Shellfish Hatchery

Total Page:16

File Type:pdf, Size:1020Kb

Shellfish Hatchery EAST HAMPTON TOWN SHELLFISH HATCHERY 2016 ANNUAL REPORT AND 2017 OPERATING PLAN Prepared by Kate Rossi-Snook Edited by Barley Dunne East Hampton Town Shellfish Hatchery Kate and Adam prepare to seed oysters on a quiet morning in Three Mile Harbor Annual Report of Operations Mission Statement With a hatchery on Fort Pond Bay, a nursery on Three Mile Harbor, and a floating raft field growout system in Napeague Harbor, the East Hampton Town Shellfish Hatchery produces large quantities of oyster (Crassostrea virginica), clam (Mercenaria mercenaria), and bay scallop (Argopecten irradians) seed to enhance valuable shellfish stocks in local waterways. Shellfish are available for harvest by all permitted town residents. Cooperative research and experimentation concerning shellfish culture, the subsequent success of seed in the wild, and the status of the resource is undertaken and reported upon regularly, often funded and validated by scientific research grants. Educational opportunities afforded by the work include school group and open house tours and educational displays at community functions. Annual reporting includes production statistics and values, seed dissemination information, results of research initiatives, a summary of outreach efforts, the status of current and developing infrastructure, and a plan for the following year’s operations. 2016 Full-time Staff Part-time and Contractual Volunteers John “Barley” Dunne – Director Adam Younes – Environmental Aide Jannine DeMeritt Kate Rossi-Snook – Hatchery Manager Sam Younes – Environmental Aide (summer) Julia DeMeritt Pete Topping – Algae Culturist Tali Friedman – Environmental Aide (summer) Thor Botero Jeremy Gould – Maintenance Mechanic Pete checking on the success of our Three Mile Harbor scallop sanctuary Special Thanks to: Barnaby Friedman for producing our annual seeding maps The East Hampton Town Board and East Hampton Trustees for their continued support Table of Contents 2016 Annual Report of Operations Season Summary 1 2017 Operating Plan 3 Oyster Production 4 Spawn and Culture Summary Discards and Culls Distribution Overwintering Market Values Hard Clam Production 6 Spawn and Culture Summary Discards and Culls Distribution Overwintering Market Values Bay Scallop Production 9 Collection and Culture Summary Discards and Culls Distribution Overwintering Market Values Projects and Cooperative Research 12 East Hampton Shellfish Education and Enhancement Directive (EHSEED) Montauk Elementary School 8th Grade Science Fair Research: Oyster Murder Mystery Battle of the Bivalves Understanding the effects of predicted ocean conditions as a result of climate change on juvenile shellfish Shinnecock Bay Restoration Project oyster reef construction Impacts of climate change and ocean acidification on economically important shellfish in New York: are there effective mitigation and adaptation measures? Exploring trait-mediated effects of finfish on decapod crustaceans and bay scallops in eelgrass ecosystems Juvenile clam growth and survival in Western Shinnecock Bay Public Outreach & Industry Involvement 36 Infrastructure Management 38 Appendix I: 2015 Harbor Seeding Maps – All Species 40 II: 2015 Harbor Water Temperatures 48 2016 Season Summary Oysters: The hatchery season began with an accidental spawn in the broodstock conditioning tank one day before the first scheduled spawn. After conferring with Karen Rivara of Aeros Cultured Oyster Co. and Noank Aquaculture Cooperative, we determined that the usual conditioning time of 8 weeks was too long for the younger-than-usual (2015 product) oysters being used to breed disease-resistant offspring. We salvaged some larvae from the tank, quickly adjusted our spawning schedule, and reintroduced the first oyster cohort back to the conditioning tank to represent a fourth spawn. For the second consecutive year we experienced some die-off and reduced growth due to Juvenile Oyster Disease/Roseovarius Oyster Disease. The survivors, however, developed well and resulted in an excellent crop. We set aside some of these oysters for spawning in 2017 in order to continue breeding resistance to the disease. Full disease resistance is expected to take several years to develop. Despite these setbacks we had a robust season of oysters, moving almost 8 million to the nursery, and over 5 million to the field for growout, of which 1.3 million achieved ideal seeding size. The total value of oyster production in 2016 was $291,552. Clams: 2016 was a great year for clam production; a total of more than 31 million culls were seeded from the nursery and field, and we produced and disseminated 3.74 million seed clams. We moved a lot of clams to the nursery (nearly 25 million vs. 11.5 in 2015) and produced more seed-sized clams than in 2015. However, the average size of seed clams decreased from 2015 (11.7mm vs. 13.6mm). We will continue to fine-tune clam production in an effort to optimize our “quality vs. quantity” approach. Unfortunately, overwintered clams did not exhibit much success. Of the more than 1 million clams overwintered in 2015, only about 450,000 were retrieved and seeded (44% survival), and we saw a mere 1% growth. We continued to overwinter clams in Northwest Creek for the 2016-2017 season, but are also trying three other test sites to determine if another site is more suitable. The town-wide prevalence of rust tide (Cochlodinium polykrikoides) may have been a factor in these poor survival and growth results. The total value of clam production in 2016 was $462,753. Scallops: In 2015 we tested different gear deployments by overwintering scallops using the usual method (“green blocks”) as well as pearl nets. The blocks proved to be the better option (63% survival vs. 46% in the pearl nets). Overall, of the 117,520 scallops that were overwintered, we seeded 63,911 in the spring (54% survival); less than stellar results but significantly better than the previous year when we had a very harsh winter involving sustained freezing of the overwintering pond. We began spawning scallops June 1st, with the final spawn on June 7th being the most prolific. We moved approximately 900,000 scallops to the set tanks, but they were kept in the hatchery a bit too long, leading to a significant die-off. In all, we moved 130,000 to the field for growout and overwintered 76,800. After conferring with Mike Patricio at Cornell Cooperative Extension about 1 the die-off, we’ve decided to try their new nursery method in 2017. We will construct smaller- mesh upwellers for use in 2017. This will allow us to move scallops into upwelling earlier (when they’re smaller), with minimal time in set tanks and downwelling, both methods seemingly problematic when it comes to scallop survival. Our total scallop production value for 2016 was $5,136. In all, over 50 million shellfish (valued at $759,442) were disseminated in 2016. Staffing: Barley Dunne, Kate Rossi-Snook, and Pete Topping continued as the full-time Hatchery team, and Jeremy Gould was part-time seasonal Maintenance Mechanic. Adam Younes continued to fill the position of Environmental Aide for the full season. For the summer we had Sam Younes and Tali Friedman as additional Environmental Aides. Carissa Maurin left the Hatchery to pursue graduate school at University of New England. For the first summer since 2011 we were without Shelby Joyce who graduated from University of Miami and began working at Muscongus Bay Aquaculture, ME in May. We wish both Carissa and Shelby the best of luck! Pete pulling oyster bags for seeding 2 2017 Operating Plan A tote of clams from the field Target Species: Eastern Oyster (Crassostrea virginica) Hard Clam (Mercenaria mercenaria) Bay Scallop (Argopecten irradians) Projected Seed/ Oysters: 6-8 million, Spawns: 2/14, 2/28, 3/14 Overwintering Clams: 5-6 million, Spawns: 3/30, 4/13, 4/27 Production: Scallops: 300,000, Spawns: as natural conditioning permits Permit Status: All East Hampton Shellfish Hatchery marine hatchery and off bottom grow-out permits are in place for the 2017 season Additional Continue breeding resistant oysters to overcome disease issue Operations/ of 2015 and 2016 Goals: Continue the enumeration of the efficacy of seeding via surveys, especially for clams. Increase yields/reduce losses in clam growout by trying soft bottom bags. Expand oyster gardening program Request fourth full-time staff member 3 2016 Oyster Production Oyster Spawn and Culture Summary O1 Cohort O2 Cohort O3 Cohort O4 Cohort Dates # Oysters (x106) Dates # Oysters (x106) Dates # Oysters (x106) Dates # Oysters (x106) Spawn 2/22-2/23 13.20 2/25 47.30 3/10 102.90 3/29 102.00 Set Tanks *Early spawn in broodstock 3/7-3/11 9.97 3/25 10.97 4/13 4.36 Downwelling - Hatchery conditioning tank; combined 3/22 5.92 4/5 4.45 4/21 1.69 Set Success salvaged larvae with O2 59% 41% 39% Upwelling - Nursery cohort* 4/12 2.90 4/20 3.10 4/29 1.78 All Cohorts Dates # Oysters (x106) Total to Upwelling 4/12-4/29 7.78 Field Growout 5/26-6/27 5.18 Seeded Culls (<30mm) 6/16-9/9 2.30 Seed (30+mm) 8/30-10/17 1.34 2016 Total Oysters Culled/Seeded: 3.64 Oyster Discards and Culls Hatchery Discards Nursery and Field Culls Sieve Number Approximate Size Number Sieve Size Number 325 >45um 0 ≤#20 1,260,000 270 >53um 10,860,000 ≤2.0mm 0 230 >63um 51,100,000 ≤2.4mm 500,000 200 >75um 72,300,000 ≤3.4mm 1,196,150 170 >90um 13,100,000 ≤5/16" 1,271,812 140 >106um 26,500,000 <5/8" 194,720 120 >125um 3,500,000 Total Oyster Culls: 4,422,682 100 >150um 18,330,000 80 >180um 1,840,000 70 >212um 4,412,000 60 >250um 0 Total Oyster Hatchery Discards: 201,942,000 Marketable Total: 6,252,000 Islip/Great Atlantic Shellfish Farms was experiencing multiple mass hatchery die-off events, so we donated 136,280,000 of our hatchery discards and 1,260,000 nursery discards to help get their production on track.
Recommended publications
  • Geoducks—A Compendium
    34, NUMBER 1 VOLUME JOURNAL OF SHELLFISH RESEARCH APRIL 2015 JOURNAL OF SHELLFISH RESEARCH Vol. 34, No. 1 APRIL 2015 JOURNAL OF SHELLFISH RESEARCH CONTENTS VOLUME 34, NUMBER 1 APRIL 2015 Geoducks — A compendium ...................................................................... 1 Brent Vadopalas and Jonathan P. Davis .......................................................................................... 3 Paul E. Gribben and Kevin G. Heasman Developing fisheries and aquaculture industries for Panopea zelandica in New Zealand ............................... 5 Ignacio Leyva-Valencia, Pedro Cruz-Hernandez, Sergio T. Alvarez-Castaneda,~ Delia I. Rojas-Posadas, Miguel M. Correa-Ramırez, Brent Vadopalas and Daniel B. Lluch-Cota Phylogeny and phylogeography of the geoduck Panopea (Bivalvia: Hiatellidae) ..................................... 11 J. Jesus Bautista-Romero, Sergio Scarry Gonzalez-Pel aez, Enrique Morales-Bojorquez, Jose Angel Hidalgo-de-la-Toba and Daniel Bernardo Lluch-Cota Sinusoidal function modeling applied to age validation of geoducks Panopea generosa and Panopea globosa ................. 21 Brent Vadopalas, Jonathan P. Davis and Carolyn S. Friedman Maturation, spawning, and fecundity of the farmed Pacific geoduck Panopea generosa in Puget Sound, Washington ............ 31 Bianca Arney, Wenshan Liu, Ian Forster, R. Scott McKinley and Christopher M. Pearce Temperature and food-ration optimization in the hatchery culture of juveniles of the Pacific geoduck Panopea generosa ......... 39 Alejandra Ferreira-Arrieta, Zaul Garcıa-Esquivel, Marco A. Gonzalez-G omez and Enrique Valenzuela-Espinoza Growth, survival, and feeding rates for the geoduck Panopea globosa during larval development ......................... 55 Sandra Tapia-Morales, Zaul Garcıa-Esquivel, Brent Vadopalas and Jonathan Davis Growth and burrowing rates of juvenile geoducks Panopea generosa and Panopea globosa under laboratory conditions .......... 63 Fabiola G. Arcos-Ortega, Santiago J. Sanchez Leon–Hing, Carmen Rodriguez-Jaramillo, Mario A.
    [Show full text]
  • Functional Traits of a Native and an Invasive Clam of the Genus Ruditapes Occurring in Sympatry in a Coastal Lagoon
    www.nature.com/scientificreports OPEN Functional traits of a native and an invasive clam of the genus Ruditapes occurring in sympatry Received: 19 June 2018 Accepted: 8 October 2018 in a coastal lagoon Published: xx xx xxxx Marta Lobão Lopes1, Joana Patrício Rodrigues1, Daniel Crespo2, Marina Dolbeth1,3, Ricardo Calado1 & Ana Isabel Lillebø1 The main objective of this study was to evaluate the functional traits regarding bioturbation activity and its infuence in the nutrient cycling of the native clam species Ruditapes decussatus and the invasive species Ruditapes philippinarum in Ria de Aveiro lagoon. Presently, these species live in sympatry and the impact of the invasive species was evaluated under controlled microcosmos setting, through combined/manipulated ratios of both species, including monospecifc scenarios and a control without bivalves. Bioturbation intensity was measured by maximum, median and mean mix depth of particle redistribution, as well as by Surface Boundary Roughness (SBR), using time-lapse fuorescent sediment profle imaging (f-SPI) analysis, through the use of luminophores. Water nutrient concentrations (NH4- N, NOx-N and PO4-P) were also evaluated. This study showed that there were no signifcant diferences in the maximum, median and mean mix depth of particle redistribution, SBR and water nutrient concentrations between the diferent ratios of clam species tested. Signifcant diferences were only recorded between the control treatment (no bivalves) and those with bivalves. Thus, according to the present work, in a scenario of potential replacement of the native species by the invasive species, no signifcant diferences are anticipated in short- and long-term regarding the tested functional traits.
    [Show full text]
  • Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability
    Portland State University PDXScholar Environmental Science and Management Datasets Environmental Science and Management 7-2019 Data From: Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability Britta Baechler Portland State University, [email protected] Elise F. Granek Portland State University, [email protected] Matthew V. Hunter Oregon Department of Fish and Wildlife Kathleen E. Conn United States Geological Survey Follow this and additional works at: https://pdxscholar.library.pdx.edu/esm_data Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, and the Environmental Monitoring Commons Let us know how access to this document benefits ou.y Recommended Citation Baechler, Britta; Granek, Elise F.; Hunter, Matthew V.; and Conn, Kathleen E., "Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability" (2019). [Dataset]. https://doi.org/10.15760/esm-data.1 This Dataset is brought to you for free and open access. It has been accepted for inclusion in Environmental Science and Management Datasets by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Metadata template1 for datasets of L&O-Letters articles Table 1. Description of the fields needed to describe the creation of your dataset. Title of dataset Microplastic Concentrations in Two Oregon Bivalve Species: Spatial, Temporal, and Species Variability URL of dataset Data is available in the Portland State University PDXScholar data repository at: https://doi.org/10.15760/esm-data.1 Abstract Microplastics are an ecological stressor with implications for ecosystem and human health when present in seafood.
    [Show full text]
  • Evidence That Qpx (Quahog Parasite Unknown) Is Not Present in Hatchery-Produced Hard Clam Seed
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by College of William & Mary: W&M Publish W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 1997 Evidence That Qpx (Quahog Parasite Unknown) Is Not Present In Hatchery-Produced Hard Clam Seed Susan E. Ford Roxanna Smolowitz Lisa M. Ragone Calvo Virginia Institute of Marine Science RD Barber John N. Kraueter Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Ford, Susan E.; Smolowitz, Roxanna; Ragone Calvo, Lisa M.; Barber, RD; and Kraueter, John N., "Evidence That Qpx (Quahog Parasite Unknown) Is Not Present In Hatchery-Produced Hard Clam Seed" (1997). VIMS Articles. 531. https://scholarworks.wm.edu/vimsarticles/531 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Jo11r11al of Shellfish Researrh. Vol. 16. o. 2. 519-52 1, 1997. EVIDENCE THAT QPX (QUAHOG PARASITE UNKNOWN) IS NOT PRESENT IN HATCHERY-PRODUCED HARD CLAM SEED SUSAN E. FORD,' ROX ANNA SlVIOLOWITZ,2 LISA 1\1. RAGONE CA LV0,3 ROBERT D. BARB ER,1 AND JOHN N. KRAlJETER1 1 Haskin Shellfish Research Laborarory lnsri1ure .for Marine and Coastal Sciences and Ne11· Jersey Agricultural Experi111e11r Sra1io11 R111gers University Por1 Norris, Ne111 Jersey 08345 2Labora101)' for Aquatic Anilnal Medicine and Pathology U11il'ersiry o,f Pennsyh·ania Marine Biological Laborarory \¥oods Hole.
    [Show full text]
  • Panopea Abrupta ) Ecology and Aquaculture Production
    COMPREHENSIVE LITERATURE REVIEW AND SYNOPSIS OF ISSUES RELATING TO GEODUCK ( PANOPEA ABRUPTA ) ECOLOGY AND AQUACULTURE PRODUCTION Prepared for Washington State Department of Natural Resources by Kristine Feldman, Brent Vadopalas, David Armstrong, Carolyn Friedman, Ray Hilborn, Kerry Naish, Jose Orensanz, and Juan Valero (School of Aquatic and Fishery Sciences, University of Washington), Jennifer Ruesink (Department of Biology, University of Washington), Andrew Suhrbier, Aimee Christy, and Dan Cheney (Pacific Shellfish Institute), and Jonathan P. Davis (Baywater Inc.) February 6, 2004 TABLE OF CONTENTS LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES...............................................................................................................v 1. EXECUTIVE SUMMARY ....................................................................................... 1 1.1 General life history ..................................................................................... 1 1.2 Predator-prey interactions........................................................................... 2 1.3 Community and ecosystem effects of geoducks......................................... 2 1.4 Spatial structure of geoduck populations.................................................... 3 1.5 Genetic-based differences at the population level ...................................... 3 1.6 Commercial geoduck hatchery practices ...................................................
    [Show full text]
  • The Atlantic Coast Surf Clam Fishery, 1965-1974
    The Atlantic Coast Surf Clam Fishery, 1965-1974 JOHN W. ROPES Introduction United States twofold from 0.268 made several innovative technological pounds in 1947 to 0.589 pounds in advances in equipment for catching An intense, active fishery for the At­ 1974 (NMFS, 1975). Much of this con­ and processing the meats which signifi­ lantic surf clam, Spisula solidissima, swnption was in the New England cantly increased production. developed from one that historically region (Miller and Nash, 1971). The industry steadily grew during employed unsophisticated harvesting The fishery is centered in the ocean the 1950's with an increase in demand and marketing methods and had a low off the Middle Atlantic coastal states, for its products, but by the early annual production of less than 2 since surf clams are widely distributed 1960's industry representatives suspect­ million pounds of meats (Yancey and in beds on the continental shelf of the ed that the known resource supply was Welch, 1968). Only 3.2 percent of the Middle Atlantic Bight (Merrill and being depleted and requested research clam meats landed by weight in the Ropes, 1969; Ropes, 1979). Most of assistance (House of Representatives, United States during the half-decade the vessels in the fishery are located 1963). As part of a Federal research 1939-44 were from this resource, but from the State of New York through program begun in 1963 (Merrill and by 1970-74 it amounted to 71.8 per­ Virginia. The modem-day industry Webster, 1964), vessel captains in the cent. Landings from this fishery during surf clam fleet were interviewed to the three-decade period 1945-74 in­ gather data on fishing location, effort, John W.
    [Show full text]
  • Upwelling Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D
    July 2010 Volume 7, Issue 2 Newsletter of the Friends of Hatfield Marine Science CenterUpwelling www.hmsc.oregonstate.edu/friends Surfin’ Salmon: Graduate Research by a Markham Scholar by Jose Marin Jarrin, Ph.D. Student, OSU’s Department of Fisheries and Wildlife juveniles at eight different beaches along the Oregon coast. Presence and Sandy beach surf zones occur along 70% of the distribution of the juveniles is related to whether the beach is located in Oregon coastline. These high energy environments are a littoral cell, which is a defined stretch considered ‘semi-enclosed’ because there is limited of sandy beach exchange of waters between these zones, which extend that is bordered by from the shoreline to the outermost breaker, and offshore rocky headlands that waters. Several fish species, including English sole, contain estuaries Northern anchovy, and Staghorn sculpin inhabit surf- with local Chinook zones, especially when they are juveniles, because it salmon popula- provides an abundant supply of potential prey and shelter tions. There are from predators. Although juvenile Chinook are thought also more juveniles to migrate from estuaries directly to the open ocean, present along sandy juveniles have also been collected within Oregon’s surf beaches adjacent to zones. estuaries. Densities of juveniles in the My M.Sc. research project at the Oregon Institute surf zone vary widely and are positively related to estuarine water tem- of Marine Biology suggested that surf-zones provide perature, suggesting that higher temperatures may influence movement an intermediate habitat for Chinook salmon between and prompt juveniles to exit the estuary. In surf-zones, juveniles grow at the estuary and the open ocean.
    [Show full text]
  • Hard Clams), Mercenaria Mercenaria
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2007 Influence Of Host Genetic Origin And Geographic Location On Qpx Disease In Northern Quahogs (=Hard Clams), Mercenaria Mercenaria LMR Calvo SE Ford JN Kraeuter DF Leavitt R Smolowitz See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Marine Biology Commons Recommended Citation Calvo, LMR; Ford, SE; Kraeuter, JN; Leavitt, DF; Smolowitz, R; and Burreson, EM, Influence Of Host Genetic Origin And Geographic Location On Qpx Disease In Northern Quahogs (=Hard Clams), Mercenaria Mercenaria (2007). Journal Of Shellfish Research, 26(1), 109-119. https://scholarworks.wm.edu/vimsarticles/445 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors LMR Calvo, SE Ford, JN Kraeuter, DF Leavitt, R Smolowitz, and EM Burreson This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/445 Journal of Shellfish Research, Vol. 26, No. 1, 109–119, 2007. INFLUENCE OF HOST GENETIC ORIGIN AND GEOGRAPHIC LOCATION ON QPX DISEASE IN NORTHERN QUAHOGS (=HARD CLAMS), MERCENARIA MERCENARIA LISA M. RAGONE CALVO,1* SUSAN E. FORD,2 JOHN N. KRAEUTER,2 DALE F. LEAVITT,3 ROXANNA SMOLOWITZ4 AND EUGENE M. BURRESON1 1Virginia Institute of Marine Science, College of William and Mary, P.O. Box 1346, Rt. 1208, Gloucester Point, VA 23062; 2Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ 08349; 3Roger Williams University, Bristol, RI 02809; 4Marine Biological Laboratory, Woods Hole, MA 02543 ABSTRACT QPX (Quahog Parasite Unknown) a protistan pathogen of northern quahogs (=hard clams), Mercenaria mercenaria, has caused disease outbreaks in maritime Canada, and in Massachusetts, New York, New Jersey, and Virginia, USA.
    [Show full text]
  • The Influence of Sediment Characteristics on the Burrowing Behavior of Ensis Directus
    The University of Maine DigitalCommons@UMaine Honors College Winter 2015 The Influence of Sediment Characteristics on the Burrowing Behavior of Ensis Directus Robert Joseph Hallinan University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Marine Biology Commons Recommended Citation Hallinan, Robert Joseph, "The Influence of Sediment Characteristics on the Burrowing Behavior of Ensis Directus" (2015). Honors College. 238. https://digitalcommons.library.umaine.edu/honors/238 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. THE INFLUENCE OF SEDIMENT CHARACTERISTICS ON THE BURROWING BEHAVIOR OF JUVENILE RAZOR CLAMS, ENSIS DIRECTUS by Robert J. Hallinan A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biology) The Honors College University of Maine December 2015 Advisory Committee: Paul D. Rawson, Assistant Prof. of Marine Sciences Kathleen Ellis, Adjunct Assistant Prof. in Honors (English) Christopher Cronan, Prof. of Biology & Ecology Leonard J. Kass, Associate Prof. of Zoology Seth Tyler, Prof. of Zoology & Cooperating Prof. of Marine Sciences ABSTRACT Ensis directus, the Atlantic razor clam, is an infaunal bivalve species whose geographic range extends along the Atlantic coast of North America from Canada to South Carolina. In this study, I examined the burrowing behavior of 24 large juvenile razor clams (shell length: 60-78 mm) in fine mud and coarse sand sediments. I identified four separate phases of burrowing behavior: recovery, exploration, initiation, and tunneling.
    [Show full text]
  • Biology and Culture of the Hard Clam (Mercenaria Mercenaria)
    SRAC Publication No. 433 VI August 2005 PR Revision Biology and Culture of the Hard Clam (Mercenaria mercenaria) Jack M. Whetstone1, Leslie N. Sturmer2 and Michael J. Oesterling3 Hard clam aquaculture is the largest Life history expand and may contain a few and most valuable of the shellfish mature gametes. Mature gametes aquaculture industries on the East Reproduction cycle are released and fertilization takes Coast. It accounts for more than $50 Hard clams usually spawn in the place externally. The ripe stage is million in economic value annually. spring, summer or fall. The opti- followed by the resting and/or Hard clams are bivalve mollusks that mal range of water temperatures spent stage to complete the repro- live in saline (>25 parts per thou- (79 ºF or 26 ºC) occurs at differ- ductive cycle. sand) waters and cannot tolerate low ent times of the year at different The development of the veliger lar- salinities or freshwater for an extend- latitudes. Clam reproduction vae is complete 24 hours after fer- ed period. Hard clams occur natural- occurs earlier in the year at lower tilization. These larvae swim, but ly all along the Atlantic coast from latitudes. Dimodal (two peaks) or are moved primarily by tidal cur- Nova Scotia to Florida. They have polymodal (multiple peaks) rents. The larvae grow to a maxi- been introduced along the shore of spawning takes place in southern mum size of 200 to 275 microme- the Gulf of Mexico from Florida to populations, and spawning may ters. By the sixth to tenth day, the Yucatan, as well as along the West occur more than once per spawn- skin-like outside tissue, called the Coast of the United States, in the ing season.
    [Show full text]
  • Chapter I Taxonomy
    THE AMERICAN OYSTER CRASSOSTREA VIRGINICA GMELIN By PAUL S. GALTSOFF, Fishery Biologist BUREAU OF COMMERCIAL FISHERIES CHAPTER I TAXONOMY Page This broad characterization included a number Taxonomic characters _ 4 SheIL _ 4 of genera such as scallops, pen shells (Pinnidae), Anatomy _ 4 Sex and spawnlng _ limas (Limidae) and other mollusks which ob­ 4 Habitat _ 5 viously are not oysters. In the 10th edition of Larvll! shell (Prodlssoconch) _ 6 "Systema Naturae," Linnaeus (1758) wrote: The genera of living oysters _ 6 Genus 08trea _ 6 "Ostreae non orones, imprimis Pectines, ad Genus Cra8808trea _ 7 Genus Pycnodonte _ cardinem interne fulcis transversis numerosis 7 Bibliography _ 14 parallelis in utraque testa oppositis gaudentiquae probe distinguendae ab Areis polypleptoginglymis, The family Ostreidae consists of a large number cujus dentes numerosi alternatim intrant alterius of edibleand nonedible oysters. Their distribution sinus." Le., not all are oysters, in particular the is confined to a broad belt of coastal waters within scallops, which have many parallel ribs running the latitudes 64° N. and 44° S. With few excep­ crosswise inward toward the hinge on each shell tions oysters thrive in shallow water, their vertical on opposite sides; these should properly be dis­ distribution extending from a level approximately tinguished from Area polyleptoginglymis whose halfway between high and low tide levels to a many teeth alternately enter between the teeth depth of about 100 feet. Commercially exploited of the other side. oyster beds are rarely found below a depth of 40 In the same publication the European flat feet. oyster, Ostrea edulis, is described as follows: The· name "Ostrea" was given by Linnaeus "Vulgo Ostrea dictae edulis.
    [Show full text]
  • Surfclam Aquaculture Techniq
    Final Report Piloting Surf Clam Aquaculture Techniques to Create Commercial Opportunities Award Number: NA16NMF4270241 Award Period: 03/01/2017 – 02/28/2020 Recipient Name: Aquacultural Research Corporation (dba A.R.C. Hatchery) Program Office: Fisheries Headquarters Program Office (FHQ) Program Officer: Deirdre Kimball, 978-281-9290, [email protected] Project Title: Piloting Surf Clam Aquaculture Techniques to Create Commercial Opportunities PIs/PDs: Rick Sawyer Partners: Cape Cod Cooperative Extension/Woods Hole Sea Grant, Cape Cod Commercial Fishermen’s Alliance, Roger Williams University Report Type: Performance Final Report Reporting Period: 03/01/2017 – 02/28/2020 Final Report: Yes Report Due Date: 08/27/2020 1 TABLE OF CONTENTS ACRONYMS/DEFINITIONS ..................................................................................................................4 EXECUTIVE SUMMARY .......................................................................................................................5 PURPOSE ...........................................................................................................................................8 BACKGROUND .............................................................................................................................................. 8 MARKET OPPORTUNITY .................................................................................................................................. 9 IMPORTANCE OF DEVELOPING THIS NEW SPECIES ............................................................................................
    [Show full text]