Ancient Endemism Among Freshwater Isopods (Crustacea, Phreatoicidea)

Total Page:16

File Type:pdf, Size:1020Kb

Ancient Endemism Among Freshwater Isopods (Crustacea, Phreatoicidea) Ancient endemism among freshwater isopods (Crustacea, Phreatoicidea) George D. F. Wilson' and Richard T. Johnson' 'Centre for Evolutionary Research, The Australian Museum, 6 College Street, Sydney, New South Wales 2000 Ancient clades with restricted geographic distributions have been found in the isopod crustacean suborder Phreatoicidea. These isopods colonized fresh water in Gondwana by the Triassic Era and today are restricted to permanent groundwaters. A phyiogenetic analysis of 21 exemplar species showed that major cladogenic events took place prior to the fragmentation of Gondwana. Nichollsia, a genus restricted to India, was deeply nested within a Western Australian and Victorian clade. The Phreatoicidae branched off early in all cladograms, with Australian and New Zealand sister clades. Some clades may be closely associated with Gondwanan landmasses that were subdivided by shallow Cretaceous seas. Downloaded from http://meridian.allenpress.com/rrimo/book/chapter-pdf/2643135/rzsnsw_1999_043.pdf by guest on 30 September 2021 INTRODUCTION distinct genetic forms known from the South Australian artesian springs of the Lake Eyre The Phreatoicidea are the earliest derived supergroup (M. Adams, Environmental Report, isopod Crustacea (Brusca and Wilson 1991), Kinhill Engineers Pty Ltd); Hypsimetopus sp. appearing in the marine fossil record during from near Zeehan, Tasmania, possibly the Carboniferous (—325 mybp: Hessler conspecific with H. intrusor Sayce 1902 but 1969; Schram 1970, 1974). Phreatoicideans variation has not been fully evaluated; cf. invaded fresh waters of the Gondwanan Hyperoedesipus sp. from the Pilbara region supercontinent by the Triassic {Protamphisopus of Western Australia, a new genus with wianamattensis (Chilton 1918), see Nicholls presumed affinities to H. plumosus Nicholls 1943) and subsequently became extinct in the and Milner 1923. The Tasmanian genera oceans. Today, phreatoicideans are restricted are poorly defined but are labelled in Figure to permanent fresh waters and occur in I to indicate the possible phreatoicidean Australia as well as on a few other continental diversity of this area. fragments derived from Gondwana (Banarescu 1990; Wilson and Keable, in press). The A taxonomic database in the DELTA format distribution of phreatoicideans within Australia (Dallwitz 1980; Dallwitz et al. 1993) was used shows much endemism at the level of genus to generate the phyiogenetic data (as in and higher (Fig. 1). This paper examines Wilson and Keable, in press). As of October phreatoicidean phylogeny and biogeography 1997, the database contained 21 species, in Australia in relation to taxa that occur in including representatives of non-Australian other Gondwanan localities. The distributions genera and several undescribed species. Data evident today may reflect the biogeography of on some taxa were derived from the literature clades derived during the Mesozoic. (e.g., Nichollsia Chopra and Tiwari 1950 and Neophreatoicus Nicholls 1944) or were not fully dissected because specimens were type MATERIALS AND METHODS material (e.g., adult Hyperoedesipus plumosus). Distributional data in this paper comes Because congeners typically formed single from localities where we have inspected clades (e.g., the Victorian and New South specimens, either in the collections of the Wales genus Crenoicus Nicholls 1944), only Australian Museum or from other sources. one species from each genus was used to Some records from the literature were not simplify the resulting cladograms. The data, included because the specimens have not therefore, comprised only 17 taxa. The been examined. Figure 1 shows this phyiogenetic data (135 unordered morpho- distribution of phreatoicidean taxa within logical characters, 98 of which were Australia, based on the taxonomy of Nicholls informative) were analysed using the computer (1943, 1944) but including several new program PAUP version 3.1.1 (Swofford genera. Undescribed species included in this 1993; parsimony analysis settings TBR, analysis are: Eophreatoicus sp., one of >5 new Mulpars, addseq = random, 10 iterations). species from Kakadu, Northern Territory and Space constraints preclude the presentation distinct from E. kershawi Nicholls 1926; of our primary data in this paper, but they Phreatomerus sp., possibly conspecific with may be obtained on request from the first P latipes (Chilton 1922) but one of several author. Although the current analysis yielded Pp. 264-68 in The Other 99%. The Conservation and Biodiversity of Invertebrates ed by Winston Ponder and Daniel Lunney, 1999. Transactions of the Royal Zoological Society of New South Wales, Mosman 2088. Eophreatoicus New Genus 3 New Genus 1 t.' • Crenoicds' Downloaded from http://meridian.allenpress.com/rrimo/book/chapter-pdf/2643135/rzsnsw_1999_043.pdf by guest on 30 September 2021 ^ New Genus 4 Metaphreatoicus Amphisopus Phreatoicopsis & Colubotelson Synamphisopus Phreatoicopsis & Mesacanthotelson & Phreatoicoides Onchotelson cf. Colubotelson, Hypsimetopus & Uramphisopus & Phreatoicoides other genera Figure 1. Isopoda Phreatoicidea: distribution of genus-level taxa in Australia, based on material that we have examined (filled circles) and using the taxonomy of Nicholls (1943, 1944). Several new genera but not all nominal genera are shown. "New Genus 1" is described in Wilson and Keable (in press) and "cf Hyperoedesipus" is under description. Other new genera are not yet described, and therefore do not appear in the cladistic analysis. unrooted trees, we orientated the resulting Nicholls 1944 from Victoria to Tasmania may topologies by placing the South African be a taxonomic artifact. All other genera species Mesamphisopus capensis (Barnard 1914) appear to be localized to relatively small as the "outgroup" because this genus may regions. For example, Eophreatoicus species are be derived basally (Wilson and Keable, in found only on and around the Arnhem press). These cladistic estimates should be Plateau of the Northern Territory, and considered preliminary because some clades Paramphisopus Nicholls 1944 species, despite may change position after the addition of being good swimmers and presumably new taxa. The data are not complete, because capable of active dispersal, is found only several undescribed genera (noted in Fig. 1) in the coastal ponds of the Perth region. and many taxa from Tasmania, New Zealand Western Australia. and other areas are not included. Relation- Are these distributions recent, being ships between areas of endemism were established during the times when Australia evaluated by replacing phreatoicidean names became arid, or are they older? If older, with their areas on the strict consensus of the how old? The phylogenetic analysis (Fig. 2) trees obtained in the parsimony analysis. allows this issue to be addressed as well as to test the effectiveness of the existing RESULTS AND DISCUSSION classification. The family Amphisopodidae is Figure 1 demonstrates that most super- paraphyletic, with the Phreatoicidae and the specific taxa consist of geographically restricted Nichollsiidae nested within it. In Nicholls' clades. Crenoicus is an exception to this (1943) conception, the Amphisopodidae was pattern, with a distribution that spans the based on what he regarded as primitive Great Dividing Range through New South characters, so the paraphyly of this family Wales and Victoria (Wilson and Ho 1996). is no surprise. The monophyly of the The apparent distribution of Colubotelson Phreatoicidae is supported (Wilson and Keable, June 1999 The Other 99%. The Conservation and Biodiversity of Invertebrates 265 - - AMPHISOPODIDAE the modern distribution of phreatoicideans. NICHOLSIIDAE .<2 PHREATOICIDAE 55 .<0 Because phreatoicidean isopods were present c 1 cu <n .O) .<2 Q. in Gondwanan fresh waters by the Triassic I (D •Q o U3 S2 ^ , I!; S (Chilton 1918), many of the cladogenic events I 03 0 QU3. Q. Q) tn •S (0 tn .SJ .g. must have pre-dated the supercontinent's 1 <0 •c 9- 3 .-Oa d 5 <0 .<2 S •Q- a « breakup. 3 - S2 ^ ^ S ^ 6 & •S2 3 ^ 3s p ^ I I .8 .s Some phreatoicidean clades within Australia .a -c r- C§3 5 M Q) O " TO may also reflect the association of c I I| | ICO I^ I I i 111 a S Gondwanan landmasses that were subdivided I ^ m I fII £ I§ £ § by shallow Mesozoic seas. Figure 4 overlays the approximate distribution of dry land- 1_T masses during the mid-Cretaceous (BMR Palaeogeographic Group 1990) and the current distribution of phreatoicidean localities in Australia. During this period, J shallow seas largely divided Australia into a western and an elongate southeast to Downloaded from http://meridian.allenpress.com/rrimo/book/chapter-pdf/2643135/rzsnsw_1999_043.pdf by guest on 30 September 2021 Figure 2. Strict consensus of 3 trees (length 416, consistency index 0.44) resulting from a parsimony northwest part. Two distal clades in the analysis of data derived from the DELTA database. taxon-area consensus show a vicariant pattern Extent of the families in the current classification of the that may be influenced by this inundation Phreatoicidea (Nicholls 1943; Chopra and Tiwari 1950) event, the Paramphisopus — Phreatomerus are indicated by horizontal lines for the Phreatoicidae (beneath) and the Amphisopodidae (extending laterally, clade and the Amphisopus Nicholls 1926 — dashed), and by an arrow for the Nichollsiidae. Synamphisopus Nicholls 1943 clade, both suggesting relationships between Victoria and Western Australia. in press), although this clade has proven to be unstable with the addition of more taxa.
Recommended publications
  • Download Full Article 6.1MB .Pdf File
    Memoirs of the Museum of Victoria 59(2): 457–529 (2002) NEW PHREATOICIDEA (CRUSTACEA: ISOPODA) FROM GRAMPIANS NATIONAL PARK, WITH REVISIONS OF SYNAMPHISOPUS AND PHREATOICOPSIS GEORGE D.F. WILSON AND STEPHEN J. KEABLE Australian Museum, Sydney, NSW 2010, Australia ([email protected]; [email protected]) Abstract Wilson, G.D.F. and Keable S.J. 2002. New Phreatoicidea (Crustacea: Isopoda) from Grampians National Park, with revisions of Synamphisopus and Phreatoicopsis. Memoirs of Museum Victoria 59(2): 457–529. The Grampians National Park, Victoria, has substantial environmental significance owing to the diversity of endemic species restricted to this reserve. We reinforce this observation by reporting six new species and two new genera of isopod crustaceans endemic to the Grampians, and redescribe two previously known Victorian species representing formerly monotypic genera. These isopods are members of the ancient suborder Phreatoicidea, and show diverse morphologies. To demonstrate the basis for the classification of these species, we present a phylogenetic analysis of exemplar species of most extant genera of Phreatoicidea. Our analysis supports the sister group relationship of Phreatoicopsis and Synamphisopus. We observe a rudimentary accessory flagellum on the antennulae of both genera, but this isopod plesiomorphy optimises on the cladograms as a reversal. Two new genera, Naiopegia gen. nov. and Gariwerdeus gen. nov., are members of the Phreatoicidae, but are distinct from any described taxa in this family. Various metazoan and protist epibionts are commonly encoun- tered on these isopods. These species are described using detailed scanning electron microscopy and inked drawings: family Amphisopodidae, Phreatoicopsis raffae sp. nov., Phreatoicopsis terricola Spencer and Hall, 1897, Synamphisopus doegi sp.
    [Show full text]
  • (Isopoda: Phreatoicidea: Amphisopodidae) from the Pilbara Region of Western Australia
    © Copyright Australian Museum, 1999 Records of the Australian Museum (1999) Vol. 51: 33–42. ISSN 0067-1975 Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidea: Amphisopodidae) from the Pilbara Region of Western Australia BRENTON KNOTT 1 & STUART A. HALSE 2 1 Department of Zoology, The University of Western Australia, Nedlands WA 6907, Australia [email protected] 2 Department of Conservation and Land Management, Wildlife Research Centre, PO Box 51, Wanneroo WA 6946, Australia [email protected] ABSTRACT. Pilbarophreatoicus platyarthricus, a subterranean phreatoicidean isopod from an intermittent stream in the arid Pilbara region of northwestern Western Australia, is described. With subterranean morphofacies, namely slender vermiform body, eyeless, anteroventral lobe on pereonite 1, reduced abdominal epimera, clearly demarcated pleotelson and lacking in pigment, the species is distinguished particularly by details of the pleotelson. Pilbarophreatoicus platyarthricus is a Gondwanan relic surviving in an aquifer in a region with marked surface aridity. Discovery of P. platyarthricus highlights the importance of groundwater as a reservoir of biological diversity. KNOTT, BRENTON, & STUART A. HALSE, 1999. Pilbarophreatoicus platyarthricus n.gen., n.sp. (Isopoda: Phreatoicidea: Amphisopodidae) from the Pilbara region of Western Australia. Records of the Australian Museum 51(1): 33–42. The Phreatoicidea are ancient isopods, constituting the comparison with that of southern, Australia seems much earliest derived members (Brusca & Wilson, 1991) and reduced with the only records, until recently, from the South having the longest known fossil record of all living isopods. Alligator River area of the Northern Territory (Nicholls, Their fossil record dates from the Essex fossil beds at Mazon 1943; Knott, 1975).
    [Show full text]
  • A New Family and Genus of Phreatoicidea (Crustacea: Isopoda) from Artesian Springs in Southwestern Queensland, Australia
    A NEW FAMILY AND GENUS OF PHREATOICIDEA (CRUSTACEA: ISOPODA) FROM ARTESIAN SPRINGS IN SOUTHWESTERN QUEENSLAND, AUSTRALIA GEORGE D.F. WILSON AND STEPHEN J. KEABLE Wilson, G.D.F. & Keable, S.J. 2004 06 30: A new family and genus of Phreatoicidea (Crustacea: Isopoda) from artesian springs in southwestern Queensland, Australia. Memoirs of the Queensland Museum 49(2): 741-759. Brisbane. ISSN 0079-8835. Two new species of phreatoicidean isopods from artesian springs in southwestern Queensland are described. These taxa have been shown to form a clade that is distinct from all other taxa in the suborder. Therefore, a new genus, Ponderella, and a new family, Ponderellidae, are established for this clade. These two epigean species share many features in common with the hypogean family Hypsimetopidae but lack their derived features, such as elongate bodies or curved claw-like uropodal endopods. Both new species share an enlarged fourth article of the antennula, a synapomorphy that occurs in no other phreatoicidean. Their pleotelsons are also distinctive in having relatively unelaborated posterior margins that are indented at the apices. The two species differ in several morphological traits that vary at the generic level or higher in other families of the Phreatoicidea: size of the lacinia mobilis on the right mandible; distinctive modifications of the male pereopod IV in one of the species; presence or absence of propodal articular plates on the posterior pereopods; presence or absence of the pleopodal lateral epipods; and shape of the pleotelson in lateral view. These species occur sympatrically in two adjacent localities in the Eulo mound springs supergroup.
    [Show full text]
  • Ancient Endemism Among Freshwater Isopods (Crustacea^ Phreatoicidea)
    Ancient endemism among freshwater isopods (Crustacea^ Phreatoicidea) George D. F. Wilson1 and Richard T. Johnson1 Centre for Evolutionary Research, The Australian Museum, 6 College Street, Sydney, New South Wales 2000 Ancient clades with restricted geographic distributions have been found in the isopod crustacean suborder Phreatoicidea. These isopods colonized fresh water in Gondwana by the Triassic Era and today are restricted to permanent groundwaters. A phylogenetic analysis of 21 exemplar species showed that major cladogenic events took place prior to the fragmentation of Gondwana. Nichollsia, a genus restricted to India, was deeply nested within a Western Australian and Victorian clade. The Phreatoicidae branched off early in all cladograms, with Australian and New Zealand sister clades. Some clades may be closely associated with Gondwanan landmasses that were subdivided by shallow Cretaceous seas. INTRODUCTION distinct genetic forms known from the South Australian artesian springs of the Lake Eyre The Phreatoicidea are the earliest derived supergroup (M. Adams, Environmental Report, isopod Crustacea (Brusca and Wilson 1991), Kinhill Engineers Pty Ltd); Hypsimetopus sp. appearing in the marine fossil record during from near Zeehan, Tasmania, possibly the Carboniferous (~325 mybp: Hessler conspecific with H. intrusor Sayce 1902 but 1969; Schram 1970, 1974). Phreatoicideans variation has not been fully evaluated; cf. invaded fresh waters of the Gondwanan Hyperoedesipus sp. from the Pilbara region supercontinent by the Triassic (Protamphisopus of Western Australia, a new genus with wianamattensis (Chilton 1918), see Nicholls presumed affinities to H. plumosus Nicholls 1943) and subsequently became extinct in the and Milner 1923. The Tasmanian genera oceans. Today, phreatoicideans are restricted are poorly defined but are labelled in Figure to permanent fresh waters and occur in 1 to indicate the possible phreatoicidean Australia as well as on a few other continental diversity of this area.
    [Show full text]
  • Lack of Taxonomic Differentiation in An
    ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2005) xxx–xxx www.elsevier.com/locate/ympev Lack of taxonomic diVerentiation in an apparently widespread freshwater isopod morphotype (Phreatoicidea: Mesamphisopidae: Mesamphisopus) from South Africa Gavin Gouws a,¤, Barbara A. Stewart b, Conrad A. Matthee a a Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa b Centre of Excellence in Natural Resource Management, University of Western Australia, 444 Albany Highway, Albany, WA 6330, Australia Received 20 December 2004; revised 2 June 2005; accepted 2 June 2005 Abstract The unambiguous identiWcation of phreatoicidean isopods occurring in the mountainous southwestern region of South Africa is problematic, as the most recent key is based on morphological characters showing continuous variation among two species: Mesam- phisopus abbreviatus and M. depressus. This study uses variation at 12 allozyme loci, phylogenetic analyses of 600 bp of a COI (cyto- chrome c oxidase subunit I) mtDNA fragment and morphometric comparisons to determine whether 15 populations are conspeciWc, and, if not, to elucidate their evolutionary relationships. Molecular evidence suggested that the most easterly population, collected from the Tsitsikamma Forest, was representative of a yet undescribed species. Patterns of diVerentiation and evolutionary relation- ships among the remaining populations were unrelated to geographic proximity or drainage system. Patterns of isolation by distance were also absent. An apparent disparity among the extent of genetic diVerentiation was also revealed by the two molecular marker sets. Mitochondrial sequence divergences among individuals were comparable to currently recognized intraspeciWc divergences. Sur- prisingly, nuclear markers revealed more extensive diVerentiation, more characteristic of interspeciWc divergences.
    [Show full text]
  • Diversity Patterns in Australia
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Encyclopedia of Caves, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From William F. Humphreys, Diversity Patterns in Australia. In: William B. White and David C. Culver, editors, Encyclopedia of Caves. Chennai: Academic Press, 2012, pp. 203-219. ISBN: 978-0-12-383832-2 Copyright © 2012 Elsevier Inc. Academic Press. Author’s personal copy DIVERSITY PATTERNS IN AUSTRALIA 203 Gams, I., & Gabrovec, M. (1999). Land use and human impact in the Dinaric karst. International Journal of Speleology, 28B(1À4), 55À77. Habic,ˇ P. (1991). Geomorphological classification of NW Dinaric karst. Acta Carsologica, 20, 133À164. Kranjc, A. (2008). History of deforestation and reforestation in the Dinaric karst. Geographical Research, 47(1), 15À23. Mihevc, A. (2007). The age of karst relief in West Slovenia. Acta Carsologica, 36(1), 35À44. Milanovic,´ P. T. (1981). Karst hydrology.
    [Show full text]
  • STUTTGARTER BEITRÄGE ZUR NATURKUNDE Ser
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 1999 Band/Volume: 597_A Autor(en)/Author(s): Erhard Friedhelm Artikel/Article: Morphological and Phylogenetical Studies in the Isopoda (Crustacea). Part 2: The Pleopods and Uropods in the Phreatoicidea 1-56 4\y download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Stuttgarter Beiträge zur Natur Serie A (Biologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 St: Stuttgarter Beitr. Naturk. Ser. A Nr. 597 56 S. Stuttgart, 15. 11. 1999 Morphological and Phylogenetical Studies in the Isopoda (Crustacea). Part 2: The Pleopods and Uropods in the Phreatoicidea By Friedhelm Erhard, Stuttgart With 30 figures Summary The skeleton and musculature of the pleopods I—III andthe uropods in the Australian spe- cies Metaphreatoicus australis (Chilton, 1891) (Phreatoicidea) are described. Each anatomical character, documented in Metaphreatoicus, is checked in further phreatoicidean species from Australia, Tasmania, India and South Africa to reconstruct groundpattern characters of the Phreatoicidea. The comparison with corresponding morphological data in the taxon Onis- cidea indicates character transformations inside the Isopoda. First judgments on the polarity assessment of characters are discussed. Zusammenfassung Das Skelet und die Muskulatur der Pleopoden I—III und der Uropoden der australischen Art Metaphreatoicus australis (Chilton, 1891) (Phreatoicidea) werden dokumentiert. Jedes der an Metaphreatoicus beschriebenen anatomischen Merkmale wird an weiteren Phreatoicidea- Arten aus Australien, Tasmanien, Indien und Südafrika überprüft, um Grundplan-Merkmale der Phreatoicidea zu rekonstruieren. Der Vergleich mit entsprechenden morphologischen Daten des Taxon Oniscidea weist auf Merkmalstransformationen innerhalb der Isopoda hin.
    [Show full text]
  • (Crustacea: Isopoda) from Western Australia
    © Copyright Australian Museum, 2002 Records of the Australian Museum (2002) Vol. 54: 41–70. ISSN 0067-1975 New Genera of Phreatoicidea (Crustacea: Isopoda) from Western Australia GEORGE D.F. WILSON AND STEPHEN J. KEABLE Centre for Evolutionary Research, Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] · [email protected] ABSTRACT. Three new species belonging to new monotypic genera from Western Australia are added to the phreatoicidean isopod family Amphisopodidae: Eremisopus beei n.gen., n.sp. from the northwestern Kimberley region, Peludo paraliotus n.gen., n.sp. from Cape le Grand on the southern coast, and Platypyga subpetrae n.gen., n.sp. from Stirling Range. All species are illustrated using scanning electron micrographs. Both Ciliophora and ostracode Crustacea were found as epibionts on these species. All three isopod genera have highly restricted geographic distributions and could be threatened by anthropogenic degradation of their environments. Western Australia now has eight described genera of Amphisopodidae and Hypsimetopodidae, a generic diversity similar to Tasmania. Members of the Phreatoicidae, however, are absent in Western Australia. The distribution of Western Australian phreatoicideans suggests that they may have originally diversified in East Gondwana, while the Phreatoicidae show relationships to West Gondwana. A key to genera of Western Australia Phreatoicidea is included. WILSON, GEORGE D.F., & STEPHEN J. KEABLE, 2002. New genera of Phreatoicidea (Crustacea: Isopoda) from Western Australia. Records of the Australian Museum 54(1): 41–70. The description of two new isopod genera in the suborder 1989; Brusca & Wilson, 1991), and their Palaeozoic fossil Phreatoicidea (Wilson & Keable, 1999; Knott & Halse, record (Wilson & Keable, 2001).
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • Zoological Survey of India
    MEMOIRS OF THE ZOOLOGICAL SURVEY OF INDIA Vol. 17 No. 2 MONOGRAPH ON NICHOLLSIA KASHIENSIS CHOPRA & TIWARI1950 (CRUSTACEA, ISOPODA, PHREATOICOIDEA, NICHOLLSIDAE) By LAKSHMAN PRASAD GUPTA Zoological Survey of India, Q.P.R.S., Patna-800016 Edited by the Director, Zoological Survey of India 1989 Copyright 1989, Government of India Published % June, 1989 PRICE: Inland : Rs. 100.00 Foreign j £ 10*00 or % 14*00 PRODUCTION t PUBLICATION UNIT, ZOOLOGICAL SURVEY OF INDIA, CALCUTTA. PRINTED AT THE BANl PRESS, 16, HEMENDRA SEN STREET, CALCUTTA-700 006, PRODUCED BY THE PUBLICATION DIVISION AND PUBLISHED BY THE DIRECTOR, ZOOLOGICAL SURVEY OF INDIA, CALCUTTA 700 020 MEMOIRS OF THE ZOOLOGICAL SURVEY OF INDIA Vol. 17 (2) 1989 Pages 1—160 CONTENTS PAGES INTRODUCTION ... i DISTRIBUTION ... 3 MATERIAL AND METHODS ... 3 GENERAL ECOLOGY ... 9 Biological community ... 10 Vertical migration ... 10 Parasites ... U Observations in the Aquarium ... 11 CLASSIFICATION ... 13 EXTERNAL MORPHOLOGY ... 15 BODY WALL AND MOULTING ... 34 THE MUSCULAR SYSTEM ... 38 FOOD, FEEDING AND DIGESTIVE SYSTEM 44 Food and feeding habit ... 45 Different modes of feeding ... 50 Alimentary canal ... 52 Foregut ... 53 Histology ... 54 Musculature of the foregut ... 55 Functions of Proventriculus (Stomach) 58 Digestive gland or hepatopancreas 60 Histology of the digestive gland ... 63 [ii] PAGES Intestine ... 66 Histology of Intestine ... 67 Musculature ... 68 Movement of food in alimentary canal 69 pH of the gut ... 70 EXCRETORY SYSTEM ... 71 Segmental glands of the head ... 72 The maxillary gland ... 73 Segmental glarids or coxal glands of the thorax 75 Histology of the maxillary gland ••• 75 Histology of other glands of head and thorax 76 Athrocytes or Branchio-pericardial organs 76 Tegumental glands ..
    [Show full text]
  • Download Article (PDF)
    INTRODUCTION The discovery of a phreatoicid isopod in wells at Varanasi (Chopra, 1947) was hailed as' an incident of great zoogeographical importance because, barring a couple of species of phreatoicids from the Cape Province of South Africa, the living species of the suborder phreatoi­ coidea of isopods are now confined to the Australian continent, Tasmania and New zealand. Described by Chopra and Tiwari (1950) as a new species under a new genus, N ichollsia kashiense was found to be common in deep wells at Varanasi, and some specimen were also available from a well at Lohagara near Naini in Allahabad District of Uttar Pradesh. A few year later, Tiwari (1955) described another species, Nichollsia menoni, from an abandoned well in Monghyr in Bihar State, extending the distribution of the genus eastward in the Gangetic Plain. Subsequent surveys have revealed that Nichollsia kashiensis occurs in several other localities in U. P. and Bihar, i. e., Ramnagar (opposite Varanasi on the right bank of Ganga), Chapra and Patna (Gupta, 1980). In a personal communication to Dr. K. K. Tiwari, Prof. P. J. Sanjeeva Raj of Madras Christian College, Tambaram (Madras), informs that he has material of phreatoicid isopods from Andhra Pradesh (locality not revealed) in South India obtained during deep drilling operations for boring tube wells. The phreatoicoidea is a primitive suborder of isopods which seems to have evolved during the palaeozoic in the old landmass known as Gondwanaland. Apart from Australia) Newzealand and Tasmania where several living species belonging to many genera still survive in surface as well as subterranean waters, recent representatives of this group have a discontinuous distribution in India, in the Gangetic Plain and Andhra Pradesh (Peninsular India), and in the Cape Province of South Africa.
    [Show full text]
  • Bunderanthura Bundera Gen. Et Sp. Nov. from Western Australia, First
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 28 021–029 (2013) DOI: 10.18195/issn.0312-3162.28(1).2013.021-029 Bunderanthura bundera gen. et sp. nov. from Western Australia, fi rst anchialine Leptanthuridae (Isopoda) from the Southern Hemisphere Gary C. B. Poore1 and William F. Humphreys2 1 Museum Victoria, PO Box 666, Melbourne, Victoria 3001, Australia. Email: [email protected] urn:lsid:zoobank.org:author:C004D784-E842-42B3-BFD3-317D359F8975 2 Western Australian Museum, 49 Kew Street, Welshpool, WA 6106; School of Earth and Environmental Sciences, University of Adelaide, SA 5005; School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. Email: [email protected] urn:lsid:zoobank.org:author:010A9975-91C7-4D13-B643-6E3B4BDF7233 ABSTRACT – A new genus and species of leptanthurid isopod, Bunderanthura bundera, are described from a single individual from an anchialine environment in Western Australia. The new taxon differs from all species of Leptanthura in the elongate antennular and antennal peduncular articles (compact in Leptanthura), the presence of a strong thumb proximally on the palm of pereopod 1 (typically a square angle in Leptanthura), and on pereopod 2 (never seen in Leptanthura), an especially long pre-palm fl exor margin on pereopod 3 (absent or short in Leptanthura), and a narrow uropodal exopod (few exceptions in Leptanthura). This is the fi rst leptanthurid from non-marine environments outside the Atlantic. KEYWORDS: Crustacea, isopod, Cape Range, stygobiont,new genus, new species INTRODUCTION stygobiontleptanthurids known are four species of Members of the crustacean suborder Isopoda Curassanthura Kensley, 1981. Curassanthura halma have invaded fresh or brackish water many times.
    [Show full text]