Conference Program

Total Page:16

File Type:pdf, Size:1020Kb

Conference Program 20th AAS/AIAA Space Flight Mechanics Meeting 14-17 February 2010, San Diego, CA AAS General Chair AIAA General Chair Dr. Aaron Trask Mr. James K. Miller Apogee Integration, LLC AAS Technical Chair AIAA Technical Chair Dott. Daniele Mortari Dr. Thomas Starchville, Jr. Texas A&M University The Aerospace Corporation Cover image: This image of a massive, young stellar grouping, called R136, was taken by Hubble's Wide Field Camera 3. The grouping resides in the 30 Doradus Nebula, a turbulent star-birth region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. Credit: NASA, ESA, and F. Paresce (INAF-IASF, Bologna, Italy), R. O'Connell (University of Virginia, Charlottesville), and the Wide Field Camera 3 Science Oversight Committee. Program provided by: TURNING COMPLEX INFORMATION INTO ACTIONABLE INTELLIGENCE WWW.APOGEEINTEGRATION.COM Table of Contents Registration ..................................................................................................................................... 3 Schedule of Events .......................................................................................................................... 4 Conference Center Layout .............................................................................................................. 6 Special Events ................................................................................................................................. 7 Early Bird Reception................................................................................................................... 7 Award Ceremony, Dirk Brouwer Award Lecture, and Reception .............................................. 7 Dirk Brouwer Award Honoree.................................................................................................... 7 Offsite Event – San Diego Zoo ................................................................................................... 8 Conference Location ....................................................................................................................... 9 San Diego Marriott Mission Valley Hotel Accommodations ..................................................... 9 Transportation Info ..................................................................................................................... 9 Directions .................................................................................................................................. 11 Arrival Information ................................................................................................................... 11 Restaurants & Shopping ........................................................................................................... 11 Recreation ................................................................................................................................. 13 Additional Information ................................................................................................................. 14 Speaker Orientation .................................................................................................................. 14 Volunteers ................................................................................................................................. 14 Presentations ............................................................................................................................. 14 Preprinted Manuscripts ............................................................................................................. 15 Conference Proceedings............................................................................................................ 15 Satisfaction Survey ................................................................................................................... 16 Committee Meetings ................................................................................................................. 16 Subcommittee Meetings............................................................................................................ 16 Session 1: Trajectory Design & Optimization – I ....................................................................... 17 Session 2: Spacecraft Guidance, Navigation and Control – I ..................................................... 19 Session 3: Dynamical Systems Theory ....................................................................................... 22 Session 4: Atmospheric Re-entry and Lunar Mission Analysis .................................................. 24 Session 5: Orbital Dynamics – I .................................................................................................. 26 Session 6: Attitude Dynamics and Control – I ............................................................................ 28 Session 7: Space Surveillance ..................................................................................................... 30 Session 8: Satellite Relative Motion – I ...................................................................................... 32 Session 9: Interplanetary Trajectory Design ............................................................................... 34 Session 10: Satellite Constellations ............................................................................................. 36 20th AAS / AIAA Space Flight Mechanics Meeting Page 1 Session 11: Orbit Dynamics – II ................................................................................................. 38 Session 12: Planetary Missions ................................................................................................... 40 Session 13: Trajectory Solution Techniques ............................................................................... 42 Session 14: Spaceflight Safety .................................................................................................... 43 Session 15: Attitude Sensors Data Processing ............................................................................ 44 Session 16: Attitude Dynamics and Control – II ......................................................................... 45 Session 17: Trajectory Design & Optimization – II .................................................................... 46 Session 18: Orbital Perturbations ................................................................................................ 48 Session 19: Attitude Dynamics and Control – III ....................................................................... 50 Session 20: Orbit Determination ................................................................................................. 52 Session 21: Near Earth Object Missions ..................................................................................... 54 Session 22: Spacecraft Guidance, Navigation and Control – II .................................................. 56 Session 23: Satellite Relative Motion – II ................................................................................... 58 Session 24: Space Structures Dynamics and Control .................................................................. 60 Author Index ................................................................................................................................. 62 Conference Planner ....................................................................................................................... 64 Record of Meeting Expenses ........................................................................................................ 65 Conference Satisfaction Survey .................................................................................................... 67 Page 2 20th AAS / AIAA Space Flight Mechanics Meeting 20TH AAS/AIAA SPACE FLIGHT MECHANICS MEETING CONFERENCE INFORMATION REGISTRATION Registration Site (https://events.pxi.com/aas/reg) In order to encourage early registration, we have implemented the following conference registration rate structure: Register by 15 Jan 2010 and save $50! Category Early Registration Late Registration (through 15 Jan 2010) Full - AAS or AIAA Member $510 $560 Full - Non-member $595 $645 Retired* $130 $180 Student* $130 $180 Special Event Guest Ticket $50 $50 Special Event Child Ticket (4-12 yrs) $25 $25 The receptions are included for all registrants. The Tuesday night Special Event is included only for Full registration fees. The Special Event is free for children under the age of 4. On-site sales of special event tickets will be limited. The Special Event on Tuesday will be held at the San Diego Zoo. Included with the event is admission to the Zoo on Tuesday after 4pm. The Event starts at 5pm with drinks and an animal show. Full dinner starts at 6pm. The event is tented in case of inclement weather. On-site packet pick up and registration will be available on the following schedule: Sunday Feb. 14 3:00 PM - 7:00 PM Monday Feb. 15 8:00 AM - 2:00 PM Tuesday Feb. 16 8:00 AM - 2:00 PM Wednesday Feb. 17 8:00 AM - 10:00 AM We will accept registration and payment on-site for those who have not pre-registered online, but we strongly recommend online registration before the conference in order to avoid delays (see URL above). Pre-registration also gives you free access to pre-print technical papers. On-site payment by credit card will be only through the AAS website using a computer at the registration table. Any checks should be made payable to the “American Astronautical
Recommended publications
  • Low-Energy Lunar Trajectory Design
    LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 ii DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Titles in this Series Radiometric Tracking Techniques for Deep-Space Navigation Catherine L. Thornton and James S. Border Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation Theodore D. Moyer Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communication Marvin K. Simon Large Antennas of the Deep Space Network William A. Imbriale Antenna Arraying Techniques in the Deep Space Network David H. Rogstad, Alexander Mileant, and Timothy T. Pham Radio Occultations Using Earth Satellites: A Wave Theory Treatment William G. Melbourne Deep Space Optical Communications Hamid Hemmati, Editor Spaceborne Antennas for Planetary Exploration William A. Imbriale, Editor Autonomous Software-Defined Radio Receivers for Deep Space Applications Jon Hamkins and Marvin K. Simon, Editors Low-Noise Systems in the Deep Space Network Macgregor S. Reid, Editor Coupled-Oscillator Based Active-Array Antennas Ronald J. Pogorzelski and Apostolos Georgiadis Low-Energy Lunar Trajectory Design Jeffrey S. Parker and Rodney L. Anderson LOW-ENERGY LUNAR TRAJECTORY DESIGN Jeffrey S. Parker and Rodney L. Anderson Jet Propulsion Laboratory Pasadena, California July 2013 iv Low-Energy Lunar Trajectory Design July 2013 Jeffrey Parker: I dedicate the majority of this book to my wife Jen, my best friend and greatest support throughout the development of this book and always.
    [Show full text]
  • AAS/AIAA Astrodynamics Specialist Conference
    DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com AAS/AIAA Astrodynamics Specialist Conference July 31 ‐ August 4, 2011 Girdwood, Alaska AAS General Chair AIAA General Chair Ryan P. Russell William Todd Cerven Georgia Institute of Technology The Aerospace Corporation AAS Technical Chair AIAA Technical Chair Hanspeter Schaub Brian C. Gunter University of Colorado Delft University of Technology DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com Cover images: Top right: Conference Location: Aleyska Resort in Girdwood Alaska. Middle left: Cassini looking back at an eclipsed Saturn, Astronomy picture of the day 2006 Oct 16, credit CICLOPS, JPL, ESA, NASA; Middle right: Shuttle shadow in the sunset (in honor of the end of the Shuttle Era), Astronomy picture of the day 2010 February 16, credit: Expedition 22 Crew, NASA. Bottom right: Comet Hartley 2 Flyby, Astronomy picture of the day 2010 Nov 5, Credit: NASA, JPL-Caltech, UMD, EPOXI Mission DRAFT version: 7/15/2011 11:04 AM http://www.alyeskaresort.com Table of Contents Registration ............................................................................................................................................... 5 Schedule of Events ................................................................................................................................... 6 Conference Center Layout ........................................................................................................................ 7 Conference Location: The Hotel Alyeska ...............................................................................................
    [Show full text]
  • Mechanisms for Space Applications
    Mechanisms for space applications M. Meftah a,* , A. Irbah a, R. Le Letty b, M. Barr´ ec, S. Pasquarella d, M. Bokaie e, A. Bataille b, and G. Poiet a a CNRS/INSU, LATMOS-IPSL, Universit´ e Versailles St-Quentin, Guyancourt, France b Cedrat Technologies SA, 15 Ch. de Malacher, 38246 Meylan, France c Thales Avionics Electrical Motors, 78700 Conflans Sainte-Honorine, France d Vincent Associates, 803 Linden Ave., Rochester, NY 14625,United States e TiNi Aerospace, 2505 Kerner Blvd., San Rafael, CA 94901, United States ABSTRACT All space instruments contain mechanisms or moving mechanical assemblies that must move (sliding, rolling, rotating, or spinning) and their successful operati on is usually mission-critical. Generally, mechanisms are not redundant and therefore represent potential single point failure modes. Several space missions have suered anomalies or failures due to problems in applying space mechanisms technology. Mechanisms require a specific qualification through a dedicated test campaign. This paper covers the design, development, testing, production, and in-flight experience of the PICARD/SODISM mechanisms. PICARD is a space mission dedicated to the study of the Sun. The PICARD Satellite was successfully launched, on June 15, 2010 on a DNEPR launcher from Dombarovskiy Cosmodrome, near Yasny (Russia). SODISM (SOlar Diameter Imager and Surface Mapper) is a 11 cm Ritchey-Chretien imaging telescope, taking solar images at five wavelengths. SODISM uses several mechanisms (a system to unlock the door at the entrance of the instrument, a system to open/closed the door using a stepper motor, two filters wheels usingastepper motor, and a mechanical shutter). For the fine pointing, SODISM uses three piezoelectric devices acting on th e primary mirror of the telescope.
    [Show full text]
  • Solar Radius Determined from PICARD/SODISM Observations and Extremely Weak Wavelength Dependence in the Visible and the Near-Infrared
    A&A 616, A64 (2018) https://doi.org/10.1051/0004-6361/201832159 Astronomy c ESO 2018 & Astrophysics Solar radius determined from PICARD/SODISM observations and extremely weak wavelength dependence in the visible and the near-infrared M. Meftah1, T. Corbard2, A. Hauchecorne1, F. Morand2, R. Ikhlef2, B. Chauvineau2, C. Renaud2, A. Sarkissian1, and L. Damé1 1 Université Paris Saclay, Sorbonne Université, UVSQ, CNRS, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France e-mail: [email protected] 2 Université de la Côte d’Azur, Observatoire de la Côte d’Azur (OCA), CNRS, Boulevard de l’Observatoire, 06304 Nice, France Received 23 October 2017 / Accepted 9 May 2018 ABSTRACT Context. In 2015, the International Astronomical Union (IAU) passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined a new value of the nominal solar radius (RN = 695 700 km) that is different from the canonical value used until now (695 990 km). The nominal solar radius is consistent with helioseismic estimates. Recent results obtained from ground-based instruments, balloon flights, or space-based instruments highlight solar radius values that are significantly different. These results are related to the direct measurements of the photospheric solar radius, which are mainly based on the inflection point position methods. The discrepancy between the seismic radius and the photospheric solar radius can be explained by the difference between the height at disk center and the inflection point of the intensity profile on the solar limb. At 535.7 nm (photosphere), there may be a difference of 330 km between the two definitions of the solar radius.
    [Show full text]
  • Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
    NASA Reference Publication 1390 - j Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield, R.D. Leach, and M.B. Alexander, Editor August 1996 NASA Reference Publication 1390 Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield Universities Space Research Association • Huntsville, Alabama R.D. Leach Computer Sciences Corporation • Huntsville, Alabama M.B. Alexander, Editor Marshall Space Flight Center • MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center ° MSFC, Alabama 35812 August 1996 PREFACE The effects of the natural space environment on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of seven major areas of the natural space environment including brief definitions, related programmatic issues, and effects on various spacecraft subsystems. The primary focus is to present more than 100 case histories of spacecraft failures and anomalies documented from 1974 through 1994 attributed to the natural space environment. A better understanding of the natural space environment and its effects will enable spacecraft designers and managers to more effectively minimize program risks and costs, optimize design quality, and achieve mission objectives. .o° 111 TABLE OF CONTENTS
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • Mission Model (Aggregate)
    Mission Models (Graphical Depiction) IOAG-14, Nov. 2-4, 2010 Update/s after IOAG-14 Meeting: (1) IOAG Secretariat / 2011-Jan.-14: Incorporated 2010-12-15 ESA update Earth Missions (1) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 COSMO –SM1 COSMO –SM2 ASI COSMO –SM3 COSMO –SM4 AGI MIOSAT PRISMA SPOT HELIOS 2010 TELECOM-2 Legend Green – In operation JASON Light green – Potential extension Blue – In development DEMETER TARANIS Light Blue – Potential extension Yellow – Proposed ESSAIM MICROSCOPE Light Yellow – Proposed extension CNES PARASOL MERLIN Note: Color fade to white indicates End Date unknown CALIPSO COROT CERES SMOS CSO-MUSIS (terminate 2028, potentially extend to 2030) PICARD MICROCARB (*) No dates provided Earth Missions (2) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 BIR DEOS Legend Green – In operation GR1/ GR2 ENMAP Light green – Potential extension Blue – In development SB1/SB2 Light Blue – Potential extension Yellow – Proposed DLR TerraSAR-X H2SAT* Light Yellow – Proposed extension TET Asteroiden Finder* Note: Color fade to white indicates End Date unknown TanDEM-X PRISMA 2010 (*) No dates provided Earth Missions (3) 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 ERS 2 ADM-AEOLUS ENVISAT Sentinel 1B Extends to Oct. 2026 CRYOSAT 2 Sentinel 2B Extends to Jun. 2027 GOCE Earth Case Swarm Sentinel 1A Sentinel 2A Sentinel 3A ESA 2010 Sentinel 3B Extends to Aug. 2027 MSG MSG METOP METOP ARTEMIS GALILEO Legend Green – In operation
    [Show full text]
  • Articles in the Summertime Arctic Lower Troposphere
    Atmos. Chem. Phys., 21, 6509–6539, 2021 https://doi.org/10.5194/acp-21-6509-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Chemical composition and source attribution of sub-micrometre aerosol particles in the summertime Arctic lower troposphere Franziska Köllner1,a, Johannes Schneider1, Megan D. Willis2,b, Hannes Schulz3, Daniel Kunkel4, Heiko Bozem4, Peter Hoor4, Thomas Klimach1, Frank Helleis1, Julia Burkart2,c, W. Richard Leaitch5, Amir A. Aliabadi5,d, Jonathan P. D. Abbatt2, Andreas B. Herber3, and Stephan Borrmann4,1 1Max Planck Institute for Chemistry, Mainz, Germany 2Department of Chemistry, University of Toronto, Toronto, Canada 3Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany 4Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany 5Environment and Climate Change Canada, Toronto, Canada anow at: Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany bnow at: Department of Chemistry, Colorado State University, Fort Collins, CO, USA cnow at: Aerosol Physics and Environmental Physics, University of Vienna, Vienna, Austria dnow at: Environmental Engineering Program, University of Guelph, Guelph, Canada Correspondence: Franziska Köllner ([email protected]) Received: 20 July 2020 – Discussion started: 3 August 2020 Revised: 25 February 2021 – Accepted: 26 February 2021 – Published: 30 April 2021 Abstract. Aerosol particles impact the Arctic climate system ganic matter. From our analysis, we conclude that the pres- both directly and indirectly by modifying cloud properties, ence of these particles was driven by transport of aerosol yet our understanding of their vertical distribution, chemical and precursor gases from mid-latitudes to Arctic regions. composition, mixing state, and sources in the summertime Specifically, elevated concentrations of nitrate, ammonium, Arctic is incomplete.
    [Show full text]
  • January / February 2010
    JANUARY / FEBRUARY 2010 THE MAGAZINE OF THE AMERICAN ASTRONAUTICAL SOCIETY ISSUE 1 VOLUME 49 SPACE TIMES • January/February 2010 1 AAS OFFICERS PRESIDENT Frank A. Slazer, Northrop Grumman EXECUTIVE VICE PRESIDENT Lyn D. Wigbels, RWI International Consulting Services JANUARY / FEBRUARY 2010 VICE PRESIDENT–TECHNICAL Srinivas R. Vadali, Texas A&M University VICE PRESIDENT–PROGRAMS Kathy J. Nado ISSUE 1–VOLUME 49 VICE PRESIDENT–PUBLICATIONS David B. Spencer, Penn State University VICE PRESIDENT–STRATEGIC COMMUNICATIONS AND OUTREACH Mary Lynne Dittmar, Dittmar Associates VICE PRESIDENT–MEMBERSHIP Patrick McKenzie, Ball Aerospace T H E M A G A Z I N E O F T H E A M E R I C A N A S T R O N A U T I C A L S O C I E T Y VICE PRESIDENT–EDUCATION Angela Phillips Diaz VICE PRESIDENT–FINANCE Carol S. Lane, Ball Aerospace VICE PRESIDENT–INTERNATIONAL Clayton Mowry, Arianespace, Inc. VICE PRESIDENT–PUBLIC POLICY Peggy Finarelli, George Mason University/CAPR LEGAL COUNSEL Franceska O. Schroeder, Fish & Richardson P.C. EXECUTIVE DIRECTOR James R. Kirkpatrick, AAS PRESIDENT’S MESSAGE 3 AAS BOARD OF DIRECTORS FEATURES TERM EXPIRES 2010 Linda Billings, George Washington University Martian Caves May Enable Sustainable Human Ronald J. Birk, Northrop Grumman Rebecca L. Griffin, GriffinSpace LLC Exploration of the Red Planet 4 Hal E. Hagemeier, National Security Space Office The ACCESS Mars report, written by a group of young space professionals Dennis Lowrey, General Dynamics Molly Kenna Macauley, Resources for the Future from the International Space University, tells the tale. Erin Neal, ATK by ACCESS Mars Team (ISU SSP09) Lesa B.
    [Show full text]
  • Solar Radius Determination from Sodism/Picard and HMI/SDO
    Solar Radius Determination from Sodism/Picard and HMI/SDO Observations of the Decrease of the Spectral Solar Radiance during the 2012 June Venus Transit Alain Hauchecorne, Mustapha Meftah, Abdanour Irbah, Sebastien Couvidat, Rock Bush, Jean-François Hochedez To cite this version: Alain Hauchecorne, Mustapha Meftah, Abdanour Irbah, Sebastien Couvidat, Rock Bush, et al.. So- lar Radius Determination from Sodism/Picard and HMI/SDO Observations of the Decrease of the Spectral Solar Radiance during the 2012 June Venus Transit. The Astrophysical Journal, American Astronomical Society, 2014, 783 (2), pp.127. 10.1088/0004-637X/783/2/127. hal-00952209 HAL Id: hal-00952209 https://hal.archives-ouvertes.fr/hal-00952209 Submitted on 26 Feb 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Solar radius determination from SODISM/PICARD and HMI/SDO observations of the decrease of the spectral solar radiance during the June 2012 Venus transit A. Hauchecorne1, M. Meftah1, A. Irbah1, S. Couvidat2, R. Bush2, J.-F. Hochedez1 1 LATMOS, Université Versailles Saint-Quentin en Yvelines, UPMC, CNRS, F-78280 Guyancourt, France, [email protected] 2 W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305- 4085, USA Abstract On 5 to 6 June, 2012 the transit of Venus provided a rare opportunity to determine the radius of the Sun using solar imagers observing a well-defined object, namely the planet and its atmosphere, occulting partially the Sun.
    [Show full text]
  • Geoscientific Research Global Positioning System
    Geoscientific Research and the Global Positioning System Recent Developments and Future Prospects A Report of the University Navstar Consortium Summer, 1994 ii Contents 1 Overview . 1 1.1 State of the Art . 2 1.1.1 Complex Deformation in Plate Boundary Zones. 2 1.1.2 Capturing Earthquakes . 2 1.1.3 Continuously Operating GPS Networks . 4 1.1.4 Volcano Monitoring. 4 1.1.5 Post-Glacial Rebound . 5 1.1.6 Global Climate Change . 5 1.1.7 Ocean Circulation . 6 1.1.8 Atmospheric Sensing . 6 1.1.9 Space-Based GPS Meteorology . 7 1.1.10 Probing the Ionosphere . 7 1.2 The Future . 7 1.2.1 Permanently Operating Networks . 7 1.2.2 Multipurpose National Network . 8 1.2.3 Global Change Research . 8 1.2.4 Space-Based Meteorology . 9 2 Contributors to This Report . 9 3 UNAVCO. 9 4 Scientific Opportunities . 11 4.1 Deformation of the Earth’s Lithosphere . 11 4.1.1 Plate Boundary Processes . 12 4.1.1.1 Mantle Dynamics and Tibet . 14 4.1.1.2 The Pacific-North American Transform Boundary . 14 4.1.1.3 Complexity of Continental Convergence in the Eastern Mediterranean . 14 4.1.1.4 Southeast Asia and Indonesia Tectonics . 17 4.1.1.5 The Interior Western U.S. and the Transition to the Stable Plate Interior . 18 4.1.2 Volcanic Processes . 20 4.1.2.1 Kilauea . 22 4.1.2.2 The Yellowstone Caldera . 23 4.2 The Earthquake Cycle . 24 4.2.1 Loma Prieta . 26 4.3 Deep Earth and Whole Earth Applications .
    [Show full text]
  • NOAA NESDIS Independent Review Team Final Report 2017 Preface
    NOAA NESDIS Independent Review Team Final Report 2017 Preface “Progress in understanding and predicting weather is one of the great success stories of twentieth century science. Advances in basic understanding of weather dynamics and physics, the establishment of a global observing system, and the advent of numerical weather prediction put weather forecasting on a solid scientific foundation, and the deployment of weather radar and satellites together with emergency preparedness programs led to dramatic declines in deaths from severe weather phenomena such as hurricanes and tornadoes.“ “The Atmospheric Sciences Entering the Twenty-First Century”, National Academy of Sciences, 1998. 2 Acknowledgements ▪ The following organizations provided numerous briefings, detailed discussions and extensive background material to this Independent Review Team (IRT): – National Oceanic and Atmospheric Administration (NOAA) – National Aeronautics and Space Administration (NASA) – Geostationary Operational Environmental Satellite R-Series (GOES-R) Program Office – Joint Polar Satellite System (JPSS) Program Office – NOAA/National Environmental Satellite, Data, and information Service (NESDIS) IRT Liaison Support Staff • Kelly Turner Government IRT Liaison • Charles Powell Government IRT Liaison • Michelle Winstead NOAA Support • Kevin Belanga NESDIS Support • Brian Mischel NESDIS Support ▪ This IRT is grateful for their quality support and commitment to NESDIS’ mission necessary for this assessment. 3 Overview ▪ Objective ▪ NESDIS IRT History ▪ Methodology
    [Show full text]