Analog Clock

Total Page:16

File Type:pdf, Size:1020Kb

Analog Clock tere 23.01.1971 11:50 5405. Neverland - 0é1 13825. Booth - 2é12 8156. Tsukada - 4é37 5410. Spivakov - 0é2 7176. Kuniji - 2é14 4702. Berounka - 4é39 34137. Lonnielinda - 0é2 19817. Larashelton - 2é14 1816. Liberia - 4é46 16524. Hausmann - 0é2 2274. Ehrsson - 2é18 21517. Dobi - 4é46 13028. Klaustschira - 0é3 17076. Betti - 2é22 861. Aida - 4é46 29085. Sethanne - 0é9 5653. Camarillo - 2é25 40206. Lhenice - 4é47 16525. Shumarinaiko - 0é9 10060. Amymilne - 2é26 8861. Jenskandler - 4é53 2590. Mourao - 0é10 17815. Kulawik - 2é27 33529. Henden - 4é56 1591. Baize - 0é11 4500. Pascal - 2é27 24605. Tsykalyuk - 5é0 22402. Goshi - 0é12 15632. Magee-Sauer - 2é30 4112. Hrabal - 5é3 26734. Terryfarrell - 0é18 4147. Lennon - 2é30 9055. Edvardsson - 5é4 3731. Hancock - 0é19 4122. Ferrari - 2é33 23718. Horgos - 5é5 308. Polyxo - 0é19 5316. Filatov - 2é34 4067. Mikhel'son - 5é6 4565. Grossman - 0é19 4963. Kanroku - 2é35 4904. Makio - 5é7 7854. Laotse - 0é20 552. Sigelinde - 2é36 1453. Fennia - 5é9 371. Bohemia - 0é27 3088. Jinxiuzhonghua - 2é37 1323. Tugela - 5é9 2620. Santana - 0é29 1969. Alain - 2é40 12406. Zvikov - 5é9 15126. Brittanyanderson - 0é34 7356. Casagrande - 2é40 1175. Margo - 5é13 16267. Mcdermott - 0é34 10136. Gauguin - 2é43 4839. Daisetsuzan - 5é13 8722. Schirra - 0é36 2523. Ryba - 2é46 8367. Bokusui - 5é14 2381. Landi - 0é38 61384. Arturoromer - 2é50 15710. Bocklin - 5é18 33056. Ogunimachi - 0é42 2685. Masursky - 2é52 665. Sabine - 5é18 2062. Aten - 0é42 21485. Ash - 2é53 3723. Voznesenskij - 5é19 20809. Eshinjolly - 0é44 10715. Nagler - 2é54 5555. Wimberly - 5é20 3034. Climenhaga - 0é44 2524. Budovicium - 2é55 9349. Lucas - 5é21 2925. Beatty - 0é54 13234. Natashaowen - 2é59 7354. Ishiguro - 5é25 6473. Winkler - 0é55 169. Zelia - 3é1 2489. Suvorov - 5é27 18824. Graves - 0é57 13279. Gutman - 3é1 19497. Pineda - 5é30 6467. Prilepina - 0é58 3242. Bakhchisaraj - 3é2 15837. Mariovalori - 5é30 5549. Bobstefanik - 0é59 5222. Ioffe - 3é5 44001. Jonquet - 5é31 20589. Hennyadmoni - 0é59 264. Libussa - 3é7 5034. Joeharrington - 5é36 18774. Lavanture - 1é0 2829. Bobhope - 3é7 20793. Goldinaaron - 5é37 11916. Wiesloch - 1é1 4080. Galinskij - 3é8 2709. Sagan - 5é37 9385. Avignon - 1é3 13088. Filipportera - 3é10 5722. Johnscherrer - 5é37 146. Lucina - 1é5 4449. Sobinov - 3é10 5051. Ralph - 5é39 5875. Kuga - 1é8 7999. Nesvorny - 3é13 6235. Burney - 5é41 3266. Bernardus - 1é9 4074. Sharkov - 3é13 410. Chloris - 5é42 7437. Torricelli - 1é12 4631. Yabu - 3é13 10241. Milicevic - 5é42 7109. Heine - 1é12 9164. Colbert - 3é15 2673. Lossignol - 5é43 3991. Basilevsky - 1é13 10168. Stony Ridge - 3é15 5409. Saale - 5é46 182. Elsa - 1é15 38237. Roche - 3é17 17240. Gletorrence - 5é52 22901. Ivanbella - 1é15 6422. Akagi - 3é24 6574. Gvishiani - 5é52 1263. Varsavia - 1é19 6424. Ando - 3é24 12867. Joeloic - 5é52 2700. Baikonur - 1é19 3200. Phaethon - 3é26 3666. Holman - 5é54 1628. Strobel - 1é22 2353. Alva - 3é32 2616. Lesya - 5é58 56. Melete - 1é22 7555. Venvolkov - 3é33 5953. Shelton - 5é59 12363. Marinmarais - 1é23 12782. Mauersberger - 3é33 9785. Senjikan - 6é0 16804. Bonini - 1é31 11665. Dirichlet - 3é34 1597. Laugier - 6é0 5683. Bifukumonin - 1é32 7054. Brehm - 3é35 22495. Fubini - 6é3 6532. Scarfe - 1é35 21661. Olgagermani - 3é38 2549. Baker - 6é8 1968. Mehltretter - 1é36 1980. Tezcatlipoca - 3é39 4483. Petofi - 6é8 896. Sphinx - 1é37 63145. Choemuseon - 3é40 26935. Vireday - 6é8 818. Kapteynia - 1é37 20234. Billgibson - 3é42 21022. Ike - 6é9 5541. Seimei - 1é38 32938. Ivanopaci - 3é43 15629. Sriner - 6é10 19029. Briede - 1é41 550. Senta - 3é44 2707. Ueferji - 6é10 14790. Beletskij - 1é41 2949. Kaverznev - 3é45 1652. Herge - 6é12 6520. Sugawa - 1é42 373. Melusina - 3é54 19410. Guisard - 6é13 17734. Boole - 1é42 6776. Dix - 3é54 10684. Babkina - 6é13 876. Scott - 1é45 4540. Oriani - 3é54 4900. Maymelou - 6é19 1231. Auricula - 1é45 18987. Irani - 3é55 6847. Kunz-Hallstein - 6é20 11425. Wearydunlop - 1é46 1970. Sumeria - 3é55 8167. Ishii - 6é21 2078. Nanking - 1é46 96193. Edmonton - 3é56 3447. Burckhalter - 6é21 7020. Yourcenar - 1é46 6650. Morimoto - 3é57 16280. Groussin - 6é22 6404. Vanavara - 1é46 18948. Hinkle - 3é58 5935. Ostankino - 6é24 9599. Onotomoko - 1é49 2850. Mozhaiskij - 3é59 81. Terpsichore - 6é25 17832. Pitman - 1é57 16452. Goldfinger - 4é0 921. Jovita - 6é27 16999. Ajstewart - 1é58 12604. Lisatate - 4é2 2060. Chiron - 6é28 21659. Fredholm - 1é59 4872. Grieg - 4é5 7381. Mamontov - 6é29 19446. Muroski - 2é1 29613. Charlespicard - 4é9 10355. Kojiroharada - 6é31 12697. Verhaeren - 2é1 2557. Putnam - 4é11 1418. Fayeta - 6é31 2318. Lubarsky - 2é1 10255. Taunus - 4é13 6320. Bremen - 6é31 936. Kunigunde - 2é2 6740. Goff - 4é13 9630. Castellion - 6é32 100122.Alpes Maritimes - 2é2 16958. Klaasen - 4é16 11481. Znannya - 6é33 24711. Chamisso - 2é3 2696. Magion - 4é16 10432. Ullischwarz - 6é35 3755. Lecointe - 2é4 4219. Nakamura - 4é16 2082. Galahad - 6é36 4104. Alu - 2é4 19413. Grantlewis - 4é17 10438. Ludolph - 6é36 12364. Asadagouryu - 2é4 6330. Koen - 4é28 12089. Maichin - 6é37 2889. Brno - 2é5 12542. Laver - 4é30 16252. Franfrost - 6é38 490. Veritas - 2é8 3547. Serov - 4é32 1430. Somalia - 6é40 39809. Fukuchan - 2é11 3528. Counselman - 4é36 16407. Oiunskij - 6é41 tere 23.01.1971 11:50 995. Sternberga - 6é42 3962. Valyaev - 8é51 18284. Tsereteli - 11é36 14542. Karitskaya - 6é42 9122. Hunten - 8é53 30440. Larry - 11é37 1203. Nanna - 6é44 21726. Rezvanian - 8é54 17518. Redqueen - 11é39 3489. Lottie - 6é45 17955. Sedransk - 8é55 15421. Adammalin - 11é39 9167. Kharkiv - 6é47 4530. Smoluchowski - 8é56 8237. Constable - 11é39 3774. Megumi - 6é49 17889. Liechty - 8é58 5542. Moffatt - 11é40 6536. Vysochinska - 6é51 7056. Kierkegaard - 9é1 9053. Hamamelis - 11é42 18510. Chasles - 6é51 6549. Skryabin - 9é7 14656. Lijiang - 11é42 1221. Amor - 6é51 3235. Melchior - 9é7 15417. Babylon - 11é42 11136. Shirleymarinus - 6é52 517. Edith - 9é7 1576. Fabiola - 11é43 17795. Elysiasegal - 6é55 2253. Espinette - 9é10 5704. Schumacher - 11é44 1712. Angola - 6é56 22370. Italocalvino - 9é10 7756. Scientia - 11é45 9368. Esashi - 7é0 18880. Toddblumberg - 9é12 20776. Juliekrugler - 11é46 11685. Adamcurry - 7é4 2625. Jack London - 9é13 12257. Lassine - 11é47 757. Portlandia - 7é5 20686. Thottumkara - 9é13 13753. Jennivirta - 11é49 2553. Viljev - 7é5 7714. Briccialdi - 9é16 26328. Litomysl - 11é52 10234. Sixtygarden - 7é6 25301. Ambrofogar - 9é20 367. Amicitia - 11é54 6087. Lupo - 7é13 7360. Moberg - 9é20 16068. Citron - 11é54 1744. Harriet - 7é13 4998. Kabashima - 9é23 4823. Libenice - 11é54 2905. Plaskett - 7é13 10395. Jirkahorn - 9é23 20478. Rutenberg - 11é56 12374. Rakhat - 7é19 5862. Sakanoue - 9é23 20527. Dajowestrich - 11é57 3651. Friedman - 7é19 4031. Mueller - 9é26 19821. Caroltolin - 12é4 19656. Simpkins - 7é19 9770. Discovery - 9é27 5666. Rabelais - 12é5 8320. van Zee - 7é20 22080. Emilevasseur - 9é30 29197. Gleim - 12é10 4152. Weber - 7é22 6839. Ozenuma - 9é33 746. Marlu - 12é10 8414. Atsuko - 7é24 6332. Vorarlberg - 9é38 1023. Thomana - 12é11 47038. Majoni - 7é24 1544. Vinterhansenia - 9é38 10960. Gran Sasso - 12é12 8303. Miyaji - 7é24 829. Academia - 9é38 11027. Astaf'ev - 12é13 9964. Hideonoguchi - 7é25 11796. Nirenberg - 9é41 7241. Kuroda - 12é15 1664. Felix - 7é25 4612. Greenstein - 9é43 12557. Caracol - 12é17 4405. Otava - 7é27 4325. Guest - 9é47 3951. Zichichi - 12é19 8856. Celastrus - 7é29 10646. Machielalberts - 9é47 17563. Tsuneyoshi - 12é23 6516. Gruss - 7é33 11365. NASA - 9é51 21743. Michaelsegal - 12é23 41800. Robwilliams - 7é33 4539. Miyagino - 9é53 5343. Ryzhov - 12é27 684. Hildburg - 7é36 2533. Fechtig - 9é57 15434. Mittal - 12é28 6419. Susono - 7é36 5879. Almeria - 9é57 1435. Garlena - 12é29 9309. Platanus - 7é37 11240. Piso - 10é5 13326. Ferri - 12é30 33863. Elfriederwin - 7é38 7369. Gavrilin - 10é6 1723. Klemola - 12é30 6023. Tsuyashima - 7é39 1378. Leonce - 10é8 6564. Asher - 12é32 20340. Susanruder - 7é42 4170. Semmelweis - 10é9 1078. Mentha - 12é32 7950. Berezov - 7é44 1442. Corvina - 10é13 3097. Tacitus - 12é33 9719. Yakage - 7é44 21539. Josefhlavka - 10é19 12750. Berthollet - 12é35 2301. Whitford - 7é49 13145. Cavezzo - 10é20 12074. Carolinelau - 12é37 21466. Franpelrine - 7é51 2584. Turkmenia - 10é20 10566. Zabadak - 12é39 13497. Ronstone - 7é51 6148. Ignazgunther - 10é29 2299. Hanko - 12é41 11323. Nasu - 7é51 20583. Richthammer - 10é31 23578. Baedeker - 12é41 10958. Mont Blanc - 7é52 21770. Wangyiran - 10é31 6596. Bittner - 12é41 920. Rogeria - 7é53 20228. Jeanmarcmari - 10é32 17835. Anoelsuri - 12é41 6211. Tsubame - 7é54 9305. Hazard - 10é35 4141. Nintanlena - 12é43 20559. Sheridanlamp - 7é55 4264. Karljosephine - 10é39 5242. Kenreimonin - 12é44 16967. Marcosbosso - 7é56 20495. Rimavska Sobota - 10é39 3244. Petronius - 12é44 4597. Consolmagno - 7é59 6233. Kimura - 10é39 39791. Jameshesser - 12é46 976. Benjamina - 8é4 2678. Aavasaksa - 10é41 11582. Bleuler - 12é46 2922. Dikan'ka - 8é6 8704. Sadakane - 10é45 20416. Mansour - 12é46 24105. Broughton - 8é7 5021. Krylania - 10é45 22152. Robbennett - 12é47 21481. Johnwarren - 8é8 7030. Colombini - 10é45 6965. Niyodogawa - 12é49 6190. Rennes - 8é9 4159. Freeman - 10é45 17095. Mahadik - 12é52 17597. Stefanzweig - 8é9 29122. Vasadze - 10é46 12051. Picha - 12é53 4750. Mukai - 8é9 78816. Caripito - 10é47 3320. Namba - 12é53 4046. Swain - 8é13 4845. Tsubetsu - 10é51 26950. Legendre - 12é57 18907. Kevinclaytor - 8é13 4932. Texstapa - 11é0 16857. Goodall - 12é59 682. Hagar - 8é18 2176. Donar - 11é3 12701. Chenier - 13é0 2663. Miltiades - 8é20 20539. Gadberry - 11é4 7203. Sigeki - 13é1 1916. Boreas
Recommended publications
  • Asteroid Shape and Spin Statistics from Convex Models J
    Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen To cite this version: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen. Asteroid shape and spin statistics from convex models. Icarus, Elsevier, 2008, 198 (1), pp.91. 10.1016/j.icarus.2008.07.014. hal-00499092 HAL Id: hal-00499092 https://hal.archives-ouvertes.fr/hal-00499092 Submitted on 9 Jul 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Asteroid shape and spin statistics from convex models J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen PII: S0019-1035(08)00283-2 DOI: 10.1016/j.icarus.2008.07.014 Reference: YICAR 8734 To appear in: Icarus Received date: 18 September 2007 Revised date: 3 July 2008 Accepted date: 7 July 2008 Please cite this article as: J. Torppa, V.-P. Hentunen, P. Pääkkönen, P. Kehusmaa, K. Muinonen, Asteroid shape and spin statistics from convex models, Icarus (2008), doi: 10.1016/j.icarus.2008.07.014 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Zákryt Jasné Hvězdy Saturnem
    Zákrytová a astrometrická sekce ČAS leden 2006 (1) Zajímavosti: NENECHTE SI UJÍT Zákryt jasné hv ězdy Saturnem 25. ledna 2006 ve čer mimo jiné i Evropu čeká velice zajímavá ř ě Č podívaná. Planeta Saturn okrášlená prstencem p řejde p řes relativn ě Situace, jak vypadá p i pohledu z hv zdy. asy udávané v malé vložené ě ě č jasnou hv ězdu a ze Zem ě budeme mít možnost sledovat nejen zákryt tabulce jsou platné pro Mainz (N mecko). Pro jiná místa v Evrop jsou asy v tabulce za článkem. stálice vlastní planetou, ale i její poblikávání za jednotlivými prstenci. Velice zajímavé bude jist ě pokusit se celý úkaz nahrát speciálními videokamerami v ohnisku dlouhofokálních teleobjektiv ů či dalekohled ů. Zajímavá a nevšední podívaná však čeká jist ě i na ty, kdo se na úkaz budou chtít pouze vizuáln ě podívat. Lednový zákryt hv ězdy Saturnem je jist ě zajímavou údálostí, ale nemá p říliš velkou publicitu. Úkaz bude viditelný z Evropy, Afriky a Asie. P řičemž z jižní Afriky bude možno sledovat pouze zákryty hv ězdy prstenci a zákryt vlastní planetou tuto oblast již mine. U nás, ve st řední Evrop ě, by úkaz m ěl za čít v 18:45 UT, kdy se hv ězda dostane k vn ějšímu okraji soustavy prstenc ů. V tom čase bude planeta již dostate čně vysoko nad východním obzorem (h=26°; A=92°). Zákryt Pr ůchod hv ězdy oblastí systému satelit ů planety Saturn p ři pohledu ze Země kotou čkem planety pak nastane v intervalu 20:08 UT (D – vstup) až 20:49 (R – (geocentrický pohled).
    [Show full text]
  • Download This PDF File
    Journal of Interdisciplinary Science Topics What is the smallest planet where an astronaut could accidentally escape gravity? Leon Rozing Delft University of Technology 25/03/2019 Abstract In this article, it is evaluated what the required dimensions of a small object in space (such as a small planet, a moon or an asteroid) should be in order to have a gravitational pull that is just strong enough to not let humans escape it by running and jumping. By evaluating the escape velocity, it is found that a mass-to-radius ratio of 5.8×1010 kgm-1 will prevent regular astronauts from escaping, and a ratio of 1.15×1012 kg m-1 will prevent even the fastest human alive from escaping the gravitational pull. Objects in our solar system that are near these ratios are Leda, 433 Eros and S/2003 (130) 1. Introduction planet) and 푟 the distance between the two centres Visiting planets other than our own has always of mass. If we consider how much energy must be sparked humanity’s imagination, not only in a paid to move an object from the surface of the planet scientific way but also in for example (children’s) with radius 푅 to infinity (so beyond the grasp of literature, with books such as Le Petit Prince by gravity), we must evaluate the difference in Antoine de Saint-Exupéry [1, 2]. In it, the little prince gravitational potential energy between the two visits a number of planets which by the illustrations situations. This looks as follows: of the author himself appear to be very small.
    [Show full text]
  • Jjmonl 1907-08.Pmd
    alactic Observer John J. McCarthy Observatory G Volume 12, No. 7/8 July/August 2019 Footprints on the Moon The John J. McCarthy Observatory Galactic Observvvererer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Phone/Fax: (860) 354-1595 Production & Design www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory has established itself as a significant educational and Technical Support recreational resource within the western Connecticut Bob Lambert community. Dr. Parker Moreland Steve Barone Peter Gagne Marc Polansky Colin Campbell Louise Gagnon Joe Privitera Dennis Cartolano John Gebauer Danielle Ragonnet Route Mike Chiarella Elaine Green Monty Robson Jeff Chodak Jim Johnstone Don Ross Bill Cloutier Carly KleinStern Gene Schilling Doug Delisle Bob Lambert Katie Shusdock Cecilia Detrich Roger Moore Jim Wood Dirk Feather Parker Moreland, PhD Paul Woodell Randy Fender Allan Ostergren Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 REFERENCES ON DISTANCES ............................................ 28 APOLLO 11 LANDING SITE ............................................... 5 INTERNATIONAL SPACE STATION/IRIDIUM SATELLITES .......... 28 SATURN AT OPPOSITION ................................................... 6 LAGRANGE POINTS ........................................................ 28 SEARCH FOR SNOOPY .....................................................
    [Show full text]
  • Science Case for Planetary Science KPAO Is Definitely the Most Promising Technology for Planetary Science
    Science Case for Planetary Science KPAO is definitely the most promising technology for planetary Science. • Gain in image quality in the NIR. -> in contrast quality to detect faint and variable features such as clouds on Titan, surface changes and volcanoes on Io and other bodies. -> in sensitivity for some programs such as moonlet detection around asteroids -> medium FOV for study of Giant planet atmospheres • Observations in the visible range -> boost the scientific return of AO in planetary science. existence of several absorption bands linked to the presence of mafic or hydrated minerals in optical -> better angular resolution and sensitivity? MCAO & MOAO: large FOV AO cannot compete with space mission projects dedicated to Mars and Venus (resolution < meter, multi-wavelength from UV to Radar, excellent spatial and time coverage) Variable phenomena in the Solar System It is still interesting to study the bodies of our Solar System! even if space missions provided high angular resolution data, it is mostly a “snapshot”. They cannot provide a monitoring on a large timeline which is necessary to understand variable phenomena (volcanism, dynamic of atmosphere, …) Volcanism •Dynamic of Titan atmosphere due to • Mostly basaltic on Io (after Voyager+ Galileo + seasonal changes (Saturn year = 30 yr) ground-based monitoring on 26 yrs) •Surface changes • Cryogenic on Triton (N2?) Cassini primary mission will last 4 yrs, • Recently discovered on Enceladus (origin?) maximum 8 yrs. Continuous monitoring needed to estimate origin, Most energetic volcanic Keck-10m data source, chemistry and evolution. South pole clouds Surface at 2 µm ever witnessed! T>1450 K - S = 1200 km2 Ultramafic lava flow Marchis et al.
    [Show full text]
  • Appendix 1 1311 Discoverers in Alphabetical Order
    Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D.
    [Show full text]
  • Multiple Asteroid Systems: Dimensions and Thermal Properties from Spitzer Space Telescope and Ground-Based Observations Q ⇑ F
    Icarus 221 (2012) 1130–1161 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations q ⇑ F. Marchis a,g, , J.E. Enriquez a, J.P. Emery b, M. Mueller c, M. Baek a, J. Pollock d, M. Assafin e, R. Vieira Martins f, J. Berthier g, F. Vachier g, D.P. Cruikshank h, L.F. Lim i, D.E. Reichart j, K.M. Ivarsen j, J.B. Haislip j, A.P. LaCluyze j a Carl Sagan Center, SETI Institute, 189 Bernardo Ave., Mountain View, CA 94043, USA b Earth and Planetary Sciences, University of Tennessee, 306 Earth and Planetary Sciences Building, Knoxville, TN 37996-1410, USA c SRON, Netherlands Institute for Space Research, Low Energy Astrophysics, Postbus 800, 9700 AV Groningen, Netherlands d Appalachian State University, Department of Physics and Astronomy, 231 CAP Building, Boone, NC 28608, USA e Observatorio do Valongo, UFRJ, Ladeira Pedro Antonio 43, Rio de Janeiro, Brazil f Observatório Nacional, MCT, R. General José Cristino 77, CEP 20921-400 Rio de Janeiro, RJ, Brazil g Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, Avenue Denfert-Rochereau, 75014 Paris, France h NASA, Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000, USA i NASA, Goddard Space Flight Center, Greenbelt, MD 20771, USA j Physics and Astronomy Department, University of North Carolina, Chapel Hill, NC 27514, USA article info abstract Article history: We collected mid-IR spectra from 5.2 to 38 lm using the Spitzer Space Telescope Infrared Spectrograph Available online 2 October 2012 of 28 asteroids representative of all established types of binary groups.
    [Show full text]
  • Binary Asteroid Lightcurves
    BINARY ASTEROID LIGHTCURVES Asteroid Type Per1 Amp1 Per2 Amp2 Perorb Ds/Dp a/Dp Reference 22 Kalliope B 4.1483 0.53 B a Descamps, 08 B a 86.2896 Marchis, 08 B a 4.148 86.16 Marchis, 11w 41∗ Daphne B 5.988 0.45 B s 26.4 Conrad, 08 B s 38. Conrad, 08 B s 5.987981 27.289 2.46 Carry, 18 45 Eugenia M 5.699 0.30 B a 113. Merline, 99 B a Marchis, 06 M a Marchis, 07 M a Marchis, 08 B a 5.6991 114.38 Marchis, 11w 87 Sylvia M 5.184 0.50 M a 5.184 87.5904 Marchis, 05 M a 5.1836 87.59 Marchis, 11w 90∗ Antiope B 16.509 0.88 B f 16. Merline, 00 B f 16.509 0.73 16.509 0.73 16.509 Descamps, 05 B f 16.5045 0.86 16.5045 0.86 16.5045 Behrend, 07w B f 16.505046 16.505046 Bartczak, 14 93 Minerva M 5.982 0.20 M a 5.982 0.20 57.79 Marchis, 11 107∗ Camilla M 4.844 0.53 B a Marchis, 08 B a 4.8439 89.04 Marchis, 11w M a 1.550 Marsset, 16 M s 89.096 4.91 Pajuelo, 18 113 Amalthea B? 9.950 0.22 ? u Maley, 17 121 Hermione B 5.55128 0.62 B a Merline, 02 B a Marchis, 04 B a Marchis, 05 B a 5.55 61.97 Marchis, 11w 130 Elektra M 5.225 0.58 B a 5.22 126.2 Marchis, 08 M a Yang, 14 216 Kleopatra M 5.385 1.22 M a 5.38 Marchis, 08 243 Ida B 4.634 0.86 B a Belton, 94 279 Thule B? 23.896 0.10 B s 7.44 0.08 72.2 Sato, 15 283 Emma B 6.896 0.53 B a Merline, 03 B a 6.89 80.48 Marchis, 08 324 Bamberga B? 29.43 0.12 B s 29.458 0.06 71.0 Sato, 15 379 Huenna B 14.141 0.12 B a Margot, 03 B a 4.022 2102.
    [Show full text]
  • The V-Band Photometry of Asteroids from ASAS-SN
    Astronomy & Astrophysics manuscript no. 40759˙ArXiV © ESO 2021 July 22, 2021 V-band photometry of asteroids from ASAS-SN Finding asteroids with slow spin ? J. Hanusˇ1, O. Pejcha2, B. J. Shappee3, C. S. Kochanek4;5, K. Z. Stanek4;5, and T. W.-S. Holoien6;?? 1 Institute of Astronomy, Faculty of Mathematics and Physics, Charles University, V Holesoviˇ ckˇ ach´ 2, 18000 Prague, Czech Republic 2 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesoviˇ ckˇ ach´ 2, 18000 Prague, Czech Republic 3 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 5 Center for Cosmology and Astroparticle Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA 6 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA Received x-x-2021 / Accepted x-x-2021 ABSTRACT We present V-band photometry of the 20,000 brightest asteroids using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) between 2012 and 2018. We were able to apply the convex inversion method to more than 5,000 asteroids with more than 60 good measurements in order to derive their sidereal rotation periods, spin axis orientations, and shape models. We derive unique spin state and shape solutions for 760 asteroids, including 163 new determinations. This corresponds to a success rate of about 15%, which is significantly higher than the success rate previously achieved using photometry from surveys.
    [Show full text]
  • VNIR Spectral Properties of Five G-Class Asteroids: Implications for Mineralogy and Geologic Evolution
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2021 VNIR Spectral Properties Of Five G-Class Asteroids: Implications For Mineralogy And Geologic Evolution Justin Todd Germann Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Germann, Justin Todd, "VNIR Spectral Properties Of Five G-Class Asteroids: Implications For Mineralogy And Geologic Evolution" (2021). Theses and Dissertations. 3927. https://commons.und.edu/theses/3927 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. VNIR SPECTRAL PROPERTIES OF FIVE G-CLASS ASTEROIDS: IMPLICATIONS FOR MINERALOGY AND GEOLOGIC EVOLUTION by Justin Todd Germann Bachelor of Science, University of North Dakota, 2017 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2021 ii DocuSign Envelope ID: FACAE050-8099-49F3-B21B-B535F8B6B93E Justin Germann Name: Degree: Master of Science This document, submitted in partial fulfillment of the requirements for the degree from the University of North Dakota, has been read by the Faculty Advisory Committee under whom the work has been done and is hereby approved. ____________________________________ Dr. Sherry Fieber-Beyer ____________________________________ Dr. Michael Gaffey ____________________________________ Dr. Wayne Barkhouse ____________________________________ ____________________________________ ____________________________________ This document is being submitted by the appointed advisory committee as having met all the requirements of the School of Graduate Studies at the University of North Dakota and is hereby approved.
    [Show full text]