Occultations by Major and Minor Planets – 2008 Region 8

Total Page:16

File Type:pdf, Size:1020Kb

Occultations by Major and Minor Planets – 2008 Region 8 Occultations by major and minor planets ± 2008 Region 8 2008 jan 1 19h48.8m A08_01079 2008 jan 3 10h36.1m A08_01012 2008 jan 4 12h48.4m A08_01064 2008 jan 9 12h 7.2m B08_01003 976 Benjamina UCAC2 26000295 76 Freia TYC 1320−00481−1 678 Fredegundis UCAC2 38786034 2003TK58 UCAC2 39974889 Diam = 86.6 m = 11.5 Diam = 190.0 m = 11.8 Diam = 44.0 m = 11.1 Diam = 109.6 m = 14.0 m = 14.9 m = 12.0 m = 11.8 m = 24.1 Dur = 3.4s Dmag = 3.4 Dur = 17.8s Dmag = 0.8 Dur = 4.4s Dmag = 1.1 Dur = 5.1s Dmag = 10.1 Sun: 74° Moon: 2° Sun: 167° Moon: 136° Sun: 169° Moon: 125° Sun: 148° Moon: 136° 2008 jan 11 17h 0.4m A08_01067 2008 jan 14 14h44.1m B08_01002 2008 jan 15 12h 0.7m A08_01029 2008 jan 15 14h58.1m A08_01046 694 Ekard TYC 6114−00532−1 2000YX1 UCAC2 39092566 227 Philosophia TYC 2424−00058−1 478 Tergeste UCAC2 31677375 Diam = 92.7 m = 12.4 Diam = 138.0 m = 13.4 Diam = 90.1 m = 9.8 Diam = 82.0 m = 11.6 m = 15.3 m = 23.3 m = 13.9 m = 12.1 Dur = 7.3s Dmag = 3.0 Dur = 9.3s Dmag =10.0 Dur = 6.4s Dmag = 4.2 Dur = 7.3s Dmag = 1.0 Sun: 91° Moon: 129° Sun: 130° Moon: 56° Sun: 157° Moon: 73° Sun: 156° Moon: 108° 2008 jan 20 14h27.5m A08_01015 2008 jan 23 12h60.0m A08_01042 2008 jan 24 8h 2.9m A08_01085 2008 jan 26 12h33.3m A08_01086 82 Alkmene HIP 59771 424 Gratia TYC 1950−00948−1 47171 1999TC36 TYC 4681−01120−1 2001XU254 TYC 1373−02131−1 Diam = 63.6 m = 9.7 Diam = 90.5 m = 11.4 Diam = 346.7 m = 11.5 Diam = 182.0 m = 10.8 m = 12.0 m = 13.2 m = 20.0 m = 22.6 Dur = 10.5s Dmag = 2.4 Dur = 7.9s Dmag = 2.0 Dur = 20.7s Dmag = 8.5 Dur = 7.3s Dmag = 11.8 Sun: 116° Moon: 89° Sun: 170° Moon: 7° Sun: 69° Moon: 132° Sun: 167° Moon: 61° 2008 jan 30 11h21.8m A08_01083 2008 jan 31 12h52.0m A08_01043 2008 feb 3 11h23.0m A08_02048 2008 feb 3 18h13.3m A08_02034 1284 Latvia HIP 33921 429 Lotis UCAC2 33562382 584 Semiramis TYC 1798−00731−1 372 Palma TYC 7270−00853−1 Diam = 40.2 m = 7.4 Diam = 70.3 m = 11.3 Diam = 56.2 m = 9.5 Diam = 195.0 m = 12.5 m = 13.5 m = 13.5 m = 12.6 m = 13.1 Dur = 4.8s Dmag = 6.1 Dur = 6.2s Dmag = 2.3 Dur = 3.7s Dmag = 3.2 Dur = 12.3s Dmag = 1.1 Sun: 154° Moon: 119° Sun: 161° Moon: 112° Sun: 101° Moon: 145° Sun: 97° Moon: 59° Occ08R08.ps 2007-02-23 18:48:56 1 Edwin Goffin, Hoboken, Belgium Occultations by major and minor planets ± 2008 Region 8 2008 feb 4 15h10.2m A08_02008 2008 feb 13 11h 0.6m A08_02055 2008 feb 14 18h 7.1m A08_02064 2008 feb 15 13h59.5m A08_02071 15 Eunomia UCAC2 39471892 663 Gerlinde TYC 0685−00976−1 952 Caia TYC 6823−00682−1 1794 Finsen TYC 5460−00060−1 Diam = 272.0 m = 11.5 Diam = 104.0 m = 9.9 Diam = 84.5 m = 10.1 Diam = 43.1 m = 9.9 m = 9.0 m = 14.5 m = 15.5 m = 15.2 Dur = 33.5s Dmag = 0.1 Dur = 26.3s Dmag = 4.6 Dur = 3.0s Dmag = 5.4 Dur = 3.8s Dmag = 5.3 Sun: 149° Moon: 176° Sun: 110° Moon: 36° Sun: 66° Moon: 165° Sun: 158° Moon: 76° 2008 feb 15 15h24.8m A08_02025 2008 feb 17 15h23.2m B08_02003 2008 feb 21 13h35.9m B08_02005 2008 feb 21 13h47.7m B08_02002 170 Maria TYC 6086−01200−1 1998HO151 UCAC2 34849049 1999CS153 UCAC2 37538611 136120 2003LG7 UCAC2 24617511 Diam = 46.2 m = 11.9 Diam = 75.9 m = 13.6 Diam = 79.4 m = 13.6 Diam = 87.1 m = 12.6 m = 13.3 m = 24.8 m = 24.4 m = 23.4 Dur = 5.1s Dmag = 1.7 Dur = 4.4s Dmag = 11.2 Dur = 3.3s Dmag = 10.7 Dur = 8.6s Dmag = 10.8 Sun: 140° Moon: 107° Sun: 131° Moon: 90° Sun: 164° Moon: 21° Sun: 83° Moon: 91° 2008 feb 22 18h42.5m A08_02021 2008 feb 24 12h32.6m B08_02004 2008 feb 25 14h18.4m A08_02069 2008 feb 25 16h30.0m A08_02036 150 Nuwa UCAC2 22971389 1998WZ31 UCAC2 41667969 1266 Tone TYC 0253−01212−1 375 Ursula TYC 7867−00225−1 Diam = 157.0 m = 11.9 Diam = 79.4 m = 12.6 Diam = 76.0 m = 11.5 Diam = 216.0 m = 9.9 m = 14.2 m = 23.6 m = 14.2 m = 13.1 Dur = 5.2s Dmag = 2.4 Dur = 38.7s Dmag = 11.0 Dur = 5.0s Dmag = 2.8 Dur = 9.7s Dmag = 3.2 Sun: 64° Moon: 96° Sun: 97° Moon: 122° Sun: 171° Moon: 47° Sun: 82° Moon: 45° 2008 feb 26 15h24.9m A08_02002 2008 feb 27 9h10.1m A08_02075 2008 feb 27 9h10.5m B08_02007 2008 feb 27 11h13.1m A08_02012 6 Hebe TYC 1397−00339−1 2001XP254 TYC 1372−00664−1 2001XP254 UCAC2 39659517 34 Circe UCAC2 36761699 Diam = 186.0 m = 11.4 Diam = 95.5 m = 12.1 Diam = 95.5 m = 12.2 Diam = 118.0 m = 11.9 m = 9.5 m = 23.0 m = 23.0 m = 13.7 Dur = 16.6s Dmag = 0.2 Dur = 6.4s Dmag = 11.0 Dur = 6.4s Dmag = 10.9 Dur = 5.2s Dmag = 2.0 Sun: 155° Moon: 88° Sun: 132° Moon: 119° Sun: 132° Moon: 119° Sun: 77° Moon: 168° Occ08R08.ps 2007-02-23 18:48:56 2 Edwin Goffin, Hoboken, Belgium Occultations by major and minor planets ± 2008 Region 8 2008 feb 29 10h41.0m A08_02004 2008 feb 29 13h41.1m A08_02003 2008 feb 29 19h45.3m A08_02023 2008 mar 6 12h19.7m B08_03002 8 Flora TYC 1272−00067−1 7 Iris TYC 6125−00669−1 165 Loreley TYC 7318−01155−1 2003FJ127 UCAC2 34112267 Diam = 141.0 m = 8.5 Diam = 261.8 m = 11.0 Diam = 160.0 m = 11.1 Diam = 125.9 m = 12.3 m = 10.4 m = 10.1 m = 13.1 m = 23.1 Dur = 6.4s Dmag = 2.0 Dur = 47.1s Dmag = 0.4 Dur = 13.9s Dmag = 2.2 Dur = 5.0s Dmag = 10.9 Sun: 86° Moon: 170° Sun: 132° Moon: 48° Sun: 102° Moon: 22° Sun: 171° Moon: 157° 2008 mar 6 12h49.1m A08_03084 2008 mar 6 19h39.3m A08_03088 2008 mar 8 13h24.5m A08_03091 2008 mar 8 16h53.4m A08_03087 850 Altona HIP 21205 921 Jovita TYC 5500−00556−1 1087 Arabis TYC 1965−00974−1 893 Leopoldina TYC 0892−00864−1 Diam = 84.5 m = 8.9 Diam = 60.5 m = 9.7 Diam = 40.8 m = 10.1 Diam = 78.0 m = 12.3 m = 15.8 m = 15.3 m = 14.4 m = 14.9 Dur = 4.4s Dmag = 6.9 Dur = 4.2s Dmag = 5.7 Dur = 4.2s Dmag = 4.3 Dur = 5.9s Dmag = 2.7 Sun: 82° Moon: 97° Sun: 165° Moon: 160° Sun: 146° Moon: 136° Sun: 145° Moon: 154° 2008 mar 9 18h52.0m A08_03049 2008 mar 10 10h43.8m A08_03023 2008 mar 10 11h 1.6m A08_03040 2008 mar 14 18h20.9m A08_03004 328 Gudrun UCAC2 15561728 117 Lomia TYC 1948−00414−1 255 Oppavia TYC 2444−00254−1 11 Parthenope TYC 6307−00134−1 Diam = 120.0 m = 12.0 Diam = 154.0 m = 10.2 Diam = 58.0 m = 11.6 Diam = 162.0 m = 11.9 m = 14.7 m = 12.8 m = 15.0 m = 11.5 Dur = 7.7s Dmag = 2.8 Dur = 18.1s Dmag = 2.7 Dur = 6.8s Dmag = 3.4 Dur = 4.8s Dmag = 0.6 Sun: 93° Moon: 121° Sun: 134° Moon: 98° Sun: 109° Moon: 73° Sun: 61° Moon: 155° 2008 mar 14 19h19.8m A08_03080 2008 mar 14 19h58.1m A08_03083 2008 mar 17 11h45.7m A08_03008 2008 mar 18 11h23.0m A08_03011 781 Kartvelia TYC 1446−02199−1 806 Gyldenia TYC 7391−01487−1 25 Phocaea TYC 4804−01533−1 34 Circe TYC 1250−00677−1 Diam = 60.0 m = 11.6 Diam = 65.2 m = 11.1 Diam = 78.0 m = 11.2 Diam = 118.0 m = 11.2 m = 14.4 m = 16.6 m = 13.3 m = 13.8 Dur = 4.0s Dmag = 2.9 Dur = 3.2s Dmag = 5.5 Dur = 6.9s Dmag = 2.2 Dur = 4.0s Dmag = 2.7 Sun: 159° Moon: 93° Sun: 83° Moon: 177° Sun: 103° Moon: 35° Sun: 64° Moon: 77° Occ08R08.ps 2007-02-23 18:48:56 3 Edwin Goffin, Hoboken, Belgium Occultations by major and minor planets ± 2008 Region 8 2008 mar 22 15h15.8m A08_03078 2008 mar 24 18h59.5m A08_03030 2008 mar 27 8h56.2m A08_03085 2008 mar 27 14h21.7m A08_03061 773 Irmintraud TYC 7893−00198−1 147 Protogeneia UCAC2 22545005 850 Altona UCAC2 36945116 524 Fidelio TYC 7396−00088−1 Diam = 99.1 m = 11.1 Diam = 137.0 m = 11.9 Diam = 84.5 m = 11.7 Diam = 74.0 m = 10.9 m = 14.2 m = 14.1 m = 15.9 m = 15.3 Dur = 6.0s Dmag = 3.2 Dur = 8.0s Dmag = 2.3 Dur = 3.2s Dmag = 4.2 Dur = 5.1s Dmag = 4.4 Sun: 94° Moon: 75° Sun: 88° Moon: 57° Sun: 66° Moon: 167° Sun: 93° Moon: 22° 2008 mar 28 10h 1.8m B08_03001 2008 mar 28 18h54.9m A08_03046 2008 mar 31 14h30.2m A08_03039 2008 mar 31 17h 4.2m A08_03018 2002CY154 UCAC2 33225379 289 Nenetta TYC 5567−00185−1 247 Eukrate TYC 6717−00695−1 67 Asia UCAC2 24620438 Diam = 166.0 m = 12.8 Diam = 41.5 m = 10.5 Diam = 137.0 m = 11.6 Diam = 60.0 m = 11.9 m = 23.3 m = 14.8 m = 13.0 m = 12.2 Dur = 6.8s Dmag = 10.5 Dur = 3.6s Dmag = 4.3 Dur = 8.2s Dmag = 1.6 Dur = 8.2s Dmag = 0.9 Sun: 163° Moon: 90° Sun: 149° Moon: 48° Sun: 156° Moon: 90° Sun: 117° Moon: 48° 2008 apr 2 12h10.5m A08_04001 2008 apr 3 9h40.4m A08_04002 2008 apr 3 13h43.2m A08_04081 2008 apr 3 14h15.6m A08_04044 6 Hebe UCAC2 39313876 6 Hebe TYC 1399−01539−1 1000 Piazzia UCAC2 12110024 375 Ursula TYC 7877−00031−1 Diam = 186.0 m = 11.9 Diam = 186.0 m = 11.4 Diam = 54.0 m = 11.3 Diam = 216.0 m = 10.9 m = 10.3 m = 10.3 m = 14.2 m = 12.7 Dur = 47.7s Dmag = 0.2 Dur = 45.0s Dmag = 0.4 Dur = 3.2s Dmag = 2.9 Dur = 23.0s Dmag = 2.0 Sun: 116° Moon: 164° Sun: 115° Moon: 152° Sun: 96° Moon: 65° Sun: 112° Moon: 81° 2008 apr 3 16h52.1m A08_04035 2008 apr 4 19h27.5m A08_04039 2008 apr 5 16h 5.3m A08_04053 2008 apr 5 21h31.7m A08_04045 258 Tyche TYC 4920−00764−1 279 Thule TYC 4972−00535−1 510 Mabella TYC 4947−00852−1 375 Ursula TYC 7877−00374−1 Diam = 67.7 m = 10.9 Diam = 135.0 m = 11.4 Diam = 59.3 m = 9.8 Diam = 216.0 m = 11.9 m = 13.3 m = 14.5 m = 13.2 m = 12.6 Dur = 5.1s Dmag = 2.5 Dur = 9.1s Dmag = 3.2 Dur = 4.8s Dmag = 3.4 Dur = 24.5s Dmag = 1.2 Sun: 151° Moon: 168° Sun: 171° Moon: 153° Sun: 171° Moon: 179° Sun: 114° Moon: 112° Occ08R08.ps 2007-02-23 18:48:56 4 Edwin Goffin, Hoboken, Belgium Occultations by major and minor planets ± 2008 Region 8 2008 apr 6 19h32.9m A08_04024 2008 apr 8 13h53.6m A08_04038 2008 apr 8 16h58.4m A08_04027 2008 apr 8 17h46.5m A08_04054 134 Sophrosyne HIP 101738 275 Sapientia UCAC2 32708124 148 Gallia UCAC2 33782836 524 Fidelio TYC 7397−00847−1 Diam = 107.0 m = 8.1 Diam = 103.0 m = 11.6 Diam = 104.0 m = 11.6 Diam = 74.0 m = 11.4 m = 14.2 m = 11.8 m = 13.2 m = 15.1 Dur = 4.2s Dmag = 6.1 Dur = 12.0s Dmag = 0.9 Dur = 9.7s Dmag = 1.9 Dur = 7.7s Dmag = 3.7 Sun: 73° Moon: 83° Sun: 168° Moon: 135° Sun: 108° Moon: 133° Sun: 103° Moon: 140° 2008 apr 11 14h39.9m A08_04065 2008 apr 11 16h40.5m A08_04083 2008 apr 12 17h12.0m A08_04060 2008 apr 14 13h 9.9m A08_04046 623 Chimaera TYC 7292−01844−1 1048 Feodosia TYC 6849−00037−1 576 Emanuela
Recommended publications
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Zákryt Jasné Hvězdy Saturnem
    Zákrytová a astrometrická sekce ČAS leden 2006 (1) Zajímavosti: NENECHTE SI UJÍT Zákryt jasné hv ězdy Saturnem 25. ledna 2006 ve čer mimo jiné i Evropu čeká velice zajímavá ř ě Č podívaná. Planeta Saturn okrášlená prstencem p řejde p řes relativn ě Situace, jak vypadá p i pohledu z hv zdy. asy udávané v malé vložené ě ě č jasnou hv ězdu a ze Zem ě budeme mít možnost sledovat nejen zákryt tabulce jsou platné pro Mainz (N mecko). Pro jiná místa v Evrop jsou asy v tabulce za článkem. stálice vlastní planetou, ale i její poblikávání za jednotlivými prstenci. Velice zajímavé bude jist ě pokusit se celý úkaz nahrát speciálními videokamerami v ohnisku dlouhofokálních teleobjektiv ů či dalekohled ů. Zajímavá a nevšední podívaná však čeká jist ě i na ty, kdo se na úkaz budou chtít pouze vizuáln ě podívat. Lednový zákryt hv ězdy Saturnem je jist ě zajímavou údálostí, ale nemá p říliš velkou publicitu. Úkaz bude viditelný z Evropy, Afriky a Asie. P řičemž z jižní Afriky bude možno sledovat pouze zákryty hv ězdy prstenci a zákryt vlastní planetou tuto oblast již mine. U nás, ve st řední Evrop ě, by úkaz m ěl za čít v 18:45 UT, kdy se hv ězda dostane k vn ějšímu okraji soustavy prstenc ů. V tom čase bude planeta již dostate čně vysoko nad východním obzorem (h=26°; A=92°). Zákryt Pr ůchod hv ězdy oblastí systému satelit ů planety Saturn p ři pohledu ze Země kotou čkem planety pak nastane v intervalu 20:08 UT (D – vstup) až 20:49 (R – (geocentrický pohled).
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • Infrared Spectroscopy of Large, Low-Albedo Asteroids: Are Ceres and Themis Archetypes Or Outliers?
    Infrared Spectroscopy of Large, Low-Albedo Asteroids: Are Ceres and Themis Archetypes or Outliers? Andrew S. Rivkin1, Ellen S. Howell2, Joshua P. Emery3 1. Johns Hopkins University Applied Physics Laboratory 2. University of Arizona 3. University of Tennessee Corresponding author: Andrew Rivkin ([email protected]) Key points: • The largest low-albedo asteroids appear to be unrepresented in the meteorite collection • Reflectance spectra in the 3-µm spectral region, and presumably compositions, similar to Ceres and Themis appear to be common in low-albedo asteroids > 200 km diameter • The asteroid 324 Bamberga appears to have hemispherical-scale variation in its reflectance spectrum, and in places has a spectrum reminiscent of Comet 67P. Submitted to Journal of Geophysical Research 17 September 2018 Revised 27 February 2019 Accepted 12 April 2019 1 Abstract: Low-albedo, hydrated objects dominate the list of the largest asteroids. These objects have varied spectral shapes in the 3-µm region, where diagnostic absorptions due to volatile species are found. Dawn’s visit to Ceres has extended the view shaped by ground-based observing, and shown that world to be a complex one, potentially still experiencing geological activity. We present 33 observations from 2.2-4.0 µm of eight large (D > 200 km) asteroids from the C spectral complex, with spectra inconsistent with the hydrated minerals we see in meteorites. We characterize their absorption band characteristics via polynomial and Gaussian fits to test their spectral similarity to Ceres, the asteroid 24 Themis (thought to be covered in ice frost), and the asteroid 51 Nemausa (spectrally similar to the CM meteorites).
    [Show full text]
  • The Euphrosyne Family's Contribution to the Low Albedo Near-Earth
    The Euphrosyne family's contribution to the low albedo near-Earth asteroids Joseph R. Masiero1, V. Carruba2, A. Mainzer1, J. M. Bauer1, C. Nugent3 ABSTRACT The Euphrosyne asteroid family is uniquely situated at high inclination in the outer Main Belt, bisected by the ν6 secular resonance. This large, low albedo family may thus be an important contributor to specific subpopulations of the near-Earth objects. We present simulations of the orbital evolution of Euphrosyne family members from the time of breakup to the present day, focusing on those members that move into near- Earth orbits. We find that family members typically evolve into a specific region of orbital element-space, with semimajor axes near ∼ 3 AU, high inclinations, very large eccentricities, and Tisserand parameters similar to Jupiter family comets. Filtering all known NEOs with our derived orbital element limits, we find that the population of candidate objects is significantly lower in albedo than the overall NEO population, although many of our candidates are also darker than the Euphrosyne family, and may have properties more similar to comet nuclei. Followup characterization of these candidates will enable us to compare them to known family properties, and confirm which ones originated with the breakup of (31) Euphrosyne. 1. Introduction The Euphrosyne asteroid family occupies a unique place in orbital element space among fam- ilies, located in the outer Main Belt at very high inclination, as shown in Figure 1. It is also the only asteroid family that is bisected by the ν6 secular orbital resonance. The inner-most portion of this resonance (semimajor axis< 2:5 AU) has been shown to be a primary mechanism for moving asteroids onto near-Earth orbits with relatively long lifetimes (Bottke et al.
    [Show full text]
  • Orbit Globe Equatorial Axis Planet Sidereal Perihelion Aphelion
    Table 1 Planets Orbit I Globe Equatorial Axis Planet Sidereal Perihelion Aphelion lnclinationl Diameter Oblateness Mass Density Albedo Tilt Period* Satellites Period (AU) (AU) (deg) . (km) (Earth=l)(water=J) (deg) (d h m) Mercury 87.97 d 0.31 0.47 7_.0 4878 0.0 0.06 5.4 0.06 0 58 15 30.2 0 Venus 224.70d 0.72 0.73 .3.4 12104 0.0 0.82 5.2 0.72 177 243 0 R 0 Earth 365.26d 0.98 1.02 0.0 12 756 0.0034 1.00 5.5 0.39 23.4 23 56.1 1 Mars 686.98d 1.38 1.67 1.8 6787 0.005 0.11 3.9 0.16 25.0 1 0 37.4 2 Jupiter 11.86 y 4.95 5.45 1.3 142800 0.065 317.83 1.3 0.70 3.1 9 50.5 16 & rings Saturn 29.46y 9.01 10.07 2.5 120000 0.108 95.17 0.7 0.75 26.7 10 14 +22& rings Uranus 84.01 y 18.28 20.09 0.8 50800 0.030 14.50 1.3 0.90 97.9 -16 R 5 & rings Neptune 164.79y 29.80 30.32 1.8 48600 0.026 17.20 1.8 0.82 29.6 -18 2 Pluto 247.7y 29.6 49.3 17.2 3000? 0 0.002 1.1? 0.9? 118? 6 9 17 1 *R indicates retrograde axial rotation. The rotation periods for Jupiter and Saturn refer to equatorial regions; the periods exceed 9h 5 5m and 1Oh 38m at higher latitudes, respectively.
    [Show full text]
  • The Planetary and Lunar Ephemeris DE 421
    IPN Progress Report 42-178 • August 15, 2009 The Planetary and Lunar Ephemeris DE 421 William M. Folkner,* James G. Williams,† and Dale H. Boggs† The planetary and lunar ephemeris DE 421 represents updated estimates of the orbits of the Moon and planets. The lunar orbit is known to submeter accuracy through fitting lunar laser ranging data. The orbits of Venus, Earth, and Mars are known to subkilometer accu- racy. Because of perturbations of the orbit of Mars by asteroids, frequent updates are needed to maintain the current accuracy into the future decade. Mercury’s orbit is determined to an accuracy of several kilometers by radar ranging. The orbits of Jupiter and Saturn are determined to accuracies of tens of kilometers as a result of spacecraft tracking and modern ground-based astrometry. The orbits of Uranus, Neptune, and Pluto are not as well deter- mined. Reprocessing of historical observations is expected to lead to improvements in their orbits in the next several years. I. Introduction The planetary and lunar ephemeris DE 421 is a significant advance over earlier ephemeri- des. Compared with DE 418, released in July 2007,1 the DE 421 ephemeris includes addi- tional data, especially range and very long baseline interferometry (VLBI) measurements of Mars spacecraft; range measurements to the European Space Agency’s Venus Express space- craft; and use of current best estimates of planetary masses in the integration process. The lunar orbit is more robust due to an expanded set of lunar geophysical solution parameters, seven additional months of laser ranging data, and complete convergence.
    [Show full text]
  • Organic Matter and Associated Minerals on the Dwarf Planet Ceres
    minerals Review Organic Matter and Associated Minerals on the Dwarf Planet Ceres Maria Cristina De Sanctis 1,* and Eleonora Ammannito 2 1 Istituto di Astrofisica e Planetologia Spaziali, Istituto Nazionale di Astrofisica (INAF), 00133 Rome, Italy 2 Agenzia Spaziale Italiana, Via del Politecnico, 00133 Roma, Italy; [email protected] * Correspondence: [email protected] Abstract: Ceres is the largest object in the main belt and it is also the most water-rich body in the inner solar system besides the Earth. The discoveries made by the Dawn Mission revealed that the composition of Ceres includes organic material, with a component of carbon globally present and also a high quantity of localized aliphatic organics in specific areas. The inferred mineralogy of Ceres indicates the long-term activity of a large body of liquid water that produced the alteration minerals discovered on its surface, including ammonia-bearing minerals. To explain the presence of ammonium in the phyllosilicates, Ceres must have accreted organic matter, ammonia, water and carbon present in the protoplanetary formation region. It is conceivable that Ceres may have also processed and transformed its own original organic matter that could have been modified by the pervasive hydrothermal alteration. The coexistence of phyllosilicates, magnetite, carbonates, salts, organics and a high carbon content point to rock–water alteration playing an important role in promoting widespread carbon occurrence. Keywords: Ceres; asteroids; organics; aliphatics; solar system Citation: De Sanctis, M.C.; Ammannito, E. Organic Matter and Associated Minerals on the Dwarf 1. Ceres: A Dwarf Planet in the Main Belt Planet Ceres. Minerals 2021, 11, 799.
    [Show full text]
  • Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites Driss Takir [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the The Sun and the Solar System Commons Recommended Citation Takir, Driss, "Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1783 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Driss Takir entitled "Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Harry Y. McSween Jr., Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffery E. Moersch, Michael W. Guidry Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Nature and Degree of Aqueous Alteration of Outer Main Belt Asteroids and CM and CI Carbonaceous Chondrites A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Driss Takir May 2013 Copyright © 2013 by Driss Takir All rights reserved.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • TRAPPIST Asteroid Lightcurves
    http://lib.uliege.ac.be http://matheo.uliege.be TRAPPIST asteroid lightcurves Auteur : Ferrais, Marin Promoteur(s) : Jehin, Emmanuel Faculté : Faculté des Sciences Diplôme : Master en sciences spatiales, à finalité approfondie Année académique : 2017-2018 URI/URL : www.trappist.ulg.ac.be; http://hdl.handle.net/2268.2/5023 Avertissement à l'attention des usagers : Tous les documents placés en accès ouvert sur le site le site MatheO sont protégés par le droit d'auteur. Conformément aux principes énoncés par la "Budapest Open Access Initiative"(BOAI, 2002), l'utilisateur du site peut lire, télécharger, copier, transmettre, imprimer, chercher ou faire un lien vers le texte intégral de ces documents, les disséquer pour les indexer, s'en servir de données pour un logiciel, ou s'en servir à toute autre fin légale (ou prévue par la réglementation relative au droit d'auteur). Toute utilisation du document à des fins commerciales est strictement interdite. Par ailleurs, l'utilisateur s'engage à respecter les droits moraux de l'auteur, principalement le droit à l'intégrité de l'oeuvre et le droit de paternité et ce dans toute utilisation que l'utilisateur entreprend. Ainsi, à titre d'exemple, lorsqu'il reproduira un document par extrait ou dans son intégralité, l'utilisateur citera de manière complète les sources telles que mentionnées ci-dessus. Toute utilisation non explicitement autorisée ci-avant (telle que par exemple, la modification du document ou son résumé) nécessite l'autorisation préalable et expresse des auteurs ou de leurs ayants droit. UNIVERSITY OF LIÈGE FACULTY OF SCIENCES DEPARTMENT OF ASTROPHYSICS,GEOPHYSICS AND OCEANOGRAPHY MASTER THESIS TRAPPIST ASTEROID LIGHTCURVES Composite lightcurve of (20) Massalia A thesis presented for the degree of Master in Space Sciences by MARIN FERRAIS Under the supervision of Emmanuël Jehin Academic Year 2017 − 2018 Contents Contents 2 1 Introduction 5 2 About asteroids 7 2.1 Introduction...........................................
    [Show full text]