Investigation of Early Development and Importance of Sediment Choice in the Hatchery Production of Razor Clams, Ensis Directus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphometry, Growth and Reproduction of an Atlantic Population of the Razor Clam Ensis Macha (Molina, 1782)*
SCI. MAR., 68 (2): 211-217 SCIENTIA MARINA 2004 Morphometry, growth and reproduction of an Atlantic population of the razor clam Ensis macha (Molina, 1782)* PEDRO J. BARÓN1,2, LUCIANO E. REAL2, NÉSTOR F. CIOCCO1,2 and MARÍA E. RÉ1 1 Centro Nacional Patagónico, CONICET, Boulevard Brown s/n, Puerto Madryn (9120), Chubut, Argentina. E-mail: [email protected] 2 Universidad Nacional de la Patagonia San Juan Bosco, Boulevard Brown 3700, Puerto Madryn (9120), Chubut, Argentina. SUMMARY: Ensis macha is a razor clam distributed throughout the coasts of southern Argentina and Chile. Even though it represents a valuable fishery resource, the exploitation of its Atlantic populations has begun only in recent years. This study provides the first estimates of growth rate, an interpretation of the reproductive cycle on the coast of the northern Argentine Patagonia and an analysis of the species morphometry. Growth was estimated by direct observation of growth rings on the valves by two observers. The reproductive cycle was interpreted by the analysis of temporal change of oocyte size frequency distributions. Parameter estimations for the von Bertalanffy equations respectively obtained by observers 1 -1 and 2 were 154 and 153.7 mm for L∞, 0.25 and 0.20 yr for k, and -0.08 and -0.72 yr for t0. Two spawning peaks were detect- ed: September-November 1999 and May-June 2000. However, mature females were found all year round. An abrupt change in the relationship between shell length and height was detected at 11.2 mm length. Key words: razor clam, morphometric relationships, growth, reproduction, Ensis macha, allometric growth. -
Biotechnologies from Marine Bivalves
Nutrient Extraction Through Bivalves Petersen, Jens Kjerulf; Holmer, Marianne; Termansen, Mette; Hasler, Berit Published in: Goods and Services of Marine Bivalves DOI: 10.1007/978-3-319-96776-9_10 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Petersen, J. K., Holmer, M., Termansen, M., & Hasler, B. (2019). Nutrient Extraction Through Bivalves. In A. C. Smaal, J. G. Ferreira, J. Grant, J. K. Petersen, & Ø. Strand (Eds.), Goods and Services of Marine Bivalves (pp. 179-208). Springer. https://doi.org/10.1007/978-3-319-96776-9_10 Download date: 05. okt.. 2021 Aad C. Smaal · Joao G. Ferreira · Jon Grant Jens K. Petersen · Øivind Strand Editors Goods and Services of Marine Bivalves Goods and Services of Marine Bivalves Just the pearl II, by Frank van Driel, fine art photography (www.frankvandriel.com), with painted oyster shells of www.zeeuwsblauw.nl Aad C. Smaal • Joao G. Ferreira • Jon Grant Jens K. Petersen • Øivind Strand Editors Goods and Services of Marine Bivalves Editors Aad C. Smaal Joao G. Ferreira Wageningen Marine Research and Universidade Nova de Lisboa Aquaculture and Fisheries group Monte de Caparica, Portugal Wageningen University and Research Yerseke, The Netherlands Jens K. Petersen Technical University of Denmark Jon Grant Nykøbing Mors, Denmark Department of Oceanography Dalhousie University Halifax, Nova Scotia, Canada Øivind Strand Institute of Marine Research Bergen, Norway ISBN 978-3-319-96775-2 ISBN 978-3-319-96776-9 (eBook) https://doi.org/10.1007/978-3-319-96776-9 Library of Congress Control Number: 2018951896 © The Editor(s) (if applicable) and The Author(s) 2019 , corrected publication 2019. -
Analysis of Synonymous Codon Usage Patterns in Sixty-Four Different Bivalve Species
Analysis of synonymous codon usage patterns in sixty-four diVerent bivalve species Marco Gerdol1, Gianluca De Moro1, Paola Venier2 and Alberto Pallavicini1 1 Department of Life Sciences, University of Trieste, Trieste, Italy 2 Department of Biology, University of Padova, Padova, Italy ABSTRACT Synonymous codon usage bias (CUB) is a defined as the non-random usage of codons encoding the same amino acid across diVerent genomes. This phenomenon is common to all organisms and the real weight of the many factors involved in its shaping still remains to be fully determined. So far, relatively little attention has been put in the analysis of CUB in bivalve mollusks due to the limited genomic data available. Taking advantage of the massive sequence data generated from next generation sequencing projects, we explored codon preferences in 64 diVerent species pertaining to the six major evolutionary lineages in Bivalvia. We detected remarkable diVerences across species, which are only partially dependent on phylogeny. While the intensity of CUB is mild in most organisms, a heterogeneous group of species (including Arcida and Mytilida, among the others) display higher bias and a strong preference for AT-ending codons. We show that the relative strength and direction of mutational bias, selection for translational eYciency and for translational accuracy contribute to the establishment of synonymous codon usage in bivalves. Although many aspects underlying bivalve CUB still remain obscure, we provide for the first time an overview of this phenomenon -
Morphological Variations of the Shell of the Bivalve Lucina Pectinata
I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles. -
Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability
Portland State University PDXScholar Environmental Science and Management Datasets Environmental Science and Management 7-2019 Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability Britta Baechler Portland State University, [email protected] Elise F. Granek Portland State University, [email protected] Matthew V. Hunter Oregon Department of Fish and Wildlife Kathleen E. Conn United States Geological Survey Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_data Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, and the Environmental Monitoring Commons Let us know how access to this document benefits ou.y Recommended Citation Baechler, Britta; Granek, Elise F.; Hunter, Matthew V.; and Conn, Kathleen E., "Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability" (2019). [Dataset]. https://doi.org/10.15760/esm-data.1 This Dataset is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Datasets by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Metadata template1 for datasets of L&O-Letters articles Table 1. Description of the fields needed to describe the creation of your dataset. Title of dataset Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability URL of dataset Data is available in the Portland State University PDXScholar data repository at: https://doi.org/10.15760/esm-data.1 Abstract Microplastics are an ecological stressor with implications for ecosystem and human health when present in seafood. -
Siliqua Patula Class: Bivalvia; Heterodonta Order: Veneroida the Flat Razor Clam Family: Pharidae
Phylum: Mollusca Siliqua patula Class: Bivalvia; Heterodonta Order: Veneroida The flat razor clam Family: Pharidae Taxonomy: The familial designation of this (see Plate 397G, Coan and Valentich-Scott species has changed frequently over time. 2007). Previously in the Solenidae, current intertidal Body: (see Plate 29 Ricketts and Calvin guides include S. patula in the Pharidae (e.g., 1952; Fig 259 Kozloff 1993). Coan and Valentich-Scott 2007). The superfamily Solenacea includes infaunal soft Color: bottom dwelling bivalves and contains the two Interior: (see Fig 5, Pohlo 1963). families: Solenidae and Pharidae (= Exterior: Cultellidae, von Cosel 1993) (Remacha- Byssus: Trivino and Anadon 2006). In 1788, Dixon Gills: described S. patula from specimens collected Shell: The shell in S. patula is thin and with in Alaska (see Range) and Conrad described sharp (i.e., razor-like) edges and a thin profile the same species, under the name Solen (Fig. 4). Thin, long, fragile shell (Ricketts and nuttallii from specimens collected in the Calvin 1952), with gapes at both ends Columbia River in 1838 (Weymouth et al. (Haderlie and Abbott 1980). Shell smooth 1926). These names were later inside and out (Dixon 1789), elongate, rather synonymized, thus known synonyms for cylindrical and the length is about 2.5 times Siliqua patula include Solen nuttallii, the width. Solecurtus nuttallii. Occasionally, researchers Interior: Prominent internal vertical also indicate a subspecific epithet (e.g., rib extending from beak to margin (Haderlie Siliqua siliqua patula) or variations (e.g., and Abbott 1980). Siliqua patula var. nuttallii, based on rib Exterior: Both valves are similar and morphology, see Possible gape at both ends. -
Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain. -
2018 Final LOFF W/ Ref and Detailed Info
Final List of Foreign Fisheries Rationale for Classification ** (Presence of mortality or injury (P/A), Co- Occurrence (C/O), Company (if Source of Marine Mammal Analogous Gear Fishery/Gear Number of aquaculture or Product (for Interactions (by group Marine Mammal (A/G), No RFMO or Legal Target Species or Product Type Vessels processor) processing) Area of Operation or species) Bycatch Estimates Information (N/I)) Protection Measures References Detailed Information Antigua and Barbuda Exempt Fisheries http://www.fao.org/fi/oldsite/FCP/en/ATG/body.htm http://www.fao.org/docrep/006/y5402e/y5402e06.htm,ht tp://www.tradeboss.com/default.cgi/action/viewcompan lobster, rock, spiny, demersal fish ies/searchterm/spiny+lobster/searchtermcondition/1/ , (snappers, groupers, grunts, ftp://ftp.fao.org/fi/DOCUMENT/IPOAS/national/Antigua U.S. LoF Caribbean spiny lobster trap/ pot >197 None documented, surgeonfish), flounder pots, traps 74 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G AndBarbuda/NPOA_IUU.pdf Caribbean mixed species trap/pot are category III http://www.nmfs.noaa.gov/pr/interactions/fisheries/tabl lobster, rock, spiny free diving, loops 19 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented A/G e2/Atlantic_GOM_Caribbean_shellfish.html Queen conch (Strombus gigas), Dive (SCUBA & free molluscs diving) 25 not applicable not applicable Antigua & Barbuda EEZ none documented none documented A/G U.S. trade data Southeastern U.S. Atlantic, Gulf of Mexico, and Caribbean snapper- handline, hook and grouper and other reef fish bottom longline/hook-and-line/ >5,000 snapper line 71 Lewis Fishing not applicable Antigua & Barbuda EEZ none documented none documented N/I, A/G U.S. -
Shell Morphology and Sperm Ultrastructure of Solen Tehuelchus Hanley, 1842 (Bivalvia: Solenidae): New Taxonomic Characters Author(S): Amanda Bonini, Gisele O
CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositorio da Producao Cientifica e Intelectual da Unicamp Shell Morphology and Sperm Ultrastructure of Solen tehuelchus Hanley, 1842 (Bivalvia: Solenidae): New Taxonomic Characters Author(s): Amanda Bonini, Gisele O. Introíni Lenita F. Tallarico, Fabrizio M. Machado and Shirlei M. Recco-Pimentel Source: American Malacological Bulletin, 34(2):73-78. Published By: American Malacological Society https://doi.org/10.4003/006.034.0202 URL: http://www.bioone.org/doi/full/10.4003/006.034.0202 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Amer. Malac. Bull. 34(2): 73–78 (2016) RESEARCH NOTE Shell morphology and sperm ultrastructure of Solen tehuelchus Hanley, 1842 (Bivalvia: Solenidae): New taxonomic characters Amanda Bonini1, Gisele O. Introíni1, 3, Lenita F. Tallarico1, Fabrizio M. Machado2 and Shirlei M. Recco-Pimentel1 1Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n. -
Upwelling Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D
July 2010 Volume 7, Issue 2 Newsletter of the Friends of Hatfield Marine Science CenterUpwelling www.hmsc.oregonstate.edu/friends Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D. Student, OSU’s Department of Fisheries and Wildlife juveniles at eight different beaches along the Oregon coast. Presence and Sandy beach surf zones occur along 70% of the distribution of the juveniles is related to whether the beach is located in Oregon coastline. These high energy environments are a littoral cell, which is a defined stretch considered ‘semi-enclosed’ because there is limited of sandy beach exchange of waters between these zones, which extend that is bordered by from the shoreline to the outermost breaker, and offshore rocky headlands that waters. Several fish species, including English sole, contain estuaries Northern anchovy, and Staghorn sculpin inhabit surf- with local Chinook zones, especially when they are juveniles, because it salmon popula- provides an abundant supply of potential prey and shelter tions. There are from predators. Although juvenile Chinook are thought also more juveniles to migrate from estuaries directly to the open ocean, present along sandy juveniles have also been collected within Oregon’s surf beaches adjacent to zones. estuaries. Densities of juveniles in the My M.Sc. research project at the Oregon Institute surf zone vary widely and are positively related to estuarine water tem- of Marine Biology suggested that surf-zones provide perature, suggesting that higher temperatures may influence movement an intermediate habitat for Chinook salmon between and prompt juveniles to exit the estuary. In surf-zones, juveniles grow at the estuary and the open ocean. -
Use of Shell Shape Variation As an Assessment Tool in The
Fisheries Research 186 (2017) 216–222 Contents lists available at ScienceDirect Fisheries Research journal homepage: www.elsevier.com/locate/fishres Use of shell shape variation as an assessment tool in the southernmost razor clam fishery a,b,∗ c,d c Federico Márquez , M. Magdalena Trivellini , Silvina Van der Molen a LARBIM, IBIOMAR − CONICET, Blvd. Brown 2915 (U9120ACD), Puerto Madryn, Argentina b Universidad Nacional de la Patagonia San Juan Bosco, Blvd. Brown 3100, Puerto Madryn (U9120ACD), Chubut, Argentina c IBIOMAR − CONICET, Blvd. Brown 2915 (U9120ACD), Puerto Madryn, Argentina d Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, Córdoba (×5000JJC), Córdoba, Argentina a r t i c l e i n f o a b s t r a c t Article history: Morphological variation provides a method for phenotypic stock differentiation at inter- and intra- Received 25 April 2016 specific levels. Various methods are used for the assessment of fishery stocks in mollusks; one of them is Received in revised form 25 August 2016 geometric morphometrics. We analyzed morphological variation in razor clams at ten fishing grounds, Accepted 26 August 2016 five from the Argentinean North Patagonian gulfs and five from Chile, and evaluated the occurrence of Handled by A.E. Punt phenotypic stocks between Argentinean and Chilean fisheries, using geometric morphometrics methods. The Argentinean harvesting of Ensis macha is emerging, and represents a way to diversify the shell- Keywords: fisheries in north Patagonia. Nevertheless, fishing and aquaculture play important roles for the Chilean Phenotypic stock Landmarks economy. Various multivariate methods were applied to describe the differences among and between fishing grounds. -
Growth Increment Periodicity in the Shell of the Razor Clam Ensis
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Biogeosciences, 10, 4741–4750, 2013 Open Access www.biogeosciences.net/10/4741/2013/ Biogeosciences doi:10.5194/bg-10-4741-2013 Biogeosciences Discussions © Author(s) 2013. CC Attribution 3.0 License. Open Access Open Access Climate Climate of the Past of the Past Discussions Growth increment periodicity in the shell of the razor clam Ensis Open Access Open Access directus using stable isotopes as a method to validateEarth age System Earth System Dynamics 1,2 1 1 1 Dynamics2,3 J. F. M. F. Cardoso , G. Nieuwland , R. Witbaard , H. W. van der Veer , and J. P. Machado Discussions 1NIOZ – Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg Texel, the Netherlands 2CIIMAR/CIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Open Access Open Access Bragas 289, 4050-123 Porto, Portugal Geoscientific Geoscientific 3ICBAS – Instituto de Cienciasˆ Biomedicas´ Abel Salazar, Laboratorio de Fisiologia Aplicada,Instrumentation Universidade do Porto, Instrumentation Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal Methods and Methods and Correspondence to: J. F. M. F. Cardoso ([email protected]) Data Systems Data Systems Discussions Open Access Received: 18 February 2013 – Published in Biogeosciences Discuss.: 6 March 2013 Open Access Geoscientific Revised: 31 May 2013 – Accepted: 8 June 2013 – Published: 15 July 2013 Geoscientific Model Development Model Development Discussions Abstract.