Physician's Guide to the Treatment and Follow-Up of Metabolic Diseases
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Epidemiology of Mucopolysaccharidoses Update
diagnostics Review Epidemiology of Mucopolysaccharidoses Update Betul Celik 1,2 , Saori C. Tomatsu 2 , Shunji Tomatsu 1 and Shaukat A. Khan 1,* 1 Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; [email protected] (B.C.); [email protected] (S.T.) 2 Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; [email protected] * Correspondence: [email protected]; Tel.: +302-298-7335; Fax: +302-651-6888 Abstract: Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a lysosomal enzyme deficiency or malfunction, which leads to the accumulation of glycosaminoglycans in tissues and organs. If not treated at an early stage, patients have various health problems, affecting their quality of life and life-span. Two therapeutic options for MPS are widely used in practice: enzyme replacement therapy and hematopoietic stem cell transplantation. However, early diagnosis of MPS is crucial, as treatment may be too late to reverse or ameliorate the disease progress. It has been noted that the prevalence of MPS and each subtype varies based on geographic regions and/or ethnic background. Each type of MPS is caused by a wide range of the mutational spectrum, mainly missense mutations. Some mutations were derived from the common founder effect. In the previous study, Khan et al. 2018 have reported the epidemiology of MPS from 22 countries and 16 regions. In this study, we aimed to update the prevalence of MPS across the world. We have collected and investigated 189 publications related to the prevalence of MPS via PubMed as of December 2020. In total, data from 33 countries and 23 regions were compiled and analyzed. -
Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism -
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training
nutrients Review Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training Parker L. Evans 1,2,3, Shawna L. McMillin 1,2,3 , Luke A. Weyrauch 1,2,3 and Carol A. Witczak 1,2,3,4,* 1 Department of Kinesiology, East Carolina University, Greenville, NC 27858, USA; [email protected] (P.L.E.); [email protected] (S.L.M.); [email protected] (L.A.W.) 2 Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA 3 East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, NC 27834, USA 4 Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA * Correspondence: [email protected]; Tel.: +1-252-744-1224 Received: 8 September 2019; Accepted: 8 October 2019; Published: 12 October 2019 Abstract: Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism. Keywords: aerobic exercise; blood glucose; functional overload; GLUT; hexokinase; insulin resistance; resistance exercise; SGLT; type 2 diabetes; weightlifting 1. Introduction Exercise training is defined as planned bouts of physical activity which repeatedly occur over a duration of time lasting from weeks to years. -
Open CR-Thesis-Final-Final.Pdf
The Pennsylvania State University The Graduate School IDENTIFICATION OF GENETIC FACTORS THAT AFFECT NEURONAL PATTERNING, FUNCTION, AND DISEASE IN DROSOPHILA MELANOGASTER A Dissertation in Biochemistry, Microbiology, and Molecular Biology by Claire Elizabeth Reynolds Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 The dissertation of Claire Elizabeth Reynolds was reviewed and approved* by the following: Scott B Selleck Professor of Biochemistry & Molecular Biology Dissertation Co-Advisor Chair of Committee Santhosh Girirajan Assistant Professor of Biochemistry & Molecular Biology Assistant Professor of Anthropology Dissertation Co-Advisor Joseph Reese Professor of Biochemistry & Molecular Biology Marylyn Ritchie Director, Center for Systems Genomics Director, Biomedical & Translational Informatics Program of Geisinger Research Professor of Biochemistry & Molecular Biology Richard Ordway Professor of Molecular Neuroscience and Genetics Wendy Hanna-Rose Associate Professor of Biochemistry & Molecular Biology Interim Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School ii ABSTRACT Heparan Sulfate Proteoglycans (HSPGs) are required for normal synaptic development at the Drosophila melanogaster larval neuromuscular junction (NMJ). When enzymes required for biosynthesis of HSPGs are inhibited through mutations of RNA interference, a variety of morphological and electrophysiological defects are observed at the NMJ. These defects included changes in the post-synaptic specialization of the muscle (the SSR), loss of mitochondria from the sub-synaptic cytosol, and abnormal mitochondrial morphology. Identification of autophagic regulation as the mechanism by which HSPGs influenced synaptic properties was the foundation of this dissertation. The present work more fully characterizes the influence of HSPG function on autophagic markers in muscle tissue. -
Enzyme-Replacement Therapy in Mucopolysaccharidoses with A
Enzyme-replacement Therapy in Mucopolysaccharidoses with a Specific Focus on MPS VI Enzym vervangende therapie in de mucopolysaccharidosen met specifieke aandacht voor MPS VI proefschrift.indb 1 27-8-2013 16:01:52 Financial support for this project was obtained from ZonMw (the Netherlands Organisation for Health Research and Development), the Dutch TI Pharma initiative “Sustainable Orphan Drug Development through Registries and Monitoring”, European Union, 7th Framework programme EUCLYD – European Consortium for Lysosomal Storage Disorders. Printing of this thesis was financially supported by: BioMarin Pharmaceutical Shire International Licensing BV ISBN: 978-90-6464-700-0 Lay-out: Chris Bor Medical Photography and Illustration, Academic Medical Center, Amsterdam, the Netherlands Cover design: Anne Bonthuis Druk: GVO | Ponsen & Looijen, Ede © Marion Brands, 2013 All rights reserved. No part of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or means without permission of the author, or, when appropriate, of the publishers of the publications. proefschrift.indb 2 27-8-2013 16:01:53 Enzyme-replacement Therapy in Mucopolysaccharidoses with a Specific Focus on MPS VI Enzym vervangende therapie in de mucopolysaccharidosen met specifieke aandacht voor MPS VI Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. H.G. Schmidt en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op dinsdag 15 oktober 2013 om 15:30 uur. Marion Maria Mathilde Geertruida Brands geboren te Heerlen proefschrift.indb 3 27-8-2013 16:01:53 Promotiecommissie Promotor: Prof.dr. A.T. -
WES Gene Package Multiple Congenital Anomalie.Xlsx
Whole Exome Sequencing Gene package Multiple congenital anomalie, version 5, 1‐2‐2018 Technical information DNA was enriched using Agilent SureSelect Clinical Research Exome V2 capture and paired‐end sequenced on the Illumina platform (outsourced). The aim is to obtain 8.1 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA‐MEM algorithm (reference: http://bio‐bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A4GALT [Blood group, P1Pk system, P(2) phenotype], 111400 607922 101 100 100 99 [Blood group, P1Pk system, p phenotype], 111400 NOR polyagglutination syndrome, 111400 AAAS Achalasia‐addisonianism‐alacrimia syndrome, 231550 605378 73 100 100 100 AAGAB Keratoderma, palmoplantar, -
New Mechanisms That Regulate the Expression of Genes Implicated in the Process of Ketogenesis
Isabel Alexandra Pinto Carrilho do Rosário Licenciatura em Bioquímica New mechanisms that regulate the expression of genes implicated in the process of ketogenesis Dissertação para obtenção do Grau de Mestre em Biotecnologia Orientador: Prof. Dr. Pedro F. Marrero González, Prof. Titular, Facultat de Farmàcia, Universitat de Barcelona Co-orientador: Prof. Dr. Diego Haro Bautista, Prof. Catedrático, Facultat de Farmàcia, Universitat de Barcelona Presidente: Prof. Doutora Isabel Maria Godinho de Sá Nogueira Arguente: Prof. Doutor Pedro Miguel Ribeiro Viana Baptista Setembro, 2012 Isabel Alexandra Pinto Carrilho do Rosário Licenciatura em Bioquímica New mechanisms that regulate the expression of genes implicated in the process of ketogenesis Dissertação para obtenção do Grau de Mestre em Biotecnologia Orientador: Prof. Dr. Pedro F. Marrero González, Prof. Titular, Facultat de Farmàcia, Universitat de Barcelona Co-orientador: Prof. Dr. Diego Haro Bautista, Prof. Catedrático, Facultat de Farmàcia, Universitat de Barcelona Setembro, 2012 Copyright New mechanisms that regulate the expression of genes implicated in the process of ketogenesis © Isabel Alexandra Pinto Carrilho do Rosário FCT/UNL UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição, com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. i ii Ninguém sabe que coisa quer. Ninguém conhece que alma tem, Nem o que é mal nem o que o bem. -
Murine Neonatal Ketogenesis Preserves Mitochondrial Energetics by Preventing Protein Hyperacetylation
ARTICLES https://doi.org/10.1038/s42255-021-00342-6 Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation Yuichiro Arima 1,2,13 ✉ , Yoshiko Nakagawa3,13, Toru Takeo 3,13, Toshifumi Ishida 1, Toshihiro Yamada1, Shinjiro Hino4, Mitsuyoshi Nakao4, Sanshiro Hanada 2, Terumasa Umemoto 2, Toshio Suda2, Tetsushi Sakuma 5, Takashi Yamamoto5, Takehisa Watanabe6, Katsuya Nagaoka6, Yasuhito Tanaka6, Yumiko K. Kawamura7,8, Kazuo Tonami7, Hiroki Kurihara7, Yoshifumi Sato9, Kazuya Yamagata9,10, Taishi Nakamura 1,11, Satoshi Araki1, Eiichiro Yamamoto1, Yasuhiro Izumiya1,12, Kenji Sakamoto1, Koichi Kaikita1, Kenichi Matsushita 1, Koichi Nishiyama2, Naomi Nakagata3 and Kenichi Tsujita1,10 Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogen- esis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, -
Orphanet Report Series Rare Diseases Collection
Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic -
18 the Mucopolysaccharidoses J
18 The Mucopolysaccharidoses J. Edward Wraith, Joe T.R. Clarke 18.1 Introduction The disorders described in this chapter are associated with a progressive ac- cumulation of glycosaminoglycans (GAG) within the cells of various organs, ultimately compromising their function. The major sites of disease differ de- pending on the specific enzyme deficiency, and therefore the clinical presenta- tion and approach to therapy is different for the various disease subtypes. Patients with the severe form of mucopolysaccharidosis (MPS I; Hurler dis- ease, MPS IH), MPS II (Hunter disease), and MPS VI (Maroteaux-Lamy disease) generally present with facial dysmorphism and persistent respiratory disease in the early years of life. Many patients will have undergone surgical procedures for recurrent otitis media and hernia repair before the diagnosis is established. Infants with MPS III (Sanfilippo A, B, C, or D disease) present with learning difficulties and then develop a profound behavioral disturbance. The behavior disorder is characteristic and often leads to the diagnosis. Somatic features are mild in these patients. Children with MPS IVA (Morquio disease, type A) have normal cognitive functions, but are affected by severe spondoepiphyseal dysplasia, which in most patients leads to extreme short stature, deformity of the chest, marked shortening and instability of the neck, and joint laxity. MPS IVB(Morquiodisease,typeB)ismuchmorevariableinitseffects.Ithassome features of the skeletal dysplasia of MPS IVA; however, most patients also have learning difficulties. MPS VII (Sly disease) often presents as nonimmune hy- drops fetalis. Those patients who survive or who present later resemble patients with MPS IH with respect to clinical phenotype and supportive management. -
The Genetic Landscape of the Human Solute Carrier (SLC) Transporter Superfamily
Human Genetics (2019) 138:1359–1377 https://doi.org/10.1007/s00439-019-02081-x ORIGINAL INVESTIGATION The genetic landscape of the human solute carrier (SLC) transporter superfamily Lena Schaller1 · Volker M. Lauschke1 Received: 4 August 2019 / Accepted: 26 October 2019 / Published online: 2 November 2019 © The Author(s) 2019 Abstract The human solute carrier (SLC) superfamily of transporters is comprised of over 400 membrane-bound proteins, and plays essential roles in a multitude of physiological and pharmacological processes. In addition, perturbation of SLC transporter function underlies numerous human diseases, which renders SLC transporters attractive drug targets. Common genetic polymorphisms in SLC genes have been associated with inter-individual diferences in drug efcacy and toxicity. However, despite their tremendous clinical relevance, epidemiological data of these variants are mostly derived from heterogeneous cohorts of small sample size and the genetic SLC landscape beyond these common variants has not been comprehensively assessed. In this study, we analyzed Next-Generation Sequencing data from 141,456 individuals from seven major human populations to evaluate genetic variability, its functional consequences, and ethnogeographic patterns across the entire SLC superfamily of transporters. Importantly, of the 204,287 exonic single-nucleotide variants (SNVs) which we identifed, 99.8% were present in less than 1% of analyzed alleles. Comprehensive computational analyses using 13 partially orthogonal algorithms that predict the functional impact of genetic variations based on sequence information, evolutionary conserva- tion, structural considerations, and functional genomics data revealed that each individual genome harbors 29.7 variants with putative functional efects, of which rare variants account for 18%. Inter-ethnic variability was found to be extensive, and 83% of deleterious SLC variants were only identifed in a single population. -
The Genetic Relationship Between Paroxysmal Movement Disorders and Epilepsy
Review article pISSN 2635-909X • eISSN 2635-9103 Ann Child Neurol 2020;28(3):76-87 https://doi.org/10.26815/acn.2020.00073 The Genetic Relationship between Paroxysmal Movement Disorders and Epilepsy Hyunji Ahn, MD, Tae-Sung Ko, MD Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea Received: May 1, 2020 Revised: May 12, 2020 Seizures and movement disorders both involve abnormal movements and are often difficult to Accepted: May 24, 2020 distinguish due to their overlapping phenomenology and possible etiological commonalities. Par- oxysmal movement disorders, which include three paroxysmal dyskinesia syndromes (paroxysmal Corresponding author: kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, paroxysmal exercise-induced dys- Tae-Sung Ko, MD kinesia), hemiplegic migraine, and episodic ataxia, are important examples of conditions where Department of Pediatrics, Asan movement disorders and seizures overlap. Recently, many articles describing genes associated Medical Center Children’s Hospital, University of Ulsan College of with paroxysmal movement disorders and epilepsy have been published, providing much infor- Medicine, 88 Olympic-ro 43-gil, mation about their molecular pathology. In this review, we summarize the main genetic disorders Songpa-gu, Seoul 05505, Korea that results in co-occurrence of epilepsy and paroxysmal movement disorders, with a presenta- Tel: +82-2-3010-3390 tion of their genetic characteristics, suspected pathogenic mechanisms, and detailed descriptions Fax: +82-2-473-3725 of paroxysmal movement disorders and seizure types. E-mail: [email protected] Keywords: Dyskinesias; Movement disorders; Seizures; Epilepsy Introduction ies, and paroxysmal dyskinesias [3,4]. Paroxysmal dyskinesias are an important disease paradigm asso- Movement disorders often arise from the basal ganglia nuclei or ciated with overlapping movement disorders and seizures [5].