The Ediacara Biota: a Terminal Neoproterozoic Experiment in the Evolution of Life Guy M

Total Page:16

File Type:pdf, Size:1020Kb

The Ediacara Biota: a Terminal Neoproterozoic Experiment in the Evolution of Life Guy M Vol. 8, No. 2 February 1998 INSIDE • G. K. Gilbert, p. 16 GSA TODAY • Forests as Carbon Sinks, p. 22 • Rocky Mountain A Publication of the Geological Society of America Section Meeting, p. 27 The Ediacara Biota: A Terminal Neoproterozoic Experiment in the Evolution of Life Guy M. Narbonne Department of Geological Sciences, A B Queen’s University, Kingston, ON K7L 3N6, Canada, [email protected] ABSTRACT The Ediacara biota is a distinctive assemblage of large, soft-bodied organisms that characterizes terminal Neoproterozoic (latest Precambrian) strata worldwide. Some Ediacaran organisms apparently were the root- stock for the Phanerozoic evolution of animals; other bizarre forms may rep- resent a failed experiment in Precam- brian evolution. The Ediacara biota and its nonactualistic preservation and ecosystem characterized the final 20 m.y. of the Proterozoic, and disap- peared near the beginning of the Cambrian “explosion” of shelly and burrowing animals. Figure 1. Photograph and artist’s reconstruction of the holotype of Swart- puntia germsi from Namibia. For simplic- INTRODUCTION ity, only three petaloids are shown. Met- The terminal Neoproterozoic was a ric scale. After Narbonne et al. (1997, Figs. 6 and 8). period of fundamental change in Earth history. Major changes included the breakup of the supercontinent Rodinia and the subsequent collision of some of the fragments that were to form Gond- wana (Hoffman, 1992; Unrug, 1997), a stone beds (Fig. 1). The Ediacara biota con- Phanerozoic systems (cf. Sepkoski, 1981). succession of at least four global glacia- tains a few forms that might be familiar to Prior to the appearance of the Ediacara tions, and some of the largest known a modern beachcomber, alongside bizarre biota, Mesoproterozoic to mid-Neopro- changes in the oceans and atmosphere taxa whose place in the evolution of mod- terozoic (1600–600 Ma) benthic communi- (Knoll and Walter, 1992). It is against this ern life is uncertain. A few “Ediacaran sur- ties had been dominated by prokaryotic backdrop that we see the appearance of vivors” have been reported from the Cam- microbes along with some sheetlike and abundant, large organisms, including the brian, but most of the archetypical forms ribbonlike algae (Knoll, 1992). Evidence first definite fossil animals in Earth his- disappeared abruptly near the Cambrian from molecular phylogeny suggests that tory, the Ediacara biota. “explosion” (Grotzinger et al., 1995). microscopic animals could have evolved The Ediacara biota typifies terminal The unique biology, ecology, and preser- sometime prior to the appearance of the Neoproterozoic rocks worldwide (Glaess- vational mode of the Ediacara biota effec- Ediacara biota, but the exact timing ner, 1984; Fedonkin, 1992; Jenkins, 1992; tively marks the end of the Proterozoic remains debatable (Wray et al., 1996; Runnegar and Fedonkin, 1992). It was Eon, and may herald the beginning of Conway Morris, 1996). The oldest known first described from Newfoundland and the Phanerozoic. megascopic Ediacara-type remains occur Namibia, but the name is derived from the in the Twitya Formation of northwestern superb assemblages of these fossils discov- EVOLUTIONARY HISTORY Canada (see Fig. 3, locality 22) immedi- ered at Ediacara in the Flinders Ranges of ately below tillites correlated with the The Ediacara biota occupies a pivotal South Australia by Sprigg (1947). In con- Marinoan-Varanger glaciation and position in the evolution of life on Earth, trast with the shelly fossils that character- believed to be about 600 m.y. old (Hof- between the largely microbial (especially ize the Phanerozoic, the Ediacara biota mann et al., 1990). The structures consist stromatolitic) communities that charac- consists almost exclusively of the remains of centimeter-scale rings and discs that are terize the classic “Precambrian” and the of soft-bodied organisms, which are typi- shelly biotas of the Cambrian and younger cally preserved as impressions on sand- Ediacara Biota continued on p. 2 IN THIS ISSUE GSA TODAY February Vol. 8, No. 2 1998 The Ediacara Biota: A Terminal Rock Stars—G. K. Gilbert ............... 16 Neoproterozoic Experiment in the GSAF Update .......................... 18 GSA TODAY (ISSN 1052-5173) is published monthly Evolution of Life ..................... 1 Washington Report .................... 20 by The Geological Society of America, Inc., with offices at 3300 In Memoriam .......................... 2 Penrose Place, Boulder, Colorado. Mailing address: P.O. Box Forests as Carbon Sinks ................ 22 9140, Boulder, CO 80301-9140, U.S.A. Periodicals postage Memorial Preprints ..................... 2 Penrose Conference Reports paid at Boulder, Colorado, and at additional mailing offices. Sarewitz Leaves IEE Post ................ 8 Postmaster: Send address changes to GSA Today, Member- Tectonics of Interiors ................. 23 ship Services, P.O. Box 9140, Boulder, CO 80301-9140. GSA Summer Internships ............... 8 Faults and Subsurface Flow ........... 25 Copyright © 1998, The Geological Society of America, Inc. SAGE Remarks ......................... 9 Rocky Mountain Section Meeting ....... 27 (GSA). All rights reserved. Copyright not claimed on content Call for Nominations—Biggs Award .... 12 Calendar .............................. 32 prepared wholly by U.S. Government employees within the scope of their employment. Permission is granted to individ- Letters ................................ 13 GSA Meetings ......................... 33 uals to photocopy freely all items other than the science arti- Bulletin and Geology Contents .......... 34 cles to further science and education. Individual scientists are GSA on the Web ....................... 14 hereby granted permission, without royalties or further 1998 Division Officers .................. 15 Classifieds ............................. 35 requests, to make unlimited photocopies of the science arti- cles for use in classrooms to further education and science, About People .......................... 15 1998 GeoVentures ..................... 36 and to make up to five copies for distribution to associates in Award Nominations .................... 15 the furtherance of science; permission is granted to make more than five photocopies for other noncommercial, non- profit purposes furthering science and education upon pay- ment of a fee ($0.25 per page-copy) directly to the Copy- right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923 USA, phone (508) 750-8400; when paying, reference In Memoriam GSA Today, ISSN 1052-5173. Written permission is required from GSA for all other forms of capture, reproduction, Rudolph W. Edmund James G. Osborne, Jr. and/or distribution of any item in this publication by any Cockeysville, Maryland Lander, Wyoming means, including posting on authors’ or organizational Web sites, except that permission is granted to authors to post November 20, 1997 September 20, 1997 the abstracts only of their science articles on their own or their organization’s Web site providing the posting includes Frank A. Exum Cleone M. Rotan this reference: “The full paper was published in the Geologi- Denver, Colorado West Columbia, South Carolina cal Society of America’s newsmagazine, GSA Today, [include August 26, 1997 April 2, 1997 year, month, and page number if known, where article appears or will appear].” GSA provides this and other forums Jacob E. Gair Norman R. Tilford for the presentation of diverse opinions and positions by sci- entists worldwide, regardless of their race, citizenship, gen- Kensington, Maryland College Station, Texas der, religion, or political viewpoint. Opinions presented in January 1, 1998 November 13, 1997 this publication do not reflect official positions of the Society. Robert C. Lafferty SUBSCRIPTIONS for 1998 calendar year: Society Eau Gallie, Florida Members: GSA Today is provided as part of membership dues. Contact Membership Services at (800) 472-1988, December 1997 (303) 447-2020 or [email protected] for member- ship information. Nonmembers & Institutions: Free with paid subscription to both GSA Bulletin and Geology, otherwise $50 for U.S., Canada, and Mexico; $60 else- where. Contact Subscription Services. Single copies may Memorial Preprints be requested from Publication Sales. Also available on an annual CD-ROM, (together with GSA Bulletin, Geology, GSA Data Repository, and an Electronic Retrospective Index to The following memorial preprints are now available, free of charge, by writing journal articles from 1972); $89 to GSA Members, others call GSA Subscription Services for prices and details. Claims: to GSA, P.O. Box 9140, Boulder, CO 80301. For nonreceipt or for damaged copies, members contact Membership Services; all others contact Subscription Ser- Robert E. Bergstrom John “Benny” Joseph DeBenedetti vices. Claims are honored for one year; please allow suffi- Morris W. Leighton with contributions George B. Pichel cient delivery time for overseas copies, up to six months. from Margaret (Carlson) Bergstrom and George Edmund Peter Eastwood Jack A. Simon STAFF: Prepared from contributions from the GSA staff Neil Church and membership. James Robert Butler Executive Director: Donald M. Davidson, Jr. Dorothy Jung Echols Science Editors: Suzanne M. Kay, Department of Daniel A. Textoris Geological Sciences, Cornell University, Ithaca, NY 14853; L. Greer Price Molly F. Miller, Department of Geology, Box 117-B, Vanderbilt Robert J. Cordell Gus H. Goudarzi University, Nashville, TN 37235. Lewis S. Pittman and James Gibbs
Recommended publications
  • The Ediacaran Frondose Fossil Arborea from the Shibantan Limestone of South China
    Journal of Paleontology, 94(6), 2020, p. 1034–1050 Copyright © 2020, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/20/1937-2337 doi: 10.1017/jpa.2020.43 The Ediacaran frondose fossil Arborea from the Shibantan limestone of South China Xiaopeng Wang,1,3 Ke Pang,1,4* Zhe Chen,1,4* Bin Wan,1,4 Shuhai Xiao,2 Chuanming Zhou,1,4 and Xunlai Yuan1,4,5 1State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China <[email protected]><[email protected]> <[email protected]><[email protected]><[email protected]><[email protected]> 2Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA <[email protected]> 3University of Science and Technology of China, Hefei 230026, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Center for Research and Education on Biological Evolution and Environment, Nanjing University, Nanjing 210023, China Abstract.—Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is domi- nated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present.
    [Show full text]
  • Decoupled Evolution of Soft and Hard Substrate Communities During the Cambrian Explosion and Great Ordovician Biodiversification Event
    Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event Luis A. Buatoisa,1, Maria G. Mánganoa, Ricardo A. Oleab, and Mark A. Wilsonc aDepartment of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; bEastern Energy Resources Science Center, US Geological Survey, Reston, VA 20192; and cDepartment of Geology, The College of Wooster, Wooster, OH 44691 Edited by Steven M. Holland, University of Georgia, Athens, GA, and accepted by Editorial Board Member David Jablonski May 6, 2016 (received for review November 21, 2015) Contrasts between the Cambrian Explosion (CE) and the Great shed light on the natures of both radiations. Because there is still Ordovician Biodiversification Event (GOBE) have long been recog- controversy regarding Sepkoski’s nonstandardized curves of nized. Whereas the vast majority of body plans were established Phanerozoic taxonomic diversity (13–15), a rarefaction analysis as a result of the CE, taxonomic increases during the GOBE were was performed in an attempt to standardize diversity data. The manifested at lower taxonomic levels. Assessing changes of ichno- aims of this paper are to document the contrasting ichnodiversity diversity and ichnodisparity as a result of these two evolutionary and ichnodisparity trajectories in soft and hard substrate com- events may shed light on the dynamics of both radiations. The early munities during these two evolutionary events and to discuss the Cambrian (series 1 and 2) displayed a dramatic increase in ichnodi- possible underlying causes of this decoupled evolution. versity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Results Cambrian bioerosion structures are known.
    [Show full text]
  • The Evolution and Distribution of Life in the Precambrian Eon-Global Perspective and the Indian Record 765
    The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record 765 The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record M SHARMA* and Y SHUKLA Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India *Corresponding author (Email, [email protected]) The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the fi eld of evolution of life. Although the Precambrian encompasses 87% of the earth’s history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains. [Sharma M and Shukla Y 2009 The evolution and distribution of life in the Precambrian eon-Global perspective and the Indian record; J. Biosci. 34 765–776] DOI 10.1007/s12038-009-0065-8 1. Introduction suggested that all the living forms can be grouped into three principal domains viz. the Bacteria, the Archaea, and The sudden appearance and radiation of both skeletal and the Eucarya (Woese 1987, 2002; Woese et al.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 58, Number 4, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 58, number 4, pp. 605–622 doi:10.1093/icb/icy088 Society for Integrative and Comparative Biology SYMPOSIUM INTRODUCTION The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an “Explosion” Downloaded from https://academic.oup.com/icb/article-abstract/58/4/605/5056706 by Stanford Medical Center user on 15 October 2018 Erik A. Sperling1 and Richard G. Stockey Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA From the symposium “From Small and Squishy to Big and Armored: Genomic, Ecological and Paleontological Insights into the Early Evolution of Animals” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California. 1E-mail: [email protected] Synopsis Animals originated and evolved during a unique time in Earth history—the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies—utilizing a diversity of methodologies—agree that animal multicellularity had arisen by 800 million years ago (Ma) (Tonian period), the bilaterian body plan by 650 Ma (Cryogenian), and divergences between sister phyla occurred 560–540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges.
    [Show full text]
  • Download Download
    Dorjnamjaa et al. Mongolian Geoscientist 49 (2019) 41-49 https://doi.org/10.5564/mgs.v0i49.1226 Mongolian Geoscientist Review paper New scientific direction of the bacterial paleontology in Mongolia: an essence of investigation * Dorj Dorjnamjaa , Gundsambuu Altanshagai, Batkhuyag Enkhbaatar Department of Paleontology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia *Corresponding author. Email: [email protected] ARTICLE INFO ABSTRACT Article history: We review the initial development of Bacterial Paleontology in Mongolia and Received 10 September 2019 present some electron microscopic images of fossil bacteria in different stages of Accepted 9 October 2019 preservation in sedimentary rocks. Indeed bacterial paleontology is one the youngest branches of paleontology. It has began in the end of 20th century and has developed rapidly in recent years. The main tasks of bacterial paleontology are detailed investigation of fossil microorganisms, in particular their morphology and sizes, conditions of burial and products of habitation that are reflected in lithological and geochemical features of rocks. Bacterial paleontology deals with fossil materials and is useful in analysis of the genesis of sedimentary rocks, and sedimentary mineral resources including oil and gas. The traditional paleontology is especially significant for evolution theory, biostratigraphy, biogeography and paleoecology; however bacterial paleontology is an essential first of all for sedimentology and for theories sedimentary ore genesis or biometallogeny Keywords: microfossils, phosphorite, sedimentary rocks, lagerstatten, biometallogeny INTRODUCTION all the microorganisms had lived and propagated Bacteria or microbes preserved well as fossils in without breakdowns. Bacterial paleontological various rocks, especially in sedimentary rocks data accompanied by the data on the first origin alike natural substances.
    [Show full text]
  • Geologic History of the Earth 1 the Precambrian
    Geologic History of the Earth 1 algae = very simple plants that Geologists are scientists who study the structure grow in or near the water of rocks and the history of the Earth. By looking at first = in the beginning at and examining layers of rocks and the fossils basic = main, important they contain they are able to tell us what the beginning = start Earth looked like at a certain time in history and billion = a thousand million what kind of plants and animals lived at that breathe = to take air into your lungs and push it out again time. carbon dioxide = gas that is produced when you breathe Scientists think that the Earth was probably formed at the same time as the rest out of our solar system, about 4.6 billion years ago. The solar system may have be- certain = special gun as a cloud of dust, from which the sun and the planets evolved. Small par- complex = something that has ticles crashed into each other to create bigger objects, which then turned into many different parts smaller or larger planets. Our Earth is made up of three basic layers. The cen- consist of = to be made up of tre has a core made of iron and nickel. Around it is a thick layer of rock called contain = have in them the mantle and around that is a thin layer of rock called the crust. core = the hard centre of an object Over 4 billion years ago the Earth was totally different from the planet we live create = make on today.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • The Cambrian Explosion: a Big Bang in the Evolution of Animals
    The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today.
    [Show full text]
  • Geobiological Events in the Ediacaran Period
    Geobiological Events in the Ediacaran Period Shuhai Xiao Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA NSF; NASA; PRF; NSFC; Virginia Tech Geobiology Group; CAS; UNLV; UCR; ASU; UMD; Amherst; Subcommission of Neoproterozoic Stratigraphy; 1 Goals To review biological (e.g., acanthomorphic acritarchs; animals; rangeomorphs; biomineralizing animals), chemical (e.g., carbon and sulfur isotopes, oxygenation of deep oceans), and climatic (e.g., glaciations) events in the Ediacaran Period; To discuss integration and future directions in Ediacaran geobiology; 2 Knoll and Walter, 1992 • Acanthomorphic acritarchs in early and Ediacara fauna in late Ediacaran Period; • Strong carbon isotope variations; • Varanger-Laplandian glaciation; • What has happened since 1992? 3 Age Constraints: South China (538.2±1.5 Ma) 541 Ma Cambrian Dengying Ediacaran Sinian 551.1±0.7 Ma Doushantuo 632.5±0.5 Ma 635 Ma 635.2±0.6 Ma Nantuo (Tillite) 636 ± 5Ma Cryogenian Nanhuan 654 ± 4Ma Datangpo 663±4 Ma Neoproterozoic Neoproterozoic Jiangkou Group Banxi Group 725±10 Ma Tonian Qingbaikouan 1000 Ma • South China radiometric ages: Condon et al., 2005; Hoffmann et al., 2004; Zhou et al., 2004; Bowring et al., 2007; S. Zhang et al., 2008; Q. Zhang et al., 2008; • Additional ages from Nama Group (Namibia), Conception Group (Newfoundland), and Vendian (White Sea); 4 The Ediacaran Period Ediacara fossils Cambrian 545 Ma Nama assemblage 555 Ma White Sea assemblage 565 Ma Avalon assemblage 575 Ma 585 Ma Doushantuo biota 595 Ma 605 Ma Ediacaran Period 615 Ma
    [Show full text]
  • Page -  Paleo Lab 06 - the Cambrian Explosion of Life
    page - Paleo Lab 06 - The Cambrian Explosion of Life An Introduction to Index Fossils CLASSIFICATION AND TAXONOMY Geologists follow the lead of biologists in the classification and naming of organisms (taxonomy after taxon = name). Since its introduction early in the 18th century, the system devised by Linnaeus has been used to categorize organisms and to affix a formal name to each species. Major classification categories or groupings are listed below on the left with an example using the species of the common house cat to show how the system may be used: KINGDOM Animalia PHYLUM Chordata CLASS Mammalia ORDER Carnivora FAMILY Felidae GENUS Felis SPECIES domestica The basic unit of the system is the species, and each category above it includes the divisions below. A two part (binomial) formal designation for each species, following the scheme of Linnaeus, is composed of the capitalized name of the genus (plural = genera) followed by the uncapitalized name of the species (plural = species). Note that the binomial is printed in a special way (italics) to distinguish it. After at least 5000 years of domestication, man has drawn out of that species such a variety of traits through selection and cross-breeding that it may be more difficult to realize that all such cats belong to the same species than it is to recognize that they share the same genus with the lion (Felis leo), leopard (Felis pardus), jaguar (Felis onca), tiger (Felis tigris), and the cougar or puma (Felis concolor). All wildcats belong to the same genus but are classified in three separate species found in Europe, Africa, and the Americas (the ocelot), Felis sylvestris, F.
    [Show full text]
  • EDITORIAL NOTE Collection of Paleontology Papers in Honor of The
    Anais da Academia Brasileira de Ciências (2019) 91(Suppl. 2): e20191434 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201920191434 www.scielo.br/aabc | www.fb.com/aabcjournal EDITORIAL NOTE Collection of Paleontology Papers in honor of the Centenary of the Brazilian Academy of Sciences ALEXANDER W.A. KELLNER* and MARINA B. SOARES Laboratório de Sistemática e Tafonomia de Vertebrados Fósseis, Departamento de Geologia e Paleontologia do Museu Nacional/UFRJ, Quinta da Boa Vista, s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil How to cite: KELLNER AWA AND SOARES MB. 2019. Collection of Paleontology Papers in honor of the Centenary of the Brazilian Academy of Sciences. An Acad Bras Cienc 91: e20191434. DOI 10.1590/0001-3765201920191434. The Brazilian Academy of Sciences is a non-profit organization (ABC 2019) that has completed one century of existence in 2016. A series of special publications was organized by the Annals of the Brazilian Academy of Sciences (AABC) in celebration of this important date (e.g., Kellner 2017, Crespilho 2018, Cavaleiro 2018). Here we have the pleasure to introduce the final of these volumes gathering 20 original contributions in paleontology, the science dedicated to the study of all evidences of life that have been preserved in layers of deep time. The topics presented here vary from the description of new species and specimens of flying reptiles, dinosaurs, and crocodylomorphs to studies on biogeography, osteohistology, and specific contributions provided by microfossils. Over 70 authors from different countries were involved in this volume, showing the increasing international integration of Brazilian paleontologists.
    [Show full text]
  • The Ediacaran–Cambrian Transition: the Emerging Record from Small Carbonaceous Fossils (Scfs)
    38 The Ediacaran–Cambrian transition: the emerging record from Small Carbonaceous Fossils (SCFs) Ben J. Slater1, Thomas H.P. Harvey2, Romain Guilbaud3, Sebastian Willman1, Graham E. Budd1, Nicholas J. Butterfield4. 1Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75236 Uppsala, Sweden ([email protected]) 2School of Geography, Geology and the Environment, University of Leicester, Leicester LE1 7RH, UK 3Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK. 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK Abstract.––The most profound change in the fossil record is centered on the Ediacaran–Cambrian transition. Sediments deposited near to this boundary record the first complex trace fossils, the first animal biomineralizers and the earliest fossils of the major animal groups that came to define the subsequent Phanerozoic fossil record. Here we discuss how the emerging record of small carbonaceous fossils (SCFs) is shedding new light on unmineralized aspects of the biota from this critical evolutionary transition. The new SCFs record complements currently established records from trace fossils and biomineralized shelly-remains in reconstructing the broader scale macroevolutionary patterns of this transition, but via an entirely different taphonomic window. SCFs extend the record of multiple major animal groups, improve our picture of protistan diversity from this interval, and reveal new data on elements of the biota that span the Ediacaran–Cambrian boundary. Key words: small carbonaceous fossils; bilateria; Burgess Shale-type preservation; Ediacaran; Terreneuvian. The dramatic changes in the fossil record across subsequent Cambrian radiation (Butterfield, the Ediacaran–Cambrian transition seemingly 2003; Slater et al., 2018a).
    [Show full text]