Daat Power Amplifier White Paper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design and Construction of 200W OCL Audio Power Amplifier 1Thae Hsu Thoung, 2Dr
INTERNATIONAL JOURNAL FOR INNOVATIVE RESEARCH IN MULTIDISCIPLINARY FIELD ISSN: 2455-0620 Volume - 5, Issue - 8, Aug – 2019 Monthly, Peer-Reviewed, Refereed, Indexed Journal with IC Value: 86.87 Impact Factor: 6.497 Received Date: 03/08/2019 Acceptance Date: 14/08/2019 Publication Date: 31/08/2019 Design and Construction of 200W OCL Audio Power Amplifier 1Thae Hsu Thoung, 2Dr. Zin Ma Ma Myo, 1Lecturer, 2Professor 1Electronic Engineering Department 1Technological University, Taunggyi, Myanmar Email - [email protected], [email protected] Abstract: The primary goal of sound system facility for lecture room is to deliver clear, intelligible speech to each canditate. To reach this goal, the DC-coupled amplifier based on output capacitor-less (OCL) system is used. This paper presents the design and construction of 200W OCL audio power amplifier for lecture room. The design analysis is described and procedures for design implementation are presented. Each of the implementation is evaluated and these evaluations lead to the conclusion that the design is able to achieve high efficiency with acceptable sound quality. The overall efficiencies of various input frequencies were achieved above 88%. The Multisim software is used for the simulation of audio power amplifier. Key Words: DC-coupled, OCL system, Multisim software. 1. INTRODUCTION: An audio amplifier has been described as an amplifier with a frequency response from 20 Hz to 20 kHz. Audio amplifiers play important role in audio system. An amplifier is an electronic circuit which increases the magnitude of the input signal. An amplifier can be classified as a voltage, current or power amplifier. An OCL (output capacitor-less) amplifier is any audio amplifier with direct-coupled capacitor-less output. -
Electric Guitar Amplifier with Digital Effects
Electric Guitar Amplifier With Digital Effects By Shawn Garrett Senior Project February, 2011 Computer Engineering Department California Polytechnic State University, San Luis Obispo © 2011 Shawn Garrett Garrett 1 Table of Contents Table of Figures .......................................................................................................................... 3 Acknowledgement ...................................................................................................................... 4 Abstract ....................................................................................................................................... 5 I. Introduction ............................................................................................................................ 6 II. Background ........................................................................................................................... 7 III. Requirements ....................................................................................................................... 9 IV. Design Approach Alternatives ............................................................................................ 13 V. Project Design ..................................................................................................................... 14 VI. Physical Construction and Integration ................................................................................ 21 VII. Integrated System Tests and Results ............................................................................... -
Electrical Engineering Fundamentals: AC Circuit Analysis
Electrical Engineering Fundamentals: AC Circuit Analysis Course No: E10-001 Credit: 10 PDH S. Bobby Rauf, P.E., CEM, MBA Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Electrical Engineering - AC Fundamentals and AC Power Topics © Electrical Engineering for Non-Electrical Engineers Series © By S. Bobby Rauf 1 Electrical Engineering AC Fundamentals and AC Power ©, Rauf Preface Many Non-engineering professionals as well as engineers who are not electrical engineers tend to have a phobia related to electrical engineering. One reason for this apprehensiveness about electrical engineering is due to the fact that electrical engineering is premised concepts, methods and mathematical techniques that are somewhat more abstract than those employed in other disciplines, such as civil, mechanical, environmental and industrial engineering. Yet, because of the prevalence and ubiquitous nature of the electrical equipment, appliances, and the role electricity plays in our daily lives, the non-electrical professionals find themselves interfacing with systems and dealing with matters that broach into the electrical realm. Therein rests the purpose and objective of this text. This text is designed to serve as a resource for exploring and understanding basic electrical engineering concepts, principles, analytical strategies and mathematical strategies. If your objective as a reader is limited to the acquisition of basic knowledge in electrical engineering, then the material in this text should suffice. If, however, the reader wishes to progress their electrical engineering knowledge to intermediate or advanced level, this text could serve as a useful platform. As the adage goes, “a picture is worth a thousand words;” this text maximizes the utilization of diagram, graphs, pictures and flow charts to facilitate quick and effective comprehension of the concepts of electrical engineering. -
LM4834 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp
LM4834 LM4834 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp Literature Number: SNAS004A LM4834 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp August 2000 LM4834 1.75W Audio Power Amplifier with DC Volume Control and Microphone Preamp General Description Key Specifications The LM4834 is a monolithic integrated circuit that provides n THD at 1.1W continuous average output power into 8Ω DC volume control, and a bridged audio power amplifier at 1kHz 0.5% (max) capable of producing 1.75W into 4Ω with less than 1.0% n Output Power into 4Ω at 1.0% THD+N 1.75W (typ) (THD). In addition, the headphone/lineout amplifier is ca- n THD at 70mW continuous average output power into pable of driving 70 mW into 32Ω with less than 0.1%(THD). 32Ω at 1kHz 0.1% (typ) The LM4834 incorporates a volume control and an input n Shutdown Current 1.0µA (max) Ω microphone preamp stage capable of drivinga1k load n Supply Current 17.5mA (typ) impedance. Boomer® audio integrated circuits were designed specifically Features to provide high quality audio while requiring a minimum amount of external components in surface mount packaging. n PC98 Compliant The LM4834 incorporates a DC volume control, a bridged n “Click and Pop” suppression circuitry audio power amplifier and a microphone preamp stage, n Stereo line level outputs with mono input capability for making it optimally suited for multimedia monitors and desk- system beeps top computer applications. n Microphone preamp with buffered power supply The LM4834 features an externally controlled, low-power n DC Volume Control Interface consumption shutdown mode, and both a power amplifier n Thermal shutdown protection circuitry and headphone mute for maximum system flexibility and performance. -
NQ-A4060, NQ-A4120, NQ-A4300 4 Channel Audio Power Amplifiers
4-Channel Audio Power Amplifiers Configuration Manual NQ-A4060, NQ-A4120, NQ-A4300 2019 Bogen Communications, Inc. All rights reserved. 740-00099D 191101 Contents List of Figures ............................................................................... v List of Tables .............................................................................. vii Configuring the Four-Channel Audio Power Amplifiers 1-1 1 Using the Dashboard ..............................................................................3 2 Updating Firmware ..................................................................................4 3 Setting Network Tab Parameters .......................................................6 4 Setting Configuration Tab Parameters ............................................8 5 Accessing Log Files ............................................................................... 10 6 Setting DSP Parameters ...................................................................... 13 6.1 Setting the Channel Level .................................................. 15 6.2 Signal LED, Clip LED, and VU Meter .............................. 15 6.3 Muting a Channel ................................................................. 16 6.4 Adjusting Volume Levels ................................................... 16 6.5 Adjusting Compression Settings .................................... 16 6.6 Adjusting the Graphic Equalizer ..................................... 18 6.7 Setting High/Low Pass Parameters ................................ 20 6.8 Adjusting -
PRODUCT CATALOG Home Control - Loudspeakers - General Products NAVIGATION CATALOG
PRODUCT CATALOG Home Control - Loudspeakers - General Products CATALOG NAVIGATION Products are grouped by category of interest. Sections are differentiated by color coding on the bottom right of each page. HOME CONTROL Multi-room audio control, now with lighting and climate, plus remote access. Page 4 LOUDSPEAKERS Architectural audio solutions where you live, work, and play. Page 27 GENERAL PRODUCTS Complete the connected experience here. Page 85 2 CALL 1-800-BUY-HIFI – www.nilesaudio.com 3 HOME CONTROL A Heritage of Recognition The Niles name is synonymous with premier whole home audio solutions. For nearly four decades, Niles has delivered innovative products that enable simple and easy access to home entertainment, and we are now creating audio solutions that seamlessly integrate with lighting and climate control. Niles products enable custom integrators to design and install systems that deliver truly exceptional entertainment solutions for customers. 4 Home Control HOME CONTROL SOLUTIONS Auriel - One Touch to Control . 6 MRC-6430 Multi-Room Controller . 12 nTP7 Touch Panel .....................14 nTP4 Touch Panel .....................15 nKP7 Keypad .........................16 nHR200 Remote Control. 17 SYSTEMS INTEGRATION AMPLIFIERS® 16-Channel Amplifier . 20 12-Channel Amplifier . 21 2-Channel Amplifiers . 22 CALL 1-800-BUY-HIFI – www.nilesaudio.com Home Control 5 One Touch to Control. Niles Auriel now adds built-in streaming audio, plus climate and lighting control to the award-winning multi- room audio platform. The result is an exceptional home control experience. The wizard whisks you through simple decisions that quickly configure the system for lighting scenes and thermostat programming, audio sources, zone preferences, user interface customization and home theater control. -
15W Stereo Class-D Audio Power Amplifier
TPA3121D2 www.ti.com SLOS537B –MAY 2008–REVISED JANUARY 2014 15-W STEREO CLASS-D AUDIO POWER AMPLIFIER Check for Samples: TPA3121D2 1FEATURES APPLICATIONS 23• 10-W/Ch Stereo Into an 8-Ω Load From a 24-V • Flat Panel Display TVs Supply • DLP® TVs • 15-W/Ch Stereo Into a 4-Ω Load from a 22-V • CRT TVs Supply • Powered Speakers • 30-W/Ch Mono Into an 8-Ω Load from a 22-V Supply DESCRIPTION • Operates From 10 V to 26 V The TPA3121D2 is a 15-W (per channel), efficient, • Can Run From +24 V LCD Backlight Supply class-D audio power amplifier for driving stereo speakers in a single-ended configuration or a mono • Efficient Class-D Operation Eliminates Need speaker in a bridge-tied-load configuration. The for Heat Sinks TPA3121D2 can drive stereo speakers as low as 4 Ω. • Four Selectable, Fixed-Gain Settings The efficiency of the TPA3121D2 eliminates the need • Internal Oscillator to Set Class D Frequency for an external heat sink when playing music. (No External Components Required) The gain of the amplifier is controlled by two gain • Single-Ended Analog Inputs select pins. The gain selections are 20, 26, 32, and • Thermal and Short-Circuit Protection With 36 dB. Auto Recovery The patented start-up and shutdown sequences • Space-Saving Surface Mount 24-Pin TSSOP minimize pop noise in the speakers without additional Package circuitry. • Advanced Power-Off Pop Reduction SIMPLIFIED APPLICATIONCIRCUIT TPA3121D2 1m F 0.22m F LeftChannel LIN BSR 33m H 470m F RightChannel RIN ROUT 1m F 0.22m F PGNDR PGNDL 1m F 0.22m F LOUT BYPASS 33m H 470m F AGND BSL 0.22m F PVCCL 10Vto26V 10Vto26V AVCC PVCCR VCLAMP ShutdownControl SD 1m F MuteControl MUTE GAIN0 4-StepGainControl GAIN1 S0267-01 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. -
Sound Waves Displacement
Producing sound waves Displacement 1.4 Sound Density Pressure Producing sound waves Speed of sound •Sound waves are longitudinal •Produced by compression and rarefaction of media (air) Energy and Intensity resulting in displacement in the direction of propagation. • The displacements result in oscillations in density and pressure. Spherical and Plane waves. Frequencies of sound wave Speed of sound Speed of sound in a fluid B infra-sonic Audible Sound v = ultra- sonic ρ ∆P B =− Bulk modulus 10 20,000 ∆V/V m Frequency (Hz) ρ= Density V Similarity to speed of a transverse wave on a string 30 0.015 Wavelength (m) in air elastic _property v = int ertial_property Speed of sound in air γP B v = v = ρ ρ γ is a constant that depends on the nature of the gas γ =7/5 for air Density is higher in water than in P - Pressure air. ρ -Density Why is the speed of sound higher in water than in air? Since P is proportional to the absolute temperature T by the ideal gas law. PV=nRT T v331= (m/s) 273 1 Energy and Intensity of sound waves o Find the speed of sound in air at 20 C. energy power P = time T area A v331= 273 273+ 20 v== 331 343m/ s 273 For calculations use v=340 m/s power P intensity I = = (units W/m2) area A Sound intensity level The ear is capable of distinguishing a wide range of sound intensities. The decibel is a measure of the sound intensity level ⎛⎞I What is the intensity β=10log⎜⎟ decibels of sound at a rock I ⎝⎠o concert? (W/m2) -12 2 Io = 10 W/m the threshold of hearing note- decibel is a logarithmic unit. -
Power Demystified Garth Powell
Power Demystified Garth Powell 2621 White Road Irvine CA 92614 USA Tel 949 585 0111 Fax 949 585 0333 www.audioquest.com Contents Introduction AC Surge Suppression AC Power Conditioners/LCR Filters AC Regeneration AC Isolation Transformers DC Battery Isolation Devices with AC Inverters or AC Regeneration Amplifiers AC UPS Battery Backup Devices AC Voltage Regulators DC Blocking Devices for AC Power Harmonic Oscillators for AC Power AC Resonance/Vibration Dampening Power Correction for AC Power Ground Noise Dissipation for AC Power Appendix: Some Practical Matters to Bear in Mind I. Source Component and Power Amplifier Current Draw II. AC Polarity III. Over-voltage and Under-voltage Conditions Index Introduction The source that supplies nearly all of our electronic components is alternating current (AC) power. For most, it is enough that they can rely on a service tap from their power utility to supply the voltage and current our audio-video (A/V) components require. In fact, in many parts of the world, the supplied voltage is quite stable, and if the area is free of catastrophic lightning strikes, there are seemingly no AC power problems at all. Obviously, there are areas where AC voltage can both sag and surge to levels well out of the optimum range, and others where electrical storms can potentially damage sensitive electrical equipment. There are many protection devices and AC power technologies that can ad- dress those dire circumstances, but too many fail to realize that there is no place on Earth that is supplied adequate AC power for today’s sensitive, high-resolution electronic components. -
Exploding the Efficiency Myth of Class D Amplifiers Much Has Been Written About the Efficiency of Class D Amplifiers, with Figures of 90% Or Greater Routinely Quoted
Exploding the efficiency myth of AS-100204-WP Issue 1 Class D amplifiers Exploding the efficiency myth of Class D amplifiers Much has been written about the efficiency of Class D amplifiers, with figures of 90% or greater routinely quoted. Such numbers might seem to suggest that the efficiency problem of audio amplifiers has been well-solved by conventional Class D. However, a closer look shows that this is far from the truth, with these amplifiers frequently seeing only single-digit percentage efficiencies, or less, in real product usage conditions. To address this problem, a new generation of audio amplifier solutions has just emerged, heralding a massive reduction in average power consumption. The problem Figure 1 shows a plot of efficiency versus power output for a typical Class D amplifier, but plotted with a logarithmic power axis, rather than the linear scale invariably seen in data-sheets. Sure enough, the top right of the graph, corresponding to maximum power output, shows the efficiency reaching almost 90%. However, in typical consumer usage, an audio amplifier hits its rated maximum power comparatively rarely – only when the volume is turned right up to the onset of clipping. Even then, maximum power is reached only on the loudest audio peaks, which make up a relatively small proportion of typical content. Across the operating life of an amplifier, it is seen that average power output typically sits at around 20 to 50dB below full scale, a massive 100 to 100,000 times in linear power terms, as we now explore. At this comparatively tiny output level, corresponding to the lower left region of Figure 1, the efficiency of the conventional Class D solution is seen to be disappointingly low. -
CP400 & CP700 Commercial Power Amplifiers
CP400 & CP700 Commercial Power Amplifier Owner’s Manual CP400 & CP700 Commercial Power Amplifiers PROTECT PROTECT LIMIT LIMIT SIGNAL SIGNAL CH-1 CH-2 CP700 POWER Commercial Power Amplifier IN IN CH-1 8, 4, and 2 Ohms AUDIO TRANSFORMER CH-1 AMPLIFIER INPUTS CP700 DIR. OUTPUT +- 0 70 100 ISOL. OUTPUT Commercial Power Amplifier CH-2 CH-1 Per Channel +-GND - + Output Power + -+-+ 400 W / 4 Ohms BRIDGE 70V 25V 350 W / 70.7 V MONO - 100V + CH-2 8, 4, and 2 Ohms AUDIO TRANSFORMER CH-2 DIR. OUTPUT +- 0 70 100 ISOL. OUTPUT AC100V-50/60Hz AC120V-50/60Hz THRU 16 16 THRU 18 14 18 14 2 1 2 1 AC230V-50/60Hz 2 2 2 2 6 6 2 1 2 1 AC240V-50/60Hz 0 0 2 2 3 8 3 8 -+-+ 6 6 0 0 4 - 4 4 4 70V 25V 6 6 2 BRIDGE 2 5 5 0 0 0 MONO 0 0 0 - - 100V + - GND LEVEL LEVEL POWER MADE IN CHINA CAUTION STEREO CAUTION RISK OF ELECTRIC SHOCK PA RALLELBRIDGE DO NOT OPEN TO REDUCE THE RISK OF ELECTRIC SHOCK DO NOT REMOVE COVER (OR BACK) AVIS RISQUE DE CHOC ELECTRIQUE 1601 Jack McKay Blvd., Ennis, TX 75119 NO USER SERVICEABLE PA RTS INSIDE NE PAS OUVRIR (800) 876-3333 AtlasSound.com REFER SERVICING TO QUALIFIED SERVICE PERSONNEL 1601 Jack McKay Blvd. • Ennis, Texas 75119 U.S.A. Telephone: 800.876.3333 • Fax: 800.765.3435 AtlasSound.com – 1 – Specifications are subject to change without notice. CP400 & CP700 Commercial Power Amplifier Owner’s Manual TABLE OF CONTENTS Introduction ..........................................................................................................3 Features ...............................................................................................................3 -
Resistor Selection Application Notes Resistor Facts and Factors
Resistor Selection Application Notes RESISTOR FACTS AND FACTORS A resistor is a device connected into an electrical circuit to resistor to withstand, without deterioration, the temperature introduce a specified resistance. The resistance is measured in attained, limits the operating temperature which can be permit- ohms. As stated by Ohm’s Law, the current through the resistor ted. Resistors are rated to dissipate a given wattage without will be directly proportional to the voltage across it and inverse- exceeding a specified standard “hot spot” temperature and the ly proportional to the resistance. physical size is made large enough to accomplish this. The passage of current through the resistance produces Deviations from the standard conditions (“Free Air Watt heat. The heat produces a rise in temperature of the resis- Rating”) affect the temperature rise and therefore affect the tor above the ambient temperature. The physical ability of the wattage at which the resistor may be used in a specific applica- tion. SELECTION REQUIRES 3 STEPS Simple short-cut graphs and charts in this catalog permit rapid 1.(a) Determine the Resistance. determination of electrical parameters. Calculation of each (b) Determine the Watts to be dissipated by the Resistor. parameter is also explained. To select a resistor for a specific application, the following steps are recommended: 2.Determine the proper “Watt Size” (physical size) as controlled by watts, volts, permissible temperatures, mounting conditions and circuit conditions. 3.Choose the most suitable kind of unit, including type, terminals and mounting. STEP 1 DETERMINE RESISTANCE AND WATTS Ohm’s Law Why Watts Must Be Accurately Known 400 Stated non-technically, any change in V V (a) R = I or I = R or V = IR current or voltage produces a much larger change in the wattage (heat to be Ohm’s Law, shown in formula form dissipated by the resistor).