Ethnobotanical Notes on Allium Species of Arunachal Pradesh, India

Total Page:16

File Type:pdf, Size:1020Kb

Ethnobotanical Notes on Allium Species of Arunachal Pradesh, India Indian Journal of Traditional Knowledge Vol. 13 (3), July 2014, pp. 606-612 Ethnobotanical notes on Allium species of Arunachal Pradesh, India Ashalata Devi* 1, K Rakshit 1, B Sarania 1, Adi, Apatani, Monpa & Nyishi Community 1Department of Environmental Science, Tezpur University, Napaam - 784028, Assam, India E-mails: [email protected]; [email protected] Received 27.08.13, revised 28.11.13 Onion and garlic is considered one the most important ancient cultivated crops of genus Allium . Large numbers of Allium species has been widely used for various purposes in hilly area of Arunachal Pradesh. Arunachal Pradesh, a state in North east India, harbours a wide range of wild Allium species which are being used by natives as for vegetable, spices, condiment and medicine. A total of 9 plant species namely, Allium cepa, Allium chinense, Allium hookeri, Allium macranthum, Allium prattii, Allium rubellum, Allium sativum, Allium tuberosum and Allium wallichii were recorded in different parts of Arunachal Pradesh during June 2012 to July 2013. All the 9 species were consumed as raw or in processed form, as flavours/ condiment in preparing food items and as herbal medicine. It was recognized that Allium chinense, Allium hookeri, Allium tuberosum and Allium macranthum have high ornamental potential value. Most of the species are locally cultivated and have good market value in areas of occurrence. However, wild Allium species of Arunachal Pradesh is largely threatened by several human activities exerted by natives. The present work mainly highlights information on species diversity, distribution and utilization of Allium species of Arunachal Pradesh for future cultivation and conservation programmes. Keywords: Allium species, Species diversity, Distribution, Utilization, Cultivation and conservation IPC Int. Cl. 8: A01, A61K 36/00, GO1S 3/72, GO1S 7/42, A23B, A01N 3/00 Charaka-Samhita, the oldest known Indian Ayurvedic accepted more than 750 Allium species 6,7,8,9 . Genus medical treatise, dating from ca. 400 to 200 BC, Allium is characterized by superior ovary which attributes many health virtues to garlic and (characteristic of family Liliaceae) and scapose onion plants and their cultivation 1. In addition to umbellate inflorescence (flowers borne in a bracted commonly cultivated species of Allium in India, umbel on top of a scape) with membranous bracts other species of less known are grown in selected (characteristic of family Amaryllidaceae) has been pockets as semi-domesticated types or wild economic placed in family Alliaceae 10 . Different species have species 2,3 . The genus Allium (Family-Alliaceae) is characteristic features of rhizome/ bulb, leaf, economically important because it includes several inflorescences, odour and taste. important historical vegetable crops – onion, garlic, Genus Allium is widely distributed in the etc. as well as many wild ornamental species. Allium northern temperate and Alpine regions of the world. species are consumed as raw or cooked or as About 35-40 species occur in temperate and Alpine pickle/processed form, as dried condiment and 11,12,13,14,15 regions of Himalaya in India . In recent spices/flavours. The taxonomic position of Allium and years, anthropogenic intervention such as related genera had been a matter of controversy for indiscriminate felling of trees and large scale long 4 period of time. Takhtajan 5 adopted the harvesting of wild species from natural habitats for taxonomical hierarchy of Allium as: 1. Class – trades have posed serious threat and thus these species Liliopsida, 2. Subclass – Liliidae, 3. Superorder – deserve to be given special attention for sustainable Liliianae, 4. Order – Amaryllidales, 5. Family – collection and conservation. Alliaceae, 6. Subfamily – Allioideae, 7. Tribe – Allieae, 8. Genus – Allium. The modern classification In present communication, we attempt to highlight _________ some of the ethnobotnical notes on valued genetic *Corresponding author resources of Allium in Arunachal Pradesh, India DEVI et al. : ETHNOBOTANICAL NOTES ON ALLIUM SPECIES OF ARUNACHAL PRADESH, INDIA 607 which had not been done so far in this state. Arunachal Pradesh 19 . Voucher specimens were made Arunachal Pradesh spread over an area of 83,743 sq by using standard plant press, authenticated and km with altitudinal range from 150-5500 m deposited at Herbarium centre of the Ecology harbouring different forest type namely, Tropical semi laboratory, Department of Environmental Science, evergreen, Tropical wet evergreen, Sub tropical Tezpur University, Assam. forest, Pine forests, Temperate forests and Alpine forests. The climatic and ecological diversity of the Results and discussion state promote rich floral and faunal diversity in Distribution of Allium species in Arunachal Pradesh different types of forest. The state is also rich in Nine species namely, Allium cepa, Allium chinense, ethnic communities and multi-ethnic population has a Allium hookeri, Allium macranthum, Allium prattii, long tradition of close relation with wild plants. They Allium rubellum, Allium sativum, Allium tuberosum collect and consume a large number of wild plant and Allium wallichii were recorded from different species as food and to fulfill many of their basic areas of 6 districts of Arunachal Pradesh. Maximum requirements for livelihood. The potential of of 7 species were recorded from Tawang district, Arunachal Pradesh’s Allium germplasm is tried to 6 species from Papum Pare district, 4 species from highlight in order to boost sustainable collection and Lower Subansiri district, three species each were conservation activities and value addition of the recorded from East Kameng and West Kameng economic products. districts, and 4 species from Upper Dibang Valley of Arunachal Pradesh (Table 1). Allium sativum L. and Methodology Allium cepa L. are common species found in all the An extensive inventory and frequent field trips for study areas. Allium cepa leaves are shorter bears exploration of Allium species was conducted at white flowers and swelling bulb. Allium chinense monthly or fortnightly interval from June 2012 to have narrowly linear basal leaves, red purple flowers July 2013 using enthnobotanical and Participatory and bulbs clustered. Leaves of Allium hookeri are Rural Appraisal (PRA) methods in 6 districts of the slender with prominent midrib, basal linear state Arunachal Pradesh, a state in Northeastern India. membranous, white flowers and white fibrous roots. Herbal healers of age group between 30 and 60 yrs Allium macranthum leaves are many and linear, large belonging to different communities from 6 districts of dark purple flowers and bulb narrow membranous. the state were interviewed and recorded the Allium prattii have board linear leaves with prominent information in a prescribed questionnaire 16 . The midrib and bears pink to red flower. Allium rubellum questionnaire revealed the name, age and address of leaves flattish, small rosy flowers, bulb small. Allium herbal healer, date of interview, local and botanical sativum leaves are flat, white flowers, bulbs elongate, names of drug plants, parts used, collected fresh or cylindric with white fleshy root. Allium tuberosum dried stored material, locality, dose quantity, dose leaves are narrow-linear flat tall compressed, white or per day, method of drug preparation, care to be taken pink flowers, bulbs elongate, cylindric with white or the side effects if any and mode of administration. fleshy root. Allium wallichii leaves are long linear Ethics as well as cultural importance of drug plants flat, purple flowers, bulbs hardly developed. were also recorded. Prior informed consent (PIC) was Altitudinal distribution of species shows a maximum taken from the knowledge providers as per CBD 6 species in the alpine and sub-temperate region guidelines. Collection and maintenance of plant (2,500-4,500 m), and 3 species in temperate region specimens have been made by following standard (1,500-2,500 m). methodology. Specimens were collected from wild habitat, cultivated areas and local indigenous Collection and conservation status market during field survey and herbarium techniques Biodiversity provides a foundation for ecologically have been followed for the study 17,18 . Secondary sustainable development and food security. information was also collected through scrutiny of Indigenous community holds potential knowledge for literature, notes on herbarium and systematic studies preserving biodiversity, cultural diversity and on this group. Botanical specimens of all the maintaining ecological functions. Livelihood of medicinal plants were photographed, collected and natives of Arunachal Pradesh is greatly dependent on identified by referring to the Material for the Flora of traditionally maintained ecosystems. Their beliefs and 608 INDIAN J TRADITIONAL KNOWLEDGE, VOL 13, NO. 3, JULY 2014 Table 1—Distribution, status of occurrence and use of recorded Allium species by ethnic people of Arunachal Pradesh. Species Distribution Occurrence Status of Uses occurrence Allium chinense Papum Pare, Upper Dibang Frequent and Common Vegetable, Condiment/Flavour G. Don Valley, occasionally and Medicine cultivated Allium hookeri Tawang, Lower Subansiri, Frequent and Common Vegetable, Condiment/Flavour Thw. West Kameng, Upper Dibang occasionally and Medicine Valley, East Kameng and cultivated Papum Pare Allium macranthum Tawang Less common and Rare Vegetable, Condiment and Baker occasionally Medicine cultivated Allium prattii Tawang Less common Rare
Recommended publications
  • Allium Chinense) Using Non-Destructive Method
    THEASIAN JOURNAL OF HORTICULTURE Volume 9 | Issue 1 | June, 2014 | 147-149 e ISSN- 0976-724X | Open Access-www.researchjournal.co.in | Research Paper Article history : Received : 16.12.2013 Estimation of leaf area model in hooker chives Revised : 30.04.2014 Accepted : 10.05.2014 (Allium hookeri) and chollng (Allium chinense) using non-destructive method S.R. SINGH AND W.I. MEITEI1 Members of the Research Forum ABSTRACT : A field trial was conducted from 2011-12 on hooker chives (Allium hookeri) and chollang Associated Authors: (Allium chinense), to find out the best method of estimation of leaf, at Horticultural Research Farm, 1Department of Horticulture, College Andro, Central Agricultural University, Manipur. In this study, a leaf area estimation model was developed of Agriculture, Central Agricultural University, IMPHAL (MANIPUR) using linear measurement such as laminar length and breadth individually and together with the product INDIA of length and breadth by step wise regression analysis. Allium species are commercially used by the people of Manipur as spice crops however; their cultivation is not commercialized for large scale production. Leaf area estimation in situ of these crops is important for studying the relationship between leaf area development and plant growth. The proposed leaf area (LA) estimation model of regression equation based on leaf length, Y=6.426 + 2.051X1 having correlation of co-efficient of determination (r2=0.91) were suited for the estimation of leaf area of hooker chives, while for chollang the proposed leaf area (LA) estimation model of regression equation based on dry weight of leaf, Y=3.636+4.605X3 having the co-efficient of determination (r2 = 0.94) were most suited for the estimation of leaf area for chollang.
    [Show full text]
  • Allium Albanicum (Amaryllidaceae), a New Species from Balkans and Its
    A peer-reviewed open-access journal PhytoKeys 119: 117–136Allium (2019) albanicum (Amaryllidaceae), a new species from Balkans... 117 doi: 10.3897/phytokeys.119.30790 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy Salvatore Brullo1, Cristian Brullo2, Salvatore Cambria1, Giampietro Giusso del Galdo1, Cristina Salmeri2 1 Department of Biological, Geological and Environmental Sciences, Catania University, Via A. Longo 19, 95125 Catania, Italy 2 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Palermo University, Via Archirafi 38, 90123 Palermo, Italy Corresponding author: Cristina Salmeri ([email protected]) Academic editor: L. Peruzzi | Received 26 October 2018 | Accepted 9 January 2019 | Published 11 April 2019 Citation: Brullo S, Brullo C, Cambria S, Giusso del Galdo G, Salmeri C (2019) Allium albanicum (Amaryllidaceae), a new species from Balkans and its relationships with A. meteoricum Heldr. & Hausskn. ex Halácsy. PhytoKeys 119: 117–136. https://doi.org/10.3897/phytokeys.119.30790 Abstract A new species, Allium albanicum, is described and illustrated from Albania (Balkan Peninsula). It grows on serpentines or limestone in open rocky stands with a scattered distribution, mainly in mountain loca- tions. Previously, the populations of this geophyte were attributed to A. meteoricum Heldr. & Hausskn. ex Halácsy, described from a few localities of North and Central Greece. These two species indeed show close relationships, chiefly regarding some features of the spathe valves, inflorescence and floral parts. They also share the same diploid chromosome number 2n =16 and similar karyotype, while seed testa micro- sculptures and leaf anatomy reveal remarkable differences.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
    INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT Salix recurvigemmata A.K. Skvortsov f. variegata Schumikh., O.E. Epanch. & I.V. Belyaeva Biarmiae 2020 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ СПИСОК СЕМЯН И СПОР, ПРЕДЛАГАЕМЫХ ДЛЯ ОБМЕНА БОТАНИЧЕСКИМ САДОМ ИМЕНИ А.Г. ГЕНКЕЛЯ ПЕРМСКОГО ГОСУДАРСТВЕННОГО НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА Syringa vulgaris L. ‘Красавица Москвы’ Пермь 2020 Index Seminum 2020 2 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ Дорогие коллеги! Ботанический сад Пермского государственного национального исследовательского университета был создан в 1922 г. по инициативе и под руководством проф. А.Г. Генкеля. Здесь работали известные ученые – ботаники Д.А. Сабинин, В.И. Баранов, Е.А. Павский, внесшие своими исследованиями большой вклад в развитие биологических наук на Урале. В настоящее время Ботанический сад имени А.Г. Генкеля входит в состав регионального Совета ботанических садов Урала и Поволжья, Совет ботанических садов России, имеет статус научного учреждения и особо охраняемой природной территории. Основными научными направлениями работы являются: интродукция и акклиматизация растений,
    [Show full text]
  • Traditional Uses, Phytochemicals and Pharmacological Properties Of
    Journal of Medicinal Plants Studies 2019; 7(2): 214-220 ISSN (E): 2320-3862 ISSN (P): 2394-0530 Traditional uses, phytochemicals and NAAS Rating: 3.53 JMPS 2019; 7(2): 214-220 pharmacological properties of Allium tuberosum © 2019 JMPS Received: 23-01-2019 Rottler ex spreng Accepted: 28-02-2019 Khoshnur Jannat Department of Biotechnology Khoshnur Jannat, Taufiq Rahman and Mohammed Rahmatullah and Genetic Engineering, University of Development Abstract Alternative, Lalmatia, Dhaka, Allium tuberosum is a lesser known plant of the Allium genus compared to the more known Allium cepa Bangladesh (onion) or Allium sativum (garlic). However, Allium tuberosum is now being increasingly recognized to be an important plant in its own right with diverse important pharmacological activities. This review will Taufiq Rahman attempt to describe the reported phytochemicals and pharmacological activities of the plant with the Department of Pharmacology, University of Cambridge, Tennis objective to determine the plant’s potential to be a source of lead compounds and effective new drugs. Court Road, CB2 1PD, UK, Bangladesh Keywords: Allium tuberosum, garlic chive, amaryllidaceae Mohammed Rahmatullah 1. Introduction Department of Biotechnology and Genetic Engineering, From ancient periods people have been using a diverse range of medicinal plants for curing University of Development diseases. In the last 200 years, traditional systems of plant based medicines have been largely Alternative, Lalmatia, Dhaka, replaced with allopathic system of medicine, the latter being based on the principle of one Bangladesh drug-one therapy. Allopathic medicines are largely synthetic. Now the traditional way of healing is making a comeback as a large number of synthetic drugs are costly and shows adverse side-effects.
    [Show full text]
  • Allium Species Poisoning in Dogs and Cats Ticle R
    The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 1 | pages 4-11 Allium species poisoning in dogs and cats TICLE R A Salgado BS (1), Monteiro LN (2), Rocha NS (1, 2) EVIEW R (1) Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo State, Brazil; (2) Department of Veterinary Clinical Sciences, Veterinary Pathology Service, School of Veterinary Medicine and Animal Husbandry, São Paulo State University (UNESP – Univ Estadual Paulista), Botucatu, São Paulo State, Brazil. Abstract: Dogs and cats are the animals that owners most frequently seek assistance for potential poisonings, and these species are frequently involved with toxicoses due to ingestion of poisonous food. Feeding human foodstuff to pets may prove itself dangerous for their health, similarly to what is observed in Allium species toxicosis. Allium species toxicosis is reported worldwide in several animal species, and the toxic principles present in them causes the transformation of hemoglobin into methemoglobin, consequently resulting in hemolytic anemia with Heinz body formation. The aim of this review is to analyze the clinicopathologic aspects and therapeutic approach of this serious toxicosis of dogs and cats in order to give knowledge to veterinarians about Allium species toxicosis, and subsequently allow them to correctly diagnose this disease when facing it; and to educate pet owners to not feed their animals with Allium- containg food in order to better control this particular life-threatening toxicosis. Key words: Allium spp., poisonous plants, hemolytic anemia, Heinz bodies. INTRODUCTION differentiate them from other morphologically similar poisonous plants (6, 7).
    [Show full text]
  • Genetic Diversity and Taxonomic Studies of Allium Akaka and A
    Journal of Horticultural Research 2017, vol. 25(1): 99–115 DOI: 10.1515/johr-2017-0011 _______________________________________________________________________________________________________ GENETIC DIVERSITY AND TAXONOMIC STUDIES OF ALLIUM AKAKA AND A. ELBURZENSE NATIVE TO IRAN USING MORPHOLOGICAL CHARACTERS Sajad JAFARI1, Mohammad Reza HASSANDOKHT*1, Mahdi TAHERI2, Abdolkarim KASHI1 1 Department of Horticultural Sciences, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran 2 Soil and Water Research Department, Zanjan Agriculture and Natural Resources Research and Educa- tion Center, Agricultural Research, Education and Extension Organization (AREEO), Zanjan, Iran Received: April 2017; Accepted: June 2017 ABSTRACT Two Allium species (A. akaka S.G. Gmelin and A. elburzense W.) native to Iran are used locally as the fresh vegetables and in medical therapy. They are not cultivated, but are collected from the wild, thus, will soon be threatened with extinction. In this study, the diversity of 15 wild accessions (4 accessions of A. elburzense endemic of Iran and 11 accessions of A. akaka) collected from the north-western part of Iran were evaluated with the use of 16 qualitative and 16 quantitative characteristics. The morphological char- acters with high heritability included leaf length, flower number in umbel, inflorescence diameter, leaf dry weight, bulb fresh weight, weight of 100 seeds, seed length and seed length/width. Results of the principal component analysis indicated that 92.52% of the observed variability was explained by the first six com- ponents. The first two components explained about 64.74% of the total observed variability. The first and third hierarchical cluster analysis included all accessions of A. akaka. The accessions of A.
    [Show full text]
  • European Collections of Vegetatively Propagated Allium
    EuropeanEuropean CooperativeCooperative ProgrammeProgramme forfor CropCrop GeneticGenetic European collections ResourcesResources NetworksNetworks ECP GR of vegetatively propagated Allium Report of a Workshop, 21–22 May 2001, Gatersleben, Germany L. Maggioni, J. Keller and D. Astley, compilers <www.futureharvest.org> IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) European collections ECP GR of vegetatively propagated Allium Report of a Workshop, 21–22 May 2001, Gatersleben, Germany L. Maggioni, J. Keller and D. Astley, compilers ii EUROPEAN COLLECTIONS OF VEGETATIVELY PROPAGATED ALLIUM The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRI is conferred under an Establishment Agreement which, by January 2002, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon,
    [Show full text]
  • Comparative Analysis of the Complete Chloroplast Genomes in Allium Subgenus Cyathophora (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution
    Hindawi BioMed Research International Volume 2020, Article ID 1732586, 17 pages https://doi.org/10.1155/2020/1732586 Research Article Comparative Analysis of the Complete Chloroplast Genomes in Allium Subgenus Cyathophora (Amaryllidaceae): Phylogenetic Relationship and Adaptive Evolution Xin Yang, Deng-Feng Xie, Jun-Pei Chen, Song-Dong Zhou, Yan Yu, and Xing-Jin He Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China Correspondence should be addressed to Xing-Jin He; [email protected] Received 13 August 2019; Accepted 7 December 2019; Published 17 January 2020 Academic Editor: Marcelo A. Soares Copyright © 2020 Xin Yang et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Recent advances in molecular phylogenetics provide us with information of Allium L. taxonomy and evolution, such as the subgenus Cyathophora, which is monophyletic and contains five species. However, previous studies detected distinct incon- gruence between the nrDNA and cpDNA phylogenies, and the interspecies relationships of this subgenus need to be furtherly resolved. In our study, we newly assembled the whole chloroplast genome of four species in subgenus Cyathophora and two allied Allium species. -e complete cp genomes were found to possess a quadripartite structure, and the genome size ranged from 152,913 to 154,174 bp. Among these cp genomes, there were subtle differences in the gene order, gene content, and GC content. Seven hotspot regions (infA, rps16, rps15, ndhF, trnG-UCC, trnC-GCA, and trnK-UUU) with nucleotide diversity greater than 0.02 were discovered.
    [Show full text]
  • 1 Evolution, Domestication and Taxonomy
    1 Evolution, Domestication and Taxonomy R.M. Fritsch1 and N. Friesen2 1Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany; 2Botanischer Garten der Universität, D-49076 Osnabrück, Germany 1. The Genus Allium L. 5 1.1 General characteristics 5 1.2 Distribution, ecology and domestication 6 1.3 Phylogeny and classification 10 2. The Section Cepa (Mill.) Prokh. 14 2.1 Morphology, distribution and ecology 14 2.2 Cytological limitations 15 2.3 Grouping of the species 15 2.4 Enumeration of the species 16 3. Allium cepa L. 19 3.1 Description and variability 19 3.2 Infraspecific classification 20 3.3 Evolutionary lineages 21 3.4 History of domestication and cultivation 22 4. Other Economic Species 23 4.1 Garlic and garlic-like forms 23 4.2 Taxa of Asiatic origin 24 4.3 Chives and locally important onions from other areas 25 5. Conclusions 26 Acknowledgements 27 References 27 1. The Genus Allium L. controversy. In early classifications of the angiosperms (Melchior, 1964), they were 1.1 General characteristics placed in the Liliaceae. Later, they were more often included in the Amaryllidaceae, The taxonomic position of Allium and on the basis of inflorescence structure. related genera has long been a matter of Recently, molecular data have favoured a © CAB International 2002. Allium Crop Science: Recent Advances (eds H.D. Rabinowitch and L. Currah) 5 6 R.M. Fritsch and N. Friesen division into a larger number of small mono- • Ovary: trilocular, three septal nectaries of phyletic families. In the most recent and various shape, two or more curved competent taxonomic treatment of the (campylotropous) ovules per locule, monocotyledons, Allium and its close rela- sometimes diverse apical appendages tives were recognized as a distinct family, the (crests and horns); developing into a Alliaceae, close to the Amaryllidaceae.
    [Show full text]
  • Allium Toksanbaicum (Amaryllidaceae), a New Species from Southeast Kazakhstan
    Phytotaxa 494 (3): 251–267 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.494.3.1 Allium toksanbaicum (Amaryllidaceae), a new species from Southeast Kazakhstan NIKOLAI FRIESEN1,2,*, POLINA VESSELOVA3, BEKTEMIR OSMONALY3, GULNARA SITPAYEVA3, ALEXANDER LUFEROV2 & ALEXANDER SHMAKOV4 1Botanical Garden, University of Osnabrück, Albrechtstrasse 29, 49076, Osnabrück, Germany; [email protected]; http://orcid.org/0000-0003-3547-3257 2I.M. Sechenov First Moscow State Medical University Ministry of Health of the Russian Federation, Department of Pharmaceutical and Natural Sciences, Izmailovsky Boulevard 8, Moscow, 105043, Russia; [email protected] 3Institute of Botany and Phytointroduction of the Committee of Forestry and Wildlife belong to the Ministry of Ecology, Geology and Natural Resources of the Republic of Kazakhstan, Almaty, 480070 Kazakhstan; [email protected]; [email protected]; [email protected] 4Altai State University, Lenina str., 61; 656049, Barnaul, Russia; [email protected] *Corresponding author Abstract Allium toksanbaicum from South East Kazakhstan is described as a new species. Molecular markers reveal a close rela- tionship to A. obliquum and some other central Asian species of the section Oreiprason. We investigated the phylogenetic relationship of the new species based on sequences of two chloroplast spacers (rpl32-trnL and trnQ-rps16) and the nuclear ribosomal DNA internal transcribed spacer (ITS) region. The new species is diploid with a chromosome number of 2n = 2x = 16. A detailed morphological description, illustrations and karyotype features of the new species are given. With its falcate leaves, the new species is very similar to A.
    [Show full text]
  • Tese Horace Final VESÃO 3 Jack
    HORACE JOSÉ JIMENEZ Análise Molecular in silico e Palinológica de espécies de Amaryllidaceae J. ST. - HIL Recife 2019 HORACE JOSÉ JIMENEZ ii Análise Molecular in silico e Palinológica de espécies de Amaryllidaceae J. ST. - HIL Tese apresentada ao Programa de Pós-graduação em Agronomia – Melhoramento Genético de Plantas (PPGAMGP), da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de Doutor em Agronomia. COMITÊ DE ORIENTAÇÃO: Professor Dr. Reginaldo de Carvalho – Orientador –UFRPE Dr. Rômulo Maciel Moraes Filho – Coorientador – UFRPE Professora Dra. Luiza Suely Semen Martins – Coorientadora – UFRPE Professora Dra. Angélica Virginia Valois Montarroyos – Coorientadora – UFRPE Recife 2019 iii Dados Internacionais de Catalogação na Publicação (CIP) Sistema Integrado de Bibliotecas da UFRPE Biblioteca Central, Recife-PE, Brasil J83a José Jimenez, Horace. Análise molecular in sílico e palinológica de espécies de Amaryllidaceae J. ST. – Hil / Horace José Jimenez. – Recife, 2019. 111 f.: il. Orientador(a): Reginaldo de Carvalho. Coorientador(a): Rômulo Maciel Moraes Filho, Luiza Suely Semen Martins. Tese (Doutorado) – Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Agronomia - Melhoramento Genético de Plantas, Recife, BR-PE, 2019. Inclui referências. 1. Amaryllidaceae 2. Bioinformática 3. Palinologia 4. Filogenia I. Carvalho, Reginaldo de, orient. II. Moraes Filho, Rômulo Maciel, coorient. III. Martins, Luiza Suely Semen, coorient. IV. Título CDD 574 iv Filho Área de Fitotecnia/DEPA/UFRPE
    [Show full text]