ENGINE PARTS INTAKE HOSES Lycoming 1-3/4” Intake Hose ANGLED VALVE LYCOMING PARTS to 69603
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MANUAL REVISION TRANSMITTAL Manual 146 (61-00-46) Propeller Owner's Manual and Logbook
HARTZELL PROPELLER INC. One Propeller Place Piqua, Ohio 45356-2634 U.S.A. Telephone: 937.778.4200 Fax: 937.778.4391 MANUAL REVISION TRANSMITTAL Manual 146 (61-00-46) Propeller Owner's Manual and Logbook REVISION 3 dated June 2012 Attached is a copy of Revision 3 to Hartzell Propeller Inc. Manual 146. Page Control Chart for Revision 3: Remove Insert Page No. Page No. COVER AND INSIDE COVER COVER AND INSIDE COVER REVISION HIGHLIGHTS REVISION HIGHLIGHTS pages 5 and 6 pages 5 and 6 SERVICE DOCUMENTS LIST SERVICE DOCUMENTS LIST pages 11 and 12 pages 11 and 12 LIST OF EFFECTIVE PAGES LIST OF EFFECTIVE PAGES pages 15 and 16 pages 15 and 16 TABLE OF CONTENTS TABLE OF CONTENTS pages 17 thru 24 pages 17 thru 26 INTRODUCTION INTRODUCTION pages 1-1 thru 1-14 pages 1-1 thru 1-16 DESCRIPTION AND DESCRIPTION AND OPERATION OPERATION pages 2-1 thru 2-20 pages 2-1 thru 2-24 INSTALLATION AND INSTALLATION AND REMOVAL REMOVAL pages 3-1 thru 3-22 pages 3-1 thru 3-24 TESTING AND TESTING AND TROUBLESHOOTING TROUBLESHOOTING pages 4-1 thru 4-10 pages 4-1 thru 4-10 continued on next page Page Control Chart for Revision 3 (continued): Remove Insert Page No. Page No. INSPECTION AND INSPECTION AND CHECK CHECK pages 5-1 thru 5-24 pages 5-1 thru 5-26 MAINTENANCE MAINTENANCE PRACTICES PRACTICES pages 6-1 thru 6-36 pages 6-1 thru 6-38 DE-ICE SYSTEMS DE-ICE SYSTEMS pages 7-1 thru 7-6 pages 7-1 thru 7-6 NOTE 1: When the manual revision has been inserted in the manual, record the information required on the Record of Revisions page in this manual. -
DLE-20 Operator’S Manual
DLE-20 Operator’s Manual Specifications Displacement: 20cc [1.2cu. in.] Performance: 2.5HP / 9,000 rpm Idle Speed: 1,700 rpm Ignition Style: Electronic Ignition Recommended Propellers: 14u10, 15 u8, 16u6, 16u8, 17u6 Spark Plug Type: CM6 (Gap) 0.018in.– 0.020 in. [0.45mm –0.51mm] Diameter × Stroke: 1.26in. [32mm] u0.98in. [25 mm] Compression Ratio: 10.5 :1 Carburetor: DLE MP 148 100424 with Manual Choke Weight: Main Engine − 1.43 lb [650g] Muffler − 1.76 oz [50 g] Electronic Ignition − 4.23oz [120 g] ™ Fuel: 87− 93 Octane Gasoline with a 30:1 gas/2-stroke (2-cycle) oil mixture 1 © 2010 Hobbico®, Inc. DLEG0020 Mnl Parts List (1) DLE-20cc Gas Engine w/DLE MP 148 100424 (1) DLE Spark Plug (NGK CM6 size) with additional spring (1) Muffl er with gasket (2) 4 x 14 mm SHCS (muffl er mounting) (1) Electronic Ignition Module with additional tachometer lead (1) Silicone Pick-up Wire Cover / Ignition Wire Cover (1) Red Three Pin Connector Lead with Pig Tail (ignition switch) (1) Long Throttle Arm Extension with installation screw and nut (2) Three Pin Connector Securing Clips (1) DLE Decal (not pictured) Safety Tips and Warnings ● This engine is not a toy. Please place your safety and the safety of others paramount while operating. DLE will not be held responsible for any safety issues or accidents involving this engine. ● Operate the engine in a properly ventilated area. ● Before starting the engine, please make sure all components including the propeller and the engine mount are secure and tight. -
Service Instruction No
652 Oliver Street SERVICE Williamsport, PA. 17701 U.S.A. Telephone +1 (877) 839-7878 (U.S. and Canada) Telephone +1 (570) 327-7222 (International) Fax +1 (570) 327-7101 Email [email protected] INSTRUCTION www.lycoming.com DATE: April 24, 2020 Service Instruction No. 1009BE (Supersedes Service Instruction No. 1009BD) Engineering Aspects are FAA Approved SUBJECT: Time Between Overhaul (TBO) Schedules MODELS AFFECTED: Lycoming Engine Models Defined Herein REASON FOR REVISION: Added a new paragraph at the end of the Operating Hour Time Period TBO section. Added new engine model IO-390-D to Table 1. Revised Table 2 to include separate listings for engine model O-540-F1B5 for the Robinson R44 and R44 Cadet. Revised Note 10 to include reference to Note 6. Revised the paragraph after the CAUTION in the CALENDAR TIME PERIOD TBO section. Revised Note 15,c. NOTICE: Incomplete review of all the information in this document can cause errors. Read the entire Service Instruction to make sure you have a complete understanding of the requirements. This Service Instruction identifies the Calendar Time Period in years and the Operating Hour Time Period in hours of engine operation for the Time Between Overhaul (TBO) for certified Lycoming engine models operated and maintained in compliance with all applicable Lycoming Technical Publications and FAA Airworthiness Directives. The TBOs stated in this Service Instruction do not apply to engines that: a. Do not conform to the original engine model type certificate configuration; b. Have been assembled, repaired, or overhauled with FAA-PMA parts, where the FAA-PMA parts have not been approved for use by Lycoming (contact Lycoming for information regarding FAA-PMA parts approved for use by Lycoming); c. -
Propeller Operation and Malfunctions Basic Familiarization for Flight Crews
PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they sometimes fail. Some of these failures and malfunctions cannot be duplicated well in the simulator, which can cause recognition difficulties when they happen in actual operation. This text is not meant to replace other instructional texts. However, completion of the material can provide pilots with additional understanding of turbopropeller operation and the handling of malfunctions. GENERAL PROPELLER PRINCIPLES Propeller and engine system designs vary widely. They range from wood propellers on reciprocating engines to fully reversing and feathering constant- speed propellers on turbine engines. Each of these propulsion systems has the similar basic function of producing thrust to propel the airplane, but with different control and operational requirements. Since the full range of combinations is too broad to cover fully in this summary, it will focus on a typical system for transport category airplanes - the constant speed, feathering and reversing propellers on turbine engines. Major propeller components The propeller consists of several blades held in place by a central hub. The propeller hub holds the blades in place and is connected to the engine through a propeller drive shaft and a gearbox. There is also a control system for the propeller, which will be discussed later. Modern propellers on large turboprop airplanes typically have 4 to 6 blades. Other components typically include: The spinner, which creates aerodynamic streamlining over the propeller hub. The bulkhead, which allows the spinner to be attached to the rest of the propeller. -
Service Bulletin P&Wc S.B
Caravan SERVICE LETTER CAL-72-01 TITLE ENGINE - TRANSMITTAL OF P&WC S.B. NO. 1903R2 EFFECTIVITY MODEL SERIAL NUMBERS 208B 208B5000 and On REASON The purpose of this service letter is to transmit P&WC S.B. No. 1903R2, Turboprop Engine Operating Time Between Overhauls and Hot Section Inspection Frequency. DESCRIPTION Pratt & Whitney Canada (P&WC) has issued P&WC S.B. No. 1903R2 to provide information on recommended basic operating Time Between Overhaul (TBO) and to specify a recommended initial Hot Section Inspection (HSI) frequency. The TBO and HSI intervals are the two major scheduled inspections, and are defined in S.B. No. 1903R2. Caravan EX operators should notice that P&WC S.B. No. 1903R2 specifies a life limit for the motive flow shut-off valve, P/N 3076615-04, of 100 hours. P&WC has stated that they will cover the warranty costs to replace the motive flow shut-off valve P/N 3076615-04 until such time as a newly designed valve with a new part number is specified for use by P&WC. Warranty claims for parts and labor should be filed through Cessna Service Parts and Programs in accordance with standard procedures. COMPLIANCE INFORMATIONAL. This service letter is for informational purposes only. MATERIAL AVAILABILITY P&WC S.B. No. 1903R2, Turboprop Engine Operating Time Between Overhauls and Hot Section Inspection Frequency REFERENCES P&WC S.B. No. 1903R2, Turboprop Engine Operating Time Between Overhauls and Hot Section Inspection Frequency CAL-72-01 March 14, 2013 Page1of1 Cessna Aircraft Company, Cessna Customer Service, P.O. -
Aircraft Service Manual
Propeller Technical Manual Jabiru Aircraft Pty Ltd JPM0001-1 4A482U0D And 4A484E0D Propellers Propeller Technical Manual FOR 4A482U0D and 4A484E0D Propellers DOCUMENT No. JPM0001-1 DATED: 1st Feb 2013 This Manual has been prepared as a guide to correctly operate & maintain Jabiru 4A482U0D and 4A484E0D propellers. It is the owner's responsibility to regularly check the Jabiru web site at www.jabiru.net.au for applicable Service Bulletins and have them implemented as soon as possible. Manuals are also updated periodically with the latest revisions available from the web site. Failure to maintain the propeller, engine or aircraft with current service information may render the aircraft un-airworthy and void Jabiru’s Limited, Express Warranty. This document is controlled while it remains on the Jabiru server. Once this no longer applies the document becomes uncontrolled. Should you have any questions or doubts about the contents of this manual, please contact Jabiru Aircraft Pty Ltd. This document is controlled while it remains on the Jabiru server. Once this no longer applies the document becomes uncontrolled. ISSUE 1 Dated : 1st Feb 2013 Issued By: DPS Page: 1 of 32 L:\files\Manuals_For_Products\Propeller_Manuals\JPM0001-1_Prop_Manual (1).doc Propeller Technical Manual Jabiru Aircraft Pty Ltd JPM0001-1 4A482U0D And 4A484E0D Propellers 1.1 TABLE OF FIGURES ............................................................................................................................................. 3 1.2 LIST OF TABLES ................................................................................................................................................. -
Trojan 3000 Wheel Loader Parts Manual
TTrroojjaann Parts Manual 3000 Wheel Loader Parts Manual Parts THIS IS A MANUAL PRODUCED BY JENSALES INC. WITHOUT THE AUTHORIZATION OF TROJAN OR IT’S SUCCESSORS. TROJAN AND IT’S SUCCESSORS ARE NOT RESPONSIBLE FOR THE QUALITY OR ACCURACY OF THIS MANUAL. TRADE MARKS AND TRADE NAMES CONTAINED AND USED HEREIN ARE THOSE OF OTHERS, AND ARE USED HERE IN A DESCRIPTIVE SENSE TO REFER TO THE PRODUCTS OF OTHERS. TR-P-3000 W/L °SATCDN VALE& TOWNE INC. 'i " SHOVE·LS' ,. 1 TR:'AG-TORI, ' , " t PARTS AND OPERATORS MANUAL MODEL 3000 MANUAL No. TBOS2 BATAVIA, NEW YORK PARTS MANUAL AND OPERATING INSTRUCTIONS Machine Serial No . ................................................................................... Engine Model.............. ......... ... ...... .......... Serial No . ........ ,...................... Transmission Part No . ............................ Serial No . ............................... Front Axle Part No. ..... ...... ........... ..... ..... Serial No . ............................... Rear Axle Part No. .............................. ... Serial No . ...... '" ...................... MODEL 3000 Manual No. T8052 MANUAL PART NO. 2022683 ( I neludes Revision 4) TROJAN D IVISI 0 N TROJAN CIRCLE, BATAVIA, NEW YORK 14020 INDEX GENERAL INSTRUCTIONS Page Page Adjustments ..................................................... 16 thru 20 Lubrication Instructions ..................................... .. 22,23 Capacities, Pressures, Electrical System ................ 13 Operating Instructions ......................................... 15 Filters and -
Aeroshell Book
THE AEROSHELL BOOK Twentieth Edition 2021 Issued by: Shell Aviation Shell International Petroleum Co. Ltd. Shell Centre York Road London SE1 7NA www.shell.com/aviation 3 COPYRIGHT STATEMENT All rights reserved. Neither the whole nor any part of this document may be reproduced, stored in any retrieval system or transmitted in any form or by any means (electronic, mechanical, reprographic, recording or otherwise) without the prior written consent of the copyright owner. The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this document the expressions “Shell”, “Group” and “Shell Group” are sometimes used for convenience where references are made to Group companies in general. Likewise, the words “we”, “us” and “our” are also used to refer to Group companies in general or those who work for them. These expressions are also used where there is no purpose in identifying specific companies. © 2021 Shell International Petroleum Company Limited. 4 DEFINITIONS & CAUTIONARY NOTE The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this The AeroShell Book, “Shell”, “Shell Group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and its subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. ‘‘Subsidiaries’’, “Shell subsidiaries” and “Shell companies” as used in this The AeroShell Book refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. -
Multi Engine Systems
Nice Air Operation Procedure PA-34 Seneca 1 Multi engine systems PA 34-200 Seneca Engine Make : Avco Lycoming Model: Right Engine LIO-360 C1E6(turning counter clockwise from the cockpit) Left Engine IO-360 C1E6 Type: • 4 cylinders • Horizontally opposed • Normally aspirated(No turbo charge) • Air cooled (Engine oil and fuel helps cooling) • Direct drive(Propeller is attached to the crank shaft directly without any reduction gear or trans- mission) • Fuel injected Horsepower: 200 BHP Alternate air: Working as a carburetor heat. Heated air around exhaust manifold is directed through the alternate air source. RPM drops slightly when it is open. Cowl flap: Manually operated. There are three positions; open, half and closed. Propeller Make: Hartzell Model: Type: Constant speed, full feathering propeller What is a constant speed prop? The propeller which maintains the RPM selected by propeller control lever constant regardless of air- plane’s pitch attitude or throttle position within some range. The advantage of a constant speed prop. The pilot can select the most efficient blade angle for each phases of operation. By selecting low pitch/ high RPM, you can get maximum power for takeoff. By selecting high pitch/low RPM, you can fly faster at low RPM and you can save the fuel for cruise. How does it work? When the airplane rise it’s nose, it start climb. As it climb, airspeed goes down. The RPM is also going Copy Right Nice Air 2575 Robert Fowler Way, San Jose, CA 95148 Phone(408)729-3383 Nice Air Operation Procedure PA-34 Seneca 2 down due to increasing drag on the blade. -
Method to Increase the Accuracy of Large Crankshaft Geometry Measurements Using Counterweights to Minimize Elastic Deformations
applied sciences Article Method to Increase the Accuracy of Large Crankshaft Geometry Measurements Using Counterweights to Minimize Elastic Deformations Leszek Chybowski * , Krzysztof Nozdrzykowski, Zenon Grz ˛adziel , Andrzej Jakubowski and Wojciech Przetakiewicz Faculty of Marine Engineering, Maritime University of Szczecin, ul. Willowa 2-4, 71-650 Szczecin, Poland; [email protected] (K.N.); [email protected] (Z.G.); [email protected] (A.J.); [email protected] (W.P.) * Correspondence: [email protected]; Tel.: +48-914-809-412 Received: 26 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Large crankshafts are highly susceptible to flexural deformation that causes them to undergo elastic deformation as they revolve, resulting in incorrect geometric measurements. Additional structural elements (counterweights) are used to stabilize the forces at the supports that fix the shaft during measurements. This article describes the use of temporary counterweights during measurements and presents the specifications of the measurement system and method. The effect of the proposed solution on the elastic deflection of a shaft was simulated with FEA, which showed that the solution provides constant reaction forces and ensures nearly zero deflection at the supported main journals of a shaft during its rotation (during its geometry measurement). The article also presents an example of a design solution for a single counterweight. Keywords: large crankshafts; minimization of elastic deformation; increasing measurement precision; device stabilizing reaction forces; measurement procedures 1. Introduction The geometries of small machine components are easily measured because they are very common in mechanical engineering, and the relevant measurement instruments are available [1,2]. -
Rotax Service Interval Guide Not New News, but a Very Informative Summary
Rotax Service Interval Guide Not new news, but a very informative summary With growing numbers of 912 & 914 series engines in service these days Rotax have gathered a great deal of field experience and have been continually updating the maintenance procedures. Operators of 912 & 914 series engines can obtain current maintenance manuals free of charge, (yep I did say FREE) from the Rotax aircraft engines web site www.rotax-aircraft-engines.com – just click on the documentation tab & fill in the relevant search boxes to obtain the documents you require. You will find parts lists, line & heavy maintenance manuals, service bulletins, operator’s manuals, installation manuals, and a whole host of information you may not have known about. The system is not perfect, for example parts lists for early engines are not available, but it is pretty good & full of useful documentation. We do find that some Rotax owners find the documentation difficult to interpret and occasionally miss things - agreed it can be difficult to see the wood through the trees, especially after translation. As the maintenance & overhaul information has changed over the last couple of years it’s probably a good time to have a recap on how things are now. So before the flying season gets too busy why not take the opportunity to make sure your engine is ready for the new flying season – I’m assured its going to be a good one this year! Figure 1: Documentation page of the Rotax Aircraft Engines website (www.rotax-aircraft-engines.com) MAINTENANCE SCHEDULES The alterations to the maintenance schedules over the years have mainly been to reduce the work required and the parts replaced, so should you want to save a few pennies in these difficult times you better read on. -
Opel 1900Cc Engines: Tuning & Vacuum Notes
Opel 1900cc Engines: Tuning & Vacuum Notes Spark Plugs Ignition Wire Set 4 Opel engines require proper fuel, compression, correct ignition timing & spark. 3 Tuning to correct specifications, will maximize your power output. 2 1 IGNITION Verify voltage is present at the “+” terminal in the ignition coil, and check for a spark at each plug (when cranking). Mis-fires can be difficult to diagnose (particularly when they occur intermittently), so always start with all new parts. Important Specifications Ignition Coil Distributor: Set at zero degrees TDC (with vacuum lines plugged), at low idle Avoid excessive advance (detonation damages pistons & rings) Check “indentation shape” on cap edge (to identify style) Point Gap: Set at .018” & verify 50 degree (+/- 2º) “dwell” measurement Spark Plug Gap: Set at .030” Recommended Firing Order: 1-3-4-2 Replace all maintenance items with new parts (clockwise) Distributor Cap & Rotor #6041 Ignition Point Set #6042 Point set & Condenser can be Condenser #6043 (or Module #6165) replaced w/electronic ignition Spark Plugs #6040, 6163, 6175 Ignition Wire Set #6071 #6165 for better driveability ! Camshaft “Ball” along outer edge of cam gear “Ball” on flywheel #4 #2 (aligns to notch through center) Timing aligns to pointer “Dowel Pin” on camshaft #1 TDC Rotor sprocket is at “6 o’clock” “Dowel” mark (and “ball mark” #3 #1 on outer edge “Notch” in plate of gear needs Rotor points to #1 TDC Mark, to align to “notch” located on outer edge of in curved metal support plate, Engine: Rear Passenger Side distributor housing when measured through center of the cam gear).