for air purifying plants. We stock a wide assortment of varieties and sizes with a range of prices for any budget. Houseplants for a Sunny Window Houseplants for Bright Light Common Name Botanical Name Common Name Botanical Name Amaryllis Hippeastrum African Violet Saintpauila Bougainvillea Bougainvillea spp. Chrysanthemum Chrysanthemum Cactus & Succulents N/A Cigar Plant Cuphea ignea Celosia Celosia Cordyline Cordyline spp. Citrus Citrus spp. Croton Codiaeum spp. Coleus Coleus spp. Ficus Ficus spp. Geranium Pelargonium spp. Ornamental Pepper Capsicum spp. Heliotrope Heliotrope Rubber Plant Ficus elastica decora Hibiscus Hibiscus spp. Shrimp Plant Beloperone guttata Jasmine Jasminum spp. Snake Plant Sansevieria Lantana Lantana spp. Spider Plant Chlorophytum Lily of the Nile Agapanthus spp. Velvet Plant Gynura Oxalis Oxalis spp. Wandering Jew Tradescantia spp. Passion Flower Vine Passiflora spp. Wax Plant Hoya Rose Rosa spp. Some Bedding Plants & N/A Herbs Scarborough Gardens Houseplants Guide 1 Houseplants For Medium Light (Also any plant on the Low Light List) Common Name Botanical Name Common Name Botanical Name Aluminum Plant Pilea cadierei Polka-dot Plant Hypoestes phyllostachys Asparagus Fern A. densiflorus ‘Spengeri’ Pothos Scindapsis spp. Begonia Begonia rex Prayer Plant Maranta Boston Fern Nephrolepsis exaltata Rubber Plant Ficus elastica Bromeliads Bromeliads spp. Schefflera Brassaia actinophylla Crystal Anthurium Anthurium crystallinum Sicklethorn Asparagus falcatus Christmas Cactus Zygocactus truncatus Smilax Asparagus asparagoides Cyclamen Cyclamen persicum Spider Plant Chlorophytum comosam Dieffenbachia Dieffenbachia spp. Swedish Ivy Plectranthus austrailis Dracaena Dracaena spp. Swiss Cheese Plant Monstera deliciosa False Aralia Dizygotheca elegantissima Flamingo Flower Anthurium scherzerianum Recipe for Success Foxtail Fern Asparagus meyeri The first and most important task is determining light intensity in the place you wish to put a plant. To do Fuchsia Fuchsia hybrida that, use this quick and easy test. Garden Bulbs Amaryllis, Belladonna Lily, Light Brightness Test: Freesia, Lilies, Calla Lilies, etc On a sunny day, get a piece of white paper and place it where you want to put your plant. Then hold your Goldfish Plant Columnea gloriosa or hand twelve inches above the paper. Can you see an banksii indistinct shadow? If so, that’s a low light area. Grape Ivy Cissus rhombifolia • Water thoroughly when soil surface to one inch down is dry to the touch. Common Ivy (English Hedera helix • Fertilize regularly with products such as Schultz Ivy) Liquid Plant Food , Miracle Gro Indoor Stakes, or Osmocote 4 Month Indoor Plant Food. Lady’s Slipper Orchid Paphiopedilum • Inspect for insects weekly and keep foliage clean to help prevent infestations from occurring. Moth Orchid Phalaenopsis Oilcloth Flower Anthurium andreanum Parlor Palm/Neanthe Chamedorea elegans Bella Palm Peace Lily Spathiphyllum wallisii Philodendron Philodendron spp. Scarborough Gardens Houseplants Guide 2 Houseplants for Low Light Common Name Botanical Name Common Name Botanical Name Arrow Head Synyonium Sentry Palm Howea belmoreana Baby’s Tears Helxine soleirolii Silver Net Leaf Fittonia argyoneura Bird’s Nest Fern Asplenium nidus Snake Plant Sansevieria Boston Fern Nephrolepsis exaltata Snakeskin Plant Fittonia argyoneura nana Cast Iron Plant Aspidistra Sweetheart Plant Philodendron scandens Chinese Evergreen Aglaonema Common Ivy (English Ivy) Hedera helix Houseplants Known Specially Corn Plant Dracaena fragrans‘Massangeara’ for Air Purifying Creeping Fig Ficus pumila Common Name Botanical Name Dumb Cane Dieffenbachia Aloe Aloe spp. Ferns Ferns spp. Bamboo Palm Chamaedorea seifrizii Golden Pothos Scindapsis aureus Boston Fern Nephrolepsis exaltata Ivy Tree Fashedera lizei Chinese Evergreen Aglaonema Japanese Aralia Fatsia japonica Chrysanthemum Chrysanthemum Kentia Palm Howea forsteriana Dracaena Dracaena spp. Lady Palm Rhaphis excelsa Ficus Ficus spp. Madagascar Dragon Tree Dracaena marginata Ivy Hedera spp. Maranta Maranta spp. Peace Lily Spathiphyllum Marble Queen Scindapsis aureus Philodendron Philodendron spp. Mother Fern Asplenium bulbiferum Pothos Scindapsis spp. Mother-in-Law Tongue Sansevieria Spider Plant Chlorophytum Neanthe Bella Palm/Par- Chamaedorea elegans lor Palm Painted Net Leaf Fittonia verschaffeltii Peace Lily Spathiphyllum Peperomia Peperomia spp. Piggyback Plant Tolmiea menziesii Scarborough Gardens Houseplants Guide 3.
Recommended publications
  • Indoor Plants Or Houseplants
    Visit us on the Web: www.gardeninghelp.org Indoor Plants or Houseplants Over the past twenty years houseplants have grown in popularity. Offered in a wide variety of sizes, shapes, colors and textures, houseplants beautify our homes and help soften our environment. They have been scientifically proven to improve our health by lowering blood pressure and removing pollutants from the air we breathe. When selecting a houseplant, choose reputable suppliers who specialize in growing houseplants. Get off to a good start by thoroughly examining each plant. Watch for brown edges and spindly growth with elongated stems and large gaps between new leaves. Inspect leaves and stem junctions for signs of insect or disease problems. Check any support stakes to make sure they are not hiding broken stems or branches. Finally, make sure the plant is placed in an area that suits its optimal requirements for light, temperature and humidity. Where to Place Your House Plants With the exception of the very darkest areas, you can always find a houseplant with growth requirements to match the environmental conditions in your home. The most important factors are light intensity and duration. The best way to determine the intensity of light at a window exposure area is to measure it with a light meter. A light meter measures light in units called foot-candles. One foot-candle is the amount of light from a candle spread over a square foot of surface area. Plants that prefer low light may produce dull, lifeless-looking leaves when exposed to bright light. Bright light can also cause leaf spots or brown-tipped scorched margins.
    [Show full text]
  • The Evolution of a Sex Chromosome in Asparagus by Alex E. Harkess (Under the Direction of James H. Leebens-Mack) Abstract the Ov
    The Evolution of a Sex Chromosome in Asparagus by Alex E. Harkess (Under the Direction of James H. Leebens-Mack) Abstract The overwhelming majority of flowering plants reproduce through the production of hermaphroditic flowers. A small percentage of angiosperm species instead are dioecious, producing either male or female flowers on individual plants. Dioecy can be mediated at the molecular level by a sex chromosome that genetically differentiates males and females. Sex chromosomes evolve from autosomes, and this conversion is hypothesized to involve muta- tions in one or more linked genes that determine sex. Given the complexities of anther and ovule development, the full suite of sex determination genes has not been described for any dioecious plant. Here we explore the conversion from autosome to an XY sex chromosome using garden asparagus (Asparagus officinalis), an ideal model system for studying the ear- liest events in sex chromosome evolution given that it recently evolved a sex chromosome pair. Focusing first on broad trends, genomic characterization of several hermaphroditic and dioecious species across the Asparagus genus revealed an increase in retrotransposon con- tent coincident with the evolution of dioecy. To identify putative sex determination genes on this Y chromosome, we then explore the timing of male and female sterility events in garden asparagus, hypothesizing that anther sterility in females likely occurs before pollen microsporogenesis. Finally, we assemble and annotate a high quality reference genome for garden asparagus, and perform a suite of mutant analyses to identify two genes in a non- recombining region of the Y that are ultimately responsible for sex determination.
    [Show full text]
  • Buy Pilea Cadierei, Pilea Aluminium, Watermelon Pilea - Plant Online at Nurserylive | Best Plants at Lowest Price
    Buy pilea cadierei, pilea aluminium, watermelon pilea - plant online at nurserylive | Best plants at lowest price Pilea Cadierei, Pilea Aluminium, Watermelon Pilea - Plant Showy, silver-splashed leaves make Aluminum Plant a stunning and popular house plant. Rating: Not Rated Yet Price Variant price modifier: Base price with tax Price with discount ?299 Salesprice with discount Sales price ?299 Sales price without tax ?299 Discount Tax amount Ask a question about this product Description With this purchase you will get: 01 Pilea Cadierei, Pilea Aluminium, Watermelon Pilea Plant 01 6 inch Grower Round Plastic Pot (Black) Description for Pilea Cadierei, Pilea Aluminium, Watermelon Pilea Plant height: 9 - 15 inches (22 - 39 cm) 1 / 3 Buy pilea cadierei, pilea aluminium, watermelon pilea - plant online at nurserylive | Best plants at lowest price Plant spread: Pilea cadierei is a species of flowering plant in the family Urticaceae, native to China and Vietnam. It is an evergreen perennial growing up to 30 cm tall by 21 cm broad, with dark green oval leaves, each leaf having four raised silvery patches. Common name(s): Aluminium Plant, Watermelon Plant Flower colours: Green, white Bloom time: Late Fall, Early Winter Max reachable height: 0.75 to 1.00 feet Difficulty to grow: Easy to grow Planting and care Common is a vine and has larger glossy green leaves than Royal. Both can survive in temperate climates if they are planted in a sheltered area. Arabian is a small bush with evergreen leaves. There are many other varieties of plant, of which are best suited for sub-tropical climates.
    [Show full text]
  • Pilea Cadierei Aluminum Plant1 Edward F
    FPS478 Pilea cadierei Aluminum Plant1 Edward F. Gilman2 Introduction Uses: hanging basket; suitable for growing indoors; ground cover; cascading down a wall The variegated foliage on aluminum plant is unlike any Availability: generally available in many areas within its other, with shiny silver, irregularly shaped markings parallel hardiness range to the lateral veins (Fig. 1). Leaves are held opposite each other on square, green stems, producing a thick ground cover about 12 inches tall in a shaded landscape. Small, white flowers are produced at the ends of the stems in the summer, but they are mostly overshadowed by the conspicuous foliage. Figure 2. Shaded area represents potential planting range. Description Figure 1. Aluminum plant Height: .5 to 1 feet General Information Spread: depends upon supporting structure Plant habit: spreading Scientific name: Pilea cadierei Plant density: moderate Pronunciation: PYE-lee-uh kuh-DEER-ree-eye Growth rate: moderate Common name(s): aluminum plant Texture: medium Family: Urticaceae Plant type: ground cover Foliage USDA hardiness zones: 10 through 11 (Fig. 2) Planting month for zone 10 and 11: year round Leaf arrangement: opposite/subopposite Origin: not native to North America Leaf type: simple Leaf margin: serrate 1. This document is FPS478, one of a series of the Environmental Horticulture Department, UF/IFAS Extension. Original publication date October 1999. Reviewed February 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department; UF/IFAS Extension, Gainesville, FL 32611. The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information and other services only to individuals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions or affiliations.
    [Show full text]
  • Brief Note: Preliminary Investigation of Air Blisters in Pilea Cadierei
    Copyright © 1980 Ohio Acad. Sci. 0030-0950/80/0006-0280 $1.00/0 BRIEF NOTE PRELIMINARY INVESTIGATION OF AIR BLISTERS IN PILEA CADIEREI1 BRIAN D. DOWNS, KEVIN C. VAUGHN and KENNETH G. WILSON, Dept. of Botany, Miami Univ., Oxford, OH 45056 OHIO J. SCI. 80(6): 280, 1980 A form of highly ornamental variega- amined with an Hitachi HS-9 electron tion in higher plants known as "air microscope. blisters" (Kirk and Tilney-Bassett 1967) Mueller and Greenwood (1978) ob- in which the leaves have silver or cream- served that phenolic-storing cells con- colored dotting or striping patterns is tained a blackened, osmiophilic cyto- very common. Species of the genera plasm due to the leaching of the phenolics Pilea, Begonia, Episcia, Dioscorea, Ze- from the vacuoles, obscuring cellular de- brina and Trifolium, to name but a few, tail and making any ultrastructural study have distinct air blisters. As common difficult. This same blackening was as this condition appears to be, it is per- found in the subepidermal air blister and haps surprising that it has not been ex- thus possibly indicated that these cells tensively studied. Hara (1957) investi- are also phenolic-storing cells. Figure 1 gated these plants by light microscopy shows a dark, osmiophilic phenolic-stor- but did no physiological or subcellular ing cell of the air blister of Pilea cadierei studies, and genetic data regarding these with relatively electron transparent epi- plants were summarized by Kirk and dermal and other cells. The plastids and Tilney-Bassett (1967). No likely role other organelles contained in the air for these air blisters has been considered blister cells are highly osmiophylic due to in either work.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Updating Material of Study Subject Flower
    LANDSCAPING FACULTY DEPARTMENT OF GARDENING AND AGRICULTURAL TECHNOLOGIES STUDY PROGRAMME: GARDENING TERRITORIES AND THEIR DESIGN (code) 653H93002 LAIMA MARKEVIČIENĖ UPDATING MATERIAL OF STUDY SUBJECT FLOWER GROWING (IN GREENHOUSES) ATNAUJINIMO MEDŽIAGA PROJEKTUI TO SUPPORT THE PROJECT ‘INTERNATIONAL DEVELOPMENT IN THE ENGINEERING STUDY FIELD PROGRAMMES AND THEIR UPDATING BY CUSTOMIZING TO MEET COURSE DELIVERY NEEDS OF INTERNATIONAL STUDENTS AT THE LANDSCAPING FACULTY OF KAUNO KOLEGIJA/UNIVERSITY OF APPLIED SCIENCES‘ (VP1-2.2-ŠMM-07-K-02-045) Mastaičiai 2012 Educational Institution: Kauno Kolegija / University of Applied Sciences Study Programme: Growing Territories and their Design Study Subject Programme FLOWER GROWING 1. The Annotation. Study Field Subject, in which decorative, morphological and bioecological characteristics of annual, biennial, perennial, bulbous, room: greenhouses and interior flowers are analyzed. Knowledge and abilities when evaluating and applying them in growing territories and interior are given. 2. The Aim of the Programme. To describe and evalaute grass decorative plants, by choosing them for growing territories and interiors of different types, to develope the skills of plants researches and holistic attitude when performing professional solutions. 3.The Length in Credits and Hours: Structure Length Practical Study in Lectures, Consultations, Individual In total: works, Assessment subject ECTS hours hours work, hours hours hours title credits Flower growing 12 69 72 19 160 320 1. Outside 6 29 39 12 80 160 Examination 2. Room 6 40 33 7 80 160 Examination 4.Prerequisites: Chemistry and Plants Protection, Fundamentals of Agronomy, Information Technologies, Foreign Language. 5. Links between Learning Outcomes and Intended Study Subject Outcomes and Student Achievement Assessment Methods: Learning outcomes Intended study subject Student achievement Study methods outcomes assessment methods Lecture, telling, explanation, Testing, frontal inquiry, 1.
    [Show full text]
  • A-1-17 Plants for Terrariums and Dish Gardens.Pmd
    HOME GROUNDS FACT SHEET Horticulture Center Cornell University Demonstration & Community Gardens at East Meadow Farm Cooperative Extension 832 Merrick Avenue East Meadow, NY 11554 Nassau County Phone: 516-565-5265 Plants for Terrariums and Dish Gardens Invented in 1836 by N. B. Ward and originally Soil called “Wardian Cases,” terrariums were used for Soil from the garden is not good for terrariums. A transporting growing plants on long sea voyages. good soil mix should be composed of 1/3 soil, 1/3 They provided the best and safest method of sand and 1/3 peat moss. Some houseplant mixes transporting potted and living plants across the sold under various trade names are ideal. One ocean. tablespoon of water soluble houseplant food in dry A true terrarium is an enclosed environment. form may be added to 2 pounds or 1 quart of soil When it is properly sited so it receives the correct mix. When you add soil to the terrarium, make sure light, it should be almost self-sustaining for at least it's no more than 1/5 the total volume of the ter- a month, perhaps longer. rarium. Since there are no drainage holes, some The terrarium can be a work of art when the provision must be made for this. A layer of sand, proper materials are cleverly combined in an small gravel or moss can be placed on the bottom attractive container. It can also provide the for drainage. opportunity to grow some of the delicate plants that would ordinarily dwindle rapidly when exposed to the dry atmosphere of the home.
    [Show full text]
  • BFS341 Site Species List
    Species lists based on plot records from DEP (1996), Gibson et al. (1994), Griffin (1993), Keighery (1996) and Weston et al. (1992). Taxonomy and species attributes according to Keighery et al. (2006) as of 16th May 2005. Species Name Common Name Family Major Plant Group Significant Species Endemic Growth Form Code Growth Form Life Form Life Form - aquatics Common SSCP Wetland Species BFS No WOODP01 (FCT30a2) WOODP02 (FCT30a2) Wd? Acacia rostellifera Summer-scented Wattle Mimosaceae Dicot WA 3 SH/T P 341 y y Acanthocarpus preissii Prickle Lily Dasypogonaceae Monocot WA 4 H-SH P 341 y * Anagallis arvensis Pimpernel Primulaceae Dicot 4 H A 341 y * Asparagus asparagoides Bridal Creeper Asparagaceae Monocot 4 H (CL) PAB 341 y y Austrostipa elegantissima Feather Speargrass Poaceae Monocot AUST 5 G P 341 y Caladenia latifolia Pink Fairy Orchid Orchidaceae Monocot WA 4 H PAB 341 y Calandrinia calyptrata Pink Purslane Portulacaceae Dicot AUST 4 H A 341 y Callitris preissii Rottnest Island Cypress Cupressaceae Conifer s,E WA 1 T P 341 y * Cerastium glomeratum Sticky Mouse-ear Chickweed Caryophyllaceae Dicot 4 H A 341 y Clematis linearifolia Old Man's Beard Ranunculaceae Dicot WA 4 H-SH (CL) P 341 y Clematis pubescens Old Man's Beard Ranunculaceae Dicot WA 4 H-SH (CL) P 341 y Comesperma integerrimum Vine Comesperma Polygalaceae Dicot WA 3 SH (CL) P 341 y Conostylis candicans subsp. candicans Grey Conostylis Haemodoraceae Monocot WA 4 H P 341 y Dianella revoluta var. divaricata Common Dianella Phormiaceae Monocot WA 4 H P 341 y Diplolaena dampieri Southern Diplolaena Rutaceae Dicot r,s AUST 3 SH P 341 y * Ehrharta longiflora Annual Veldtgrass Poaceae Monocot 5 G A 341 y y Eucalyptus gomphocephala var.
    [Show full text]
  • Plant Name Botanical Name Acacia Berlandieri
    Sugarglider.com Animal toxicity These plants are known to cause problems in animals and should be avoided completely. Possibly toxic Information on these plants is incomplete. Ingestions of small amounts would not be expected to cause problems. Dermatitis Exposure or a thorn puncture wound when in contact with the juice or sap from these plants may produce a skin rash or irritation. Wounds from some of these plants can be extremely painful causing large blisters and burning of the skin. Major toxicity Ingestions of these plants, especially in large amounts, are expected to cause serious effects to major body organs such as the liver, heart or kidneys. If ingested, call the poison center immediately for more advice. Minor toxicity Ingestion may cause some minor symptoms such as rash, vomiting or diarrhea. Ingestion of small amounts may not cause any symptoms at all. Oxalates The juice or sap of these plants has microscopic oxalate crystals. Oxalate crystals are shaped like tiny needles. Chewing these plants may result in pain and irritation and swelling of the mouth, lips and tongue. In severe cases, swelling of the throat may cause breathing difficulties. Safe - Non-Toxic These plants are not poisonous and there is no known record of toxicity. Exposure to these plants is not expected to cause any symptoms or adverse reactions. Plant Name Botanical Name Acacia berlandieri (Botanic name) Achillea (Botanic name) African Violet (Saintpaulia) Aglaonema (Botanic name) Agapanthus (Botanic name) Agapanthus, Pink (Nerine bowdenii) Ajuga Reptans (Botanic name) Albizzia (Botanic name) Allium Canadense (Botanic name) Aloe Vera (Botanic name) Alstoemeria (Botanic name) Aluminum Plant (Pilea cadierei) Alyssum (Botanic name) Amaranth (Celosia cristata) Amaryllis Belladonna (Botanic name) Anemone (Botanic name) Angel Wing Begonia (Species) Apple Tree (Malus species) Apricot Tree (Prunus armeniaca) Aralia Japanese (Fatsia japonica) Arrowhead Vine (Syngonium podophyllum) Artillery Plant (Pilea Microphylla) Arum Lily (Zantedschia lethipica) Asparagus Fern (A.
    [Show full text]
  • Pilea Cadierei1
    Fact Sheet FPS-478 October, 1999 Pilea cadierei1 Edward F. Gilman2 Introduction The variegated foliage on Aluminum Plant is unlike any other, with shiny silver, irregularly-shaped markings parallel to the lateral veins (Fig. 1). Leaves are held opposite each other on square, green stems producing a thick ground cover about 12-inches-tall in a shaded landscape. Small white flowers are produced at the ends of the stems in the summer but they are mostly overshadowed by the conspicuous foliage. General Information Scientific name: Pilea cadierei Pronunciation: PYE-lee-uh kuh-DEER-ree-eye Common name(s): Aluminum Plant Family: Urticaceae Plant type: ground cover USDA hardiness zones: 10 through 11 (Fig. 2) Planting month for zone 10 and 11: year round Origin: not native to North America Uses: hanging basket; suitable for growing indoors; ground cover; cascading down a wall Figure 1. Aluminum Plant. Availablity: generally available in many areas within its hardiness range Texture: medium Description Foliage Height: .5 to 1 feet Spread: depends upon supporting structure Leaf arrangement: opposite/subopposite Plant habit: spreading Leaf type: simple Plant density: moderate Leaf margin: serrate Growth rate: moderate Leaf shape: obovate 1.This document is Fact Sheet FPS-478, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October, 1999 Please visit the EDIS Web site at http:/edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611.
    [Show full text]
  • 213Asparagus Workshop Part2.Indd
    128 Plant Protection Quarterly Vol.21(3) 2006 dioecious species examined had on aver- age twice the genome size of the South Af- Review of the current taxonomic status and rican hermaphroditic species and, based on internal transcribed spacers of nuclear authorship for Asparagus weeds in Australia ribosomal DNA, the species can be divided into two clusters, one of European species Kathryn L. Batchelor and John K. Scott, CSIRO Entomology, Private Bag 5, and the other of southern Africa species. PO Wembley, Western Australia 6913, Australia. Both Lee et al. (1997) and Stajner et al. Email: [email protected], [email protected] (2002) did not use outgroup taxa in their analyses. This issue and a larger sam- ple size (24 species) were addressed in a study by Fukuda et al. (2005) of the mo- Summary Systematic taxonomy of genera lecular phylogeny of Asparagus inferred Over the last 20 years, many scientifi c within the Asparagaceae from plastid petB intron and petD-rpoA papers and reports have been produced The debate over whether the Asparagace- intergenic spacer sequences. They found outlining the establishment, distribution ae contains one genus Asparagus with or evidence supporting a monophyletic ori- and weed status of Asparagus weeds in without subgenera, or up to 16 separate gin of Asparagus and the sub-division of Australia. Differing use of authorship genera has been going for over 200 years. Asparagus into more than three groups. and species names are present in this lit- The taxonomic history of the Asparagace- The Eurasian species of Asparagus formed erature resulting in confusion over which ae is well covered in recent papers.
    [Show full text]