Shellfish Hatchery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geoducks—A Compendium
34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A. -
Functional Traits of a Native and an Invasive Clam of the Genus Ruditapes Occurring in Sympatry in a Coastal Lagoon
www.nature.com/scientificreports OPEN Functional traits of a native and an invasive clam of the genus Ruditapes occurring in sympatry Received: 19 June 2018 Accepted: 8 October 2018 in a coastal lagoon Published: xx xx xxxx Marta Lobão Lopes1, Joana Patrício Rodrigues1, Daniel Crespo2, Marina Dolbeth1,3, Ricardo Calado1 & Ana Isabel Lillebø1 The main objective of this study was to evaluate the functional traits regarding bioturbation activity and its infuence in the nutrient cycling of the native clam species Ruditapes decussatus and the invasive species Ruditapes philippinarum in Ria de Aveiro lagoon. Presently, these species live in sympatry and the impact of the invasive species was evaluated under controlled microcosmos setting, through combined/manipulated ratios of both species, including monospecifc scenarios and a control without bivalves. Bioturbation intensity was measured by maximum, median and mean mix depth of particle redistribution, as well as by Surface Boundary Roughness (SBR), using time-lapse fuorescent sediment profle imaging (f-SPI) analysis, through the use of luminophores. Water nutrient concentrations (NH4- N, NOx-N and PO4-P) were also evaluated. This study showed that there were no signifcant diferences in the maximum, median and mean mix depth of particle redistribution, SBR and water nutrient concentrations between the diferent ratios of clam species tested. Signifcant diferences were only recorded between the control treatment (no bivalves) and those with bivalves. Thus, according to the present work, in a scenario of potential replacement of the native species by the invasive species, no signifcant diferences are anticipated in short- and long-term regarding the tested functional traits. -
Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability
Portland State University PDXScholar Environmental Science and Management Datasets Environmental Science and Management 7-2019 Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability Britta Baechler Portland State University, [email protected] Elise F. Granek Portland State University, [email protected] Matthew V. Hunter Oregon Department of Fish and Wildlife Kathleen E. Conn United States Geological Survey Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_data Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, and the Environmental Monitoring Commons Let us know how access to this document benefits ou.y Recommended Citation Baechler, Britta; Granek, Elise F.; Hunter, Matthew V.; and Conn, Kathleen E., "Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability" (2019). [Dataset]. https://doi.org/10.15760/esm-data.1 This Dataset is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Datasets by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Metadata template1 for datasets of L&O-Letters articles Table 1. Description of the fields needed to describe the creation of your dataset. Title of dataset Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability URL of dataset Data is available in the Portland State University PDXScholar data repository at: https://doi.org/10.15760/esm-data.1 Abstract Microplastics are an ecological stressor with implications for ecosystem and human health when present in seafood. -
Evidence That Qpx (Quahog Parasite Unknown) Is Not Present in Hatchery-Produced Hard Clam Seed
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 1997 Evidence That Qpx (Quahog Parasite Unknown) Is Not Present In Hatchery-Produced Hard Clam Seed Susan E. Ford Roxanna Smolowitz Lisa M. Ragone Calvo Virginia Institute of Marine Science RD Barber John N. Kraueter Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Ford, Susan E.; Smolowitz, Roxanna; Ragone Calvo, Lisa M.; Barber, RD; and Kraueter, John N., "Evidence That Qpx (Quahog Parasite Unknown) Is Not Present In Hatchery-Produced Hard Clam Seed" (1997). VIMS Articles. 531. https://scholarworks.wm.edu/vimsarticles/531 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Jo11r11al of Shellfish Researrh. Vol. 16. o. 2. 519-52 1, 1997. EVIDENCE THAT QPX (QUAHOG PARASITE UNKNOWN) IS NOT PRESENT IN HATCHERY-PRODUCED HARD CLAM SEED SUSAN E. FORD,' ROX ANNA SlVIOLOWITZ,2 LISA 1\1. RAGONE CA LV0,3 ROBERT D. BARB ER,1 AND JOHN N. KRAlJETER1 1 Haskin Shellfish Research Laborarory lnsri1ure .for Marine and Coastal Sciences and Ne11· Jersey Agricultural Experi111e11r Sra1io11 R111gers University Por1 Norris, Ne111 Jersey 08345 2Labora101)' for Aquatic Anilnal Medicine and Pathology U11il'ersiry o,f Pennsyh·ania Marine Biological Laborarory \¥oods Hole. -
Panopea Abrupta ) Ecology and Aquaculture Production
COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ................................................... -
The Atlantic Coast Surf Clam Fishery, 1965-1974
The Atlantic Coast Surf Clam Fishery, 1965-1974 JOHN W. ROPES Introduction United States twofold from 0.268 made several innovative technological pounds in 1947 to 0.589 pounds in advances in equipment for catching An intense, active fishery for the At 1974 (NMFS, 1975). Much of this con and processing the meats which signifi lantic surf clam, Spisula solidissima, swnption was in the New England cantly increased production. developed from one that historically region (Miller and Nash, 1971). The industry steadily grew during employed unsophisticated harvesting The fishery is centered in the ocean the 1950's with an increase in demand and marketing methods and had a low off the Middle Atlantic coastal states, for its products, but by the early annual production of less than 2 since surf clams are widely distributed 1960's industry representatives suspect million pounds of meats (Yancey and in beds on the continental shelf of the ed that the known resource supply was Welch, 1968). Only 3.2 percent of the Middle Atlantic Bight (Merrill and being depleted and requested research clam meats landed by weight in the Ropes, 1969; Ropes, 1979). Most of assistance (House of Representatives, United States during the half-decade the vessels in the fishery are located 1963). As part of a Federal research 1939-44 were from this resource, but from the State of New York through program begun in 1963 (Merrill and by 1970-74 it amounted to 71.8 per Virginia. The modem-day industry Webster, 1964), vessel captains in the cent. Landings from this fishery during surf clam fleet were interviewed to the three-decade period 1945-74 in gather data on fishing location, effort, John W. -
Upwelling Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D
July 2010 Volume 7, Issue 2 Newsletter of the Friends of Hatfield Marine Science CenterUpwelling www.hmsc.oregonstate.edu/friends Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D. Student, OSU’s Department of Fisheries and Wildlife juveniles at eight different beaches along the Oregon coast. Presence and Sandy beach surf zones occur along 70% of the distribution of the juveniles is related to whether the beach is located in Oregon coastline. These high energy environments are a littoral cell, which is a defined stretch considered ‘semi-enclosed’ because there is limited of sandy beach exchange of waters between these zones, which extend that is bordered by from the shoreline to the outermost breaker, and offshore rocky headlands that waters. Several fish species, including English sole, contain estuaries Northern anchovy, and Staghorn sculpin inhabit surf- with local Chinook zones, especially when they are juveniles, because it salmon popula- provides an abundant supply of potential prey and shelter tions. There are from predators. Although juvenile Chinook are thought also more juveniles to migrate from estuaries directly to the open ocean, present along sandy juveniles have also been collected within Oregon’s surf beaches adjacent to zones. estuaries. Densities of juveniles in the My M.Sc. research project at the Oregon Institute surf zone vary widely and are positively related to estuarine water tem- of Marine Biology suggested that surf-zones provide perature, suggesting that higher temperatures may influence movement an intermediate habitat for Chinook salmon between and prompt juveniles to exit the estuary. In surf-zones, juveniles grow at the estuary and the open ocean. -
Hard Clams), Mercenaria Mercenaria
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2007 Influence Of Host Genetic Origin And Geographic Location On Qpx Disease In Northern Quahogs (=Hard Clams), Mercenaria Mercenaria LMR Calvo SE Ford JN Kraeuter DF Leavitt R Smolowitz See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Calvo, LMR; Ford, SE; Kraeuter, JN; Leavitt, DF; Smolowitz, R; and Burreson, EM, Influence Of Host Genetic Origin And Geographic Location On Qpx Disease In Northern Quahogs (=Hard Clams), Mercenaria Mercenaria (2007). Journal Of Shellfish Research, 26(1), 109-119. https://scholarworks.wm.edu/vimsarticles/445 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors LMR Calvo, SE Ford, JN Kraeuter, DF Leavitt, R Smolowitz, and EM Burreson This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/445 Journal of Shellfish Research, Vol. 26, No. 1, 109–119, 2007. INFLUENCE OF HOST GENETIC ORIGIN AND GEOGRAPHIC LOCATION ON QPX DISEASE IN NORTHERN QUAHOGS (=HARD CLAMS), MERCENARIA MERCENARIA LISA M. RAGONE CALVO,1* SUSAN E. FORD,2 JOHN N. KRAEUTER,2 DALE F. LEAVITT,3 ROXANNA SMOLOWITZ4 AND EUGENE M. BURRESON1 1Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Rt. 1208, Gloucester Point, VA 23062; 2Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349; 3Roger Williams University, Bristol, RI 02809; 4Marine Biological Laboratory, Woods Hole, MA 02543 ABSTRACT QPX (Quahog Parasite Unknown) a protistan pathogen of northern quahogs (=hard clams), Mercenaria mercenaria, has caused disease outbreaks in maritime Canada, and in Massachusetts, New York, New Jersey, and Virginia, USA. -
The Influence of Sediment Characteristics on the Burrowing Behavior of Ensis Directus
The University of Maine DigitalCommons@UMaine Honors College Winter 2015 The Influence of Sediment Characteristics on the Burrowing Behavior of Ensis Directus Robert Joseph Hallinan University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Marine Biology Commons Recommended Citation Hallinan, Robert Joseph, "The Influence of Sediment Characteristics on the Burrowing Behavior of Ensis Directus" (2015). Honors College. 238. https://digitalcommons.library.umaine.edu/honors/238 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE INFLUENCE OF SEDIMENT CHARACTERISTICS ON THE BURROWING BEHAVIOR OF JUVENILE RAZOR CLAMS, ENSIS DIRECTUS by Robert J. Hallinan A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biology) The Honors College University of Maine December 2015 Advisory Committee: Paul D. Rawson, Assistant Prof. of Marine Sciences Kathleen Ellis, Adjunct Assistant Prof. in Honors (English) Christopher Cronan, Prof. of Biology & Ecology Leonard J. Kass, Associate Prof. of Zoology Seth Tyler, Prof. of Zoology & Cooperating Prof. of Marine Sciences ABSTRACT Ensis directus, the Atlantic razor clam, is an infaunal bivalve species whose geographic range extends along the Atlantic coast of North America from Canada to South Carolina. In this study, I examined the burrowing behavior of 24 large juvenile razor clams (shell length: 60-78 mm) in fine mud and coarse sand sediments. I identified four separate phases of burrowing behavior: recovery, exploration, initiation, and tunneling. -
Biology and Culture of the Hard Clam (Mercenaria Mercenaria)
SRAC Publication No. 433 VI August 2005 PR Revision Biology and Culture of the Hard Clam (Mercenaria mercenaria) Jack M. Whetstone1, Leslie N. Sturmer2 and Michael J. Oesterling3 Hard clam aquaculture is the largest Life history expand and may contain a few and most valuable of the shellfish mature gametes. Mature gametes aquaculture industries on the East Reproduction cycle are released and fertilization takes Coast. It accounts for more than $50 Hard clams usually spawn in the place externally. The ripe stage is million in economic value annually. spring, summer or fall. The opti- followed by the resting and/or Hard clams are bivalve mollusks that mal range of water temperatures spent stage to complete the repro- live in saline (>25 parts per thou- (79 ºF or 26 ºC) occurs at differ- ductive cycle. sand) waters and cannot tolerate low ent times of the year at different The development of the veliger lar- salinities or freshwater for an extend- latitudes. Clam reproduction vae is complete 24 hours after fer- ed period. Hard clams occur natural- occurs earlier in the year at lower tilization. These larvae swim, but ly all along the Atlantic coast from latitudes. Dimodal (two peaks) or are moved primarily by tidal cur- Nova Scotia to Florida. They have polymodal (multiple peaks) rents. The larvae grow to a maxi- been introduced along the shore of spawning takes place in southern mum size of 200 to 275 microme- the Gulf of Mexico from Florida to populations, and spawning may ters. By the sixth to tenth day, the Yucatan, as well as along the West occur more than once per spawn- skin-like outside tissue, called the Coast of the United States, in the ing season. -
Chapter I Taxonomy
THE AMERICAN OYSTER CRASSOSTREA VIRGINICA GMELIN By PAUL S. GALTSOFF, Fishery Biologist BUREAU OF COMMERCIAL FISHERIES CHAPTER I TAXONOMY Page This broad characterization included a number Taxonomic characters _ 4 SheIL _ 4 of genera such as scallops, pen shells (Pinnidae), Anatomy _ 4 Sex and spawnlng _ limas (Limidae) and other mollusks which ob 4 Habitat _ 5 viously are not oysters. In the 10th edition of Larvll! shell (Prodlssoconch) _ 6 "Systema Naturae," Linnaeus (1758) wrote: The genera of living oysters _ 6 Genus 08trea _ 6 "Ostreae non orones, imprimis Pectines, ad Genus Cra8808trea _ 7 Genus Pycnodonte _ cardinem interne fulcis transversis numerosis 7 Bibliography _ 14 parallelis in utraque testa oppositis gaudentiquae probe distinguendae ab Areis polypleptoginglymis, The family Ostreidae consists of a large number cujus dentes numerosi alternatim intrant alterius of edibleand nonedible oysters. Their distribution sinus." Le., not all are oysters, in particular the is confined to a broad belt of coastal waters within scallops, which have many parallel ribs running the latitudes 64° N. and 44° S. With few excep crosswise inward toward the hinge on each shell tions oysters thrive in shallow water, their vertical on opposite sides; these should properly be dis distribution extending from a level approximately tinguished from Area polyleptoginglymis whose halfway between high and low tide levels to a many teeth alternately enter between the teeth depth of about 100 feet. Commercially exploited of the other side. oyster beds are rarely found below a depth of 40 In the same publication the European flat feet. oyster, Ostrea edulis, is described as follows: The· name "Ostrea" was given by Linnaeus "Vulgo Ostrea dictae edulis. -
Surfclam Aquaculture Techniq
Final Report Piloting Surf Clam Aquaculture Techniques to Create Commercial Opportunities Award Number: NA16NMF4270241 Award Period: 03/01/2017 – 02/28/2020 Recipient Name: Aquacultural Research Corporation (dba A.R.C. Hatchery) Program Office: Fisheries Headquarters Program Office (FHQ) Program Officer: Deirdre Kimball, 978-281-9290, [email protected] Project Title: Piloting Surf Clam Aquaculture Techniques to Create Commercial Opportunities PIs/PDs: Rick Sawyer Partners: Cape Cod Cooperative Extension/Woods Hole Sea Grant, Cape Cod Commercial Fishermen’s Alliance, Roger Williams University Report Type: Performance Final Report Reporting Period: 03/01/2017 – 02/28/2020 Final Report: Yes Report Due Date: 08/27/2020 1 TABLE OF CONTENTS ACRONYMS/DEFINITIONS ..................................................................................................................4 EXECUTIVE SUMMARY .......................................................................................................................5 PURPOSE ...........................................................................................................................................8 BACKGROUND .............................................................................................................................................. 8 MARKET OPPORTUNITY .................................................................................................................................. 9 IMPORTANCE OF DEVELOPING THIS NEW SPECIES ............................................................................................