Zákryt Jasné Hvězdy Saturnem

Total Page:16

File Type:pdf, Size:1020Kb

Zákryt Jasné Hvězdy Saturnem Zákrytová a astrometrická sekce ČAS leden 2006 (1) Zajímavosti: NENECHTE SI UJÍT Zákryt jasné hv ězdy Saturnem 25. ledna 2006 ve čer mimo jiné i Evropu čeká velice zajímavá ř ě Č podívaná. Planeta Saturn okrášlená prstencem p řejde p řes relativn ě Situace, jak vypadá p i pohledu z hv zdy. asy udávané v malé vložené ě ě č jasnou hv ězdu a ze Zem ě budeme mít možnost sledovat nejen zákryt tabulce jsou platné pro Mainz (N mecko). Pro jiná místa v Evrop jsou asy v tabulce za článkem. stálice vlastní planetou, ale i její poblikávání za jednotlivými prstenci. Velice zajímavé bude jist ě pokusit se celý úkaz nahrát speciálními videokamerami v ohnisku dlouhofokálních teleobjektiv ů či dalekohled ů. Zajímavá a nevšední podívaná však čeká jist ě i na ty, kdo se na úkaz budou chtít pouze vizuáln ě podívat. Lednový zákryt hv ězdy Saturnem je jist ě zajímavou údálostí, ale nemá p říliš velkou publicitu. Úkaz bude viditelný z Evropy, Afriky a Asie. P řičemž z jižní Afriky bude možno sledovat pouze zákryty hv ězdy prstenci a zákryt vlastní planetou tuto oblast již mine. U nás, ve st řední Evrop ě, by úkaz m ěl za čít v 18:45 UT, kdy se hv ězda dostane k vn ějšímu okraji soustavy prstenc ů. V tom čase bude planeta již dostate čně vysoko nad východním obzorem (h=26°; A=92°). Zákryt Pr ůchod hv ězdy oblastí systému satelit ů planety Saturn p ři pohledu ze Země kotou čkem planety pak nastane v intervalu 20:08 UT (D – vstup) až 20:49 (R – (geocentrický pohled). Pozice satelit ů se vztahují k času 20:24UT 25. 1. 2006. výstup). To se již Saturn p řesune vysoko na jihovýchodní nebe (h D=40°; A D=109°; K údaj ům v ní je možno pouze poznamenat, že čísla prstenc ů ozna čují okraje hR=46°; A R=119°). Celý zákryt se uskute ční na tmavé obloze bez toho aby jeho jednotlivých výrazných pás ů, p řičemž oblasti 4 a 3 vymezují tzv. Cassiniho d ělení sledování rušil soumrak. Konec astronomického soumraku (h S=-18°) p řipadá na čas 17:35 UT. (mezeru). Asi nejp řístupn ějším zp ůsobem jak se s pr ůběhem zákrytu seznámit jsou dva Pravd ěpodobn ě nejv ětším problémem pro v ětšinu pozorovatel ů bude odhalit obrázky zpracované programem winOccult a následná tabulka obsahující údaje pro hv ězdu s jasností Mv=7,9 mag v blízkosti jasné planety a jejích prstenc ů (-0,2 několik Evropských m ěst (prost řední dvojstrana). U obrázk ů je zpracování mag). Hv ězda bude jen neznateln ě jasn ější než Saturn ův m ěsíc Titan (k datu předpov ědi geocentrické. Pro up řesn ění je pak možno použít p řipojenou tabulku zákrytu 8,4 mag). Snad by mohlo být výhodné jak p ři vizuálním pozorování tak i po čítanou samoz řejm ě topocentricky pro jednotlivá uvád ěná místa. při po řizování videozáznamu užít n ějaký filtr, ale jaký konkrétn ě nebylo v žádném zdrojovém popisu úkazu uvedeno. Occultation of HIP 42705 by Saturn on 2006 Jan 25 Location Long. Latit. Ring 5 Ring 4 Ring 3 D R Ring 1 Ring 2 Ring 3 Ring 4 Ring 5 o ' o ' h m h m h m h m h m h m h m h m h m h m Amsterdam Nether + 4 54.3 +52 20.6 18 45.2 18 57.4 19 2.1 20 7.7 20 50.4 .. .... .. .... 20 8.2 20 12.9 20 25.2 Athens Greece + 23 43.2 +37 58.4 18 45.5 18 58.3 19 3.4 20 10.0 20 47.1 .. .... .. .... 20 3.1 20 8.2 20 21.1 Barcelona Spain + 2 9.6 +41 23.2 18 45.9 18 58.5 19 3.4 20 9.9 20 49.1 .. .... .. .... 20 5.6 20 10.5 20 23.1 Belfast Nor Irel - 5 55.0 +54 35.0 18 45.2 18 57.3 19 1.9 20 7.4 20 51.1 .. .... .. .... 20 9.4 20 14.0 20 26.1 Beograd Yugoslav + 20 30.8 +44 48.2 18 45.3 18 57.8 19 2.7 20 8.8 20 48.5 .. .... .. .... 20 5.4 20 10.3 20 22.8 Berlin Germany + 13 6.4 +52 24.4 18 45.1 18 57.3 19 2.0 20 7.6 20 50.9 .. .... .. .... 20 7.8 20 12.5 20 24.8 Bologna Italy + 11 20.5 +44 28.1 18 45.5 18 58.1 19 3.0 20 9.1 20 49.0 .. .... .. .... 20 5.8 20 10.7 20 23.2 Bordeaux France - 0 34.0 +44 50.0 18 45.7 18 58.2 19 3.0 20 9.2 20 49.7 .. .... .. .... 20 6.7 20 11.5 20 24.0 Brno Czech Repub + 16 35.3 +49 12.3 18 45.2 18 57.5 19 2.3 20 8.1 20 49.4 .. .... .. .... 20 6.8 20 11.6 20 24.0 Brussels Belgium + 4 20.6 +50 47.7 18 45.3 18 57.6 19 2.3 20 8.0 20 50.2 .. .... .. .... 20 7.9 20 12.6 20 24.9 Bucharest Romani + 26 5.8 +44 24.8 18 45.1 18 57.7 19 2.6 20 8.6 20 48.1 .. .... .. .... 20 5.0 20 9.9 20 22.5 Budapest Hungary + 19 3.9 +47 29.1 18 45.2 18 57.6 19 2.5 20 8.3 20 49.0 .. .... .. .... 20 6.2 20 11.1 20 23.5 Copenhagen Denma + 12 34.6 +55 41.2 18 44.9 18 57.0 19 1.7 20 7.0 20 50.4 .. .... .. .... 20 8.6 20 13.3 20 25.4 Dresden Germany + 13 52.3 +51 3.0 18 45.1 18 57.4 19 2.2 20 7.8 20 49.7 .. .... .. .... 20 7.5 20 12.2 20 24.5 Dublin Ireland - 6 15.0 +53 20.0 18 45.3 18 57.4 19 2.1 20 7.6 20 51.0 .. .... .. .... 20 9.1 20 13.8 20 25.9 Duesseldorf Germ + 6 45.7 +51 12.4 18 45.3 18 57.5 19 2.2 20 7.9 20 50.1 .. .... .. .... 20 7.9 20 12.6 20 24.8 Frankfurt German + 8 39.0 +50 8.5 18 45.3 18 57.6 19 2.3 20 8.1 20 49.9 .. .... .. .... 20 7.5 20 12.2 20 24.5 Gdansk Poland + 18 39.0 +54 21.3 18 44.8 18 57.0 19 1.7 20 7.1 20 49.9 .. .... .. .... 20 8.0 20 12.7 20 24.9 Geneva Switzerla + 6 8.2 +46 18.4 18 45.5 18 58.0 19 2.8 20 8.9 20 49.5 .. .... .. .... 20 6.7 20 11.5 20 23.9 Glasgow Scotland - 4 18.3 +55 54.1 18 45.1 18 57.2 19 1.8 20 7.1 20 51.2 .. .... .. .... 20 9.6 20 14.1 20 26.2 Goteborg Sweden + 11 53.6 +57 46.7 18 44.8 18 56.9 19 1.5 20 6.6 20 50.6 .. .... .. .... 20 9.2 20 13.7 20 25.8 Graz Austria + 15 26.9 +47 4.6 18 45.3 18 57.8 19 2.6 20 8.5 20 49.1 .. .... .. .... 20 6.3 20 11.1 20 23.6 Hamburg Germany + 9 58.4 +53 33.1 18 45.1 18 57.3 19 2.0 20 7.4 20 50.3 .. .... .. .... 20 8.3 20 12.9 20 25.1 Hannover Germany + 9 42.8 +52 23.3 18 45.1 18 57.4 19 2.1 20 7.6 20 50.1 .. .... .. .... 20 8.0 20 12.7 20 24.9 Helsinki Finland + 24 57.3 +60 9.7 18 44.4 18 56.4 19 0.9 20 5.9 20 50.3 .. .... .. .... 20 9.2 20 13.7 20 25.7 Istanbul Turkey + 28 57.9 +41 0.7 18 45.1 18 57.9 19 2.8 20 9.1 20 47.3 .. .... .. .... 20 3.8 20 8.8 20 21.5 Kiev Ukraine + 30 29.9 +50 27.2 18 44.7 18 57.0 19 1.8 20 7.3 20 48.8 .. .... .. .... 20 6.6 20 11.3 20 23.6 Krakow Poland + 19 49.6 +50 3.3 18 45.0 18 57.4 19 2.1 20 7.8 20 49.3 .. .... .. .... 20 6.9 20 11.7 20 24.0 Leipzig Germany + 12 23.5 +51 20.1 18 45.1 18 57.4 19 2.2 20 7.8 20 49.9 .. .... .. .... 20 7.6 20 12.3 20 24.6 Lisbon Portugal - 9 11.2 +38 42.7 18 46.1 18 58.7 19 3.7 20 10.4 20 49.4 .. .... .. .... 20 5.7 20 10.6 20 23.3 Liverpool Englan - 3 4.3 +53 24.1 18 45.2 18 57.4 19 2.1 20 7.6 20 50.9 .. .... .. .... 20 8.9 20 13.6 20 25.7 Ljubljana Sloven + 14 28.2 +46 2.8 18 45.4 18 57.9 19 2.7 20 8.7 20 49.0 .. .... .. .... 20 6.1 20 10.9 20 23.4 London England - 0 10.0 +51 30.0 18 45.3 18 57.6 19 2.3 20 7.9 20 50.5 .
Recommended publications
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations*
    Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations* F. Marchisa,g, J.E. Enriqueza, J. P. Emeryb, M. Muellerc, M. Baeka, J. Pollockd, M. Assafine, R. Vieira Martinsf, J. Berthierg, F. Vachierg, D. P. Cruikshankh, L. Limi, D. Reichartj, K. Ivarsenj, J. Haislipj, A. LaCluyzej a. Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA. b. Earth and Planetary Sciences, University of Tennessee 306 Earth and Planetary Sciences Building Knoxville, TN 37996-1410 c. SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d. Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e. Observatorio do Valongo/UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f. Observatório Nacional/MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro - RJ, Brazil. g. Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h. NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i. NASA/Goddard Space Flight Center, Greenbelt, MD 20771, United States j. Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, U.S.A * Based in part on observations collected at the European Southern Observatory, Chile Programs Numbers 70.C-0543 and ID 72.C-0753 Corresponding author: Franck Marchis Carl Sagan Center SETI Institute 189 Bernardo Ave. Mountain View CA 94043 USA [email protected] Abstract: We collected mid-IR spectra from 5.2 to 38 µm using the Spitzer Space Telescope Infrared Spectrograph of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Planetary Science : a Lunar Perspective
    APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim.
    [Show full text]
  • Instrumental Methods for Professional and Amateur
    Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A.
    [Show full text]
  • Asteroid Family Identification 613
    Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings.
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]
  • New Double Stars from Asteroidal Occultations, 1971 - 2008
    Vol. 6 No. 1 January 1, 2010 Journal of Double Star Observations Page 88 New Double Stars from Asteroidal Occultations, 1971 - 2008 Dave Herald, Canberra, Australia International Occultation Timing Association (IOTA) Robert Boyle, Carlisle, Pennsylvania, USA Dickinson College David Dunham, Greenbelt, Maryland, USA; Toshio Hirose, Tokyo, Japan; Paul Maley, Houston, Texas, USA; Bradley Timerson, Newark, New York, USA International Occultation Timing Association (IOTA) Tim Farris, Gallatin, Tennessee, USA Volunteer State Community College Eric Frappa and Jean Lecacheux, Paris, France Observatoire de Paris Tsutomu Hayamizu, Kagoshima, Japan Sendai Space Hall Marek Kozubal, Brookline, Massachusetts, USA Clay Center Richard Nolthenius, Aptos, California, USA Cabrillo College and IOTA Lewis C. Roberts, Jr., Pasadena, California, USA California Institute of Technology/Jet Propulsion Laboratory David Tholen, Honolulu, Hawaii, USA University of Hawaii E-mail: [email protected] Abstract: Observations of occultations by asteroids and planetary moons can detect double stars with separations in the range of about 0.3” to 0.001”. This paper lists all double stars detected in asteroidal occultations up to the end of 2008. It also provides a general explanation of the observational method and analysis. The incidence of double stars with a separation in the range 0.001” to 0.1” with a magnitude difference less than 2 is estimated to be about 1%. Vol. 6 No. 1 January 1, 2010 Journal of Double Star Observations Page 89 New Double Stars from Asteroidal Occultations, 1971 - 2008 tions. More detail about the method of analysis is set Introduction out in the Appendix. Asteroids and planetary moons will naturally oc- cult many stars as they move through the sky.
    [Show full text]
  • General Disclaimer One Or More of the Following
    https://ntrs.nasa.gov/search.jsp?R=19840022996 2020-03-20T22:42:28+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) I&T, tl 4 1 4 G /-7/03 ri THE OCCULTATION OF AG+290398 BY 93 MINERVA R. L. Millis. L. H. Wasserman, E. Bowell, 0. G. Franz, and R. Nye Planetary Research Center, Lowell Observatory, Flagstaff, Arizona 86002 W. Osborn Physics Department, Central Michigan University, Mount Pleasant, Michigan 48859 and 1 i A. Klemola rr Board of Studies in Astronomy and Astrophysics, Lick Observatory`, University of California, Santa Cruz, California 95064 ^ti5^62 D; rtN rnj r. i UG 1984 r ^^LJ AEPt Manuscript totals 22 pages, with three figures and four tables.
    [Show full text]
  • Download This PDF File
    Journal of Interdisciplinary Science Topics What is the smallest planet where an astronaut could accidentally escape gravity? Leon Rozing Delft University of Technology 25/03/2019 Abstract In this article, it is evaluated what the required dimensions of a small object in space (such as a small planet, a moon or an asteroid) should be in order to have a gravitational pull that is just strong enough to not let humans escape it by running and jumping. By evaluating the escape velocity, it is found that a mass-to-radius ratio of 5.8×1010 kgm-1 will prevent regular astronauts from escaping, and a ratio of 1.15×1012 kg m-1 will prevent even the fastest human alive from escaping the gravitational pull. Objects in our solar system that are near these ratios are Leda, 433 Eros and S/2003 (130) 1. Introduction planet) and 푟 the distance between the two centres Visiting planets other than our own has always of mass. If we consider how much energy must be sparked humanity’s imagination, not only in a paid to move an object from the surface of the planet scientific way but also in for example (children’s) with radius 푅 to infinity (so beyond the grasp of literature, with books such as Le Petit Prince by gravity), we must evaluate the difference in Antoine de Saint-Exupéry [1, 2]. In it, the little prince gravitational potential energy between the two visits a number of planets which by the illustrations situations. This looks as follows: of the author himself appear to be very small.
    [Show full text]
  • Physical Properties of (21) Lutetia
    Astronomy & Astrophysics manuscript no. Lutetia˙aa12 c ESO 2018 November 18, 2018 The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia ⋆ Jack D. Drummond1, A. Conrad2, W. J. Merline3, B. Carry4,5, C. R. Chapman3, H. A. Weaver6, P. M. Tamblyn3, J. C. Christou7, and C. Dumas8 1 Starfire Optical Range, Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Av SE, Kirtland AFB, New Mexico 87117-5776, USA 2 W.M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI, 96743, USA 3 Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, USA 4 LESIA, Observatoire de Paris, 5 place Jules Janssen, 92190 MEUDON, France 5 Universit´eParis 7 Denis-Diderot, 5 rue Thomas Mann, 75205 PARIS CEDEX, France 6 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723-6099, USA 7 Gemini Observatory, 670 N. A’ohoku Place, Hilo, Hawaii, 96720, USA 8 ESO, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago de Chile, Chile Received September 15, 1996; accepted March 16, 1997 ABSTRACT Context. Asteroid (21) Lutetia is the target of the ESA Rosetta mission flyby in 2010 July. Aims. We seek the best size estimates of the asteroid, the direction of its spin axis, and its bulk density, assuming its shape is well described by a smooth featureless triaxial ellipsoid, and to evaluate the deviations from this assumption. Methods. We derive these quantities from the outlines of the asteroid in 307 images of its resolved apparent disk obtained with adaptive optics (AO) at Keck II and VLT, and combine these with recent mass determinations to estimate a bulk density.
    [Show full text]