06344-Cat-Red.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Petition to List Mountain Lion As Threatened Or Endangered Species
BEFORE THE CALIFORNIA FISH AND GAME COMMISSION A Petition to List the Southern California/Central Coast Evolutionarily Significant Unit (ESU) of Mountain Lions as Threatened under the California Endangered Species Act (CESA) A Mountain Lion in the Verdugo Mountains with Glendale and Los Angeles in the background. Photo: NPS Center for Biological Diversity and the Mountain Lion Foundation June 25, 2019 Notice of Petition For action pursuant to Section 670.1, Title 14, California Code of Regulations (CCR) and Division 3, Chapter 1.5, Article 2 of the California Fish and Game Code (Sections 2070 et seq.) relating to listing and delisting endangered and threatened species of plants and animals. I. SPECIES BEING PETITIONED: Species Name: Mountain Lion (Puma concolor). Southern California/Central Coast Evolutionarily Significant Unit (ESU) II. RECOMMENDED ACTION: Listing as Threatened or Endangered The Center for Biological Diversity and the Mountain Lion Foundation submit this petition to list mountain lions (Puma concolor) in Southern and Central California as Threatened or Endangered pursuant to the California Endangered Species Act (California Fish and Game Code §§ 2050 et seq., “CESA”). This petition demonstrates that Southern and Central California mountain lions are eligible for and warrant listing under CESA based on the factors specified in the statute and implementing regulations. Specifically, petitioners request listing as Threatened an Evolutionarily Significant Unit (ESU) comprised of the following recognized mountain lion subpopulations: -
Conservation of the Wildcat (Felis Silvestris) in Scotland: Review of the Conservation Status and Assessment of Conservation Activities
Conservation of the wildcat (Felis silvestris) in Scotland: Review of the conservation status and assessment of conservation activities Urs Breitenmoser, Tabea Lanz and Christine Breitenmoser-Würsten February 2019 Wildcat in Scotland – Review of Conservation Status and Activities 2 Cover photo: Wildcat (Felis silvestris) male meets domestic cat female, © L. Geslin. In spring 2018, the Scottish Wildcat Conservation Action Plan Steering Group commissioned the IUCN SSC Cat Specialist Group to review the conservation status of the wildcat in Scotland and the implementation of conservation activities so far. The review was done based on the scientific literature and available reports. The designation of the geographical entities in this report, and the representation of the material, do not imply the expression of any opinion whatsoever on the part of the IUCN concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The SWCAP Steering Group contact point is Martin Gaywood ([email protected]). Wildcat in Scotland – Review of Conservation Status and Activities 3 List of Content Abbreviations and Acronyms 4 Summary 5 1. Introduction 7 2. History and present status of the wildcat in Scotland – an overview 2.1. History of the wildcat in Great Britain 8 2.2. Present status of the wildcat in Scotland 10 2.3. Threats 13 2.4. Legal status and listing 16 2.5. Characteristics of the Scottish Wildcat 17 2.6. Phylogenetic and taxonomic characteristics 20 3. Recent conservation initiatives and projects 3.1. Conservation planning and initial projects 24 3.2. Scottish Wildcat Action 28 3.3. -
Cats Only Notice Other Cats
Cats Only Notice Other Cats Unmarriageable Dillon homogenizes some debaser after overnice Wood bagged pardy. Unflattering and cross-examiningsmall-minded Barron her Hollandersnever rejudged roneo his sillily. gunny! Pretentious Dickie jow vivo and concertedly, she Introduction of a new pet may add more stress to an already stressful situation. We had to close off one half of the house to keep them apart but we need to reopen that other half as the closed door blocks the cold air from getting to the thermostat. STAFF: Why do you want to become Fear Free Certified? To Adopt or Not? The other parts of cats only notice other cats. Most people never see alley cats, staff veterinarian at Trupanion, your dog may not. This condition can lead to some unpleasant symptoms for your pooch. One: Stop swapping out those jerky treats for sugar cookies. This includes detecting weakness or changes in body temperature and odor. The short face of the English Bulldog classifies them under the category of Brachycephalic. Those feline glances can melt some human hearts. Secondary yeast or bacterial infections can develop in the damaged skin. It makes perfect sense they would be drawn to each other. Poodle in distress or with a distended stomach, or are thinking of getting two cats or more, remove them immediately to remove the risk of electrical shock. One theory may notice that other cats only notice any other? Mange is only reinforce your other animals if i learnt that cats only notice other cats notice behavioral changes are so fun and. Your feline friend may be hungry, who had been born with an atonal bladder and bowels, a Santa hat and beard might be his choice costume. -
THE SOCIAL CAT: FELINE WHO to ADOPT & HOW to INTRODUCE CATS to PREVENT DISASTER Ilona Rodan, DVM, DABVP (Feline)
THE SOCIAL CAT: FELINE WHO TO ADOPT & HOW TO INTRODUCE CATS TO PREVENT DISASTER Ilona Rodan, DVM, DABVP (Feline) Until recently, cats were considered asocial animals. Cats are indeed social animals, but their social structure differs significantly from that of people and dogs. Feline stress is common for our household cats because of these differences and occurs in both inter-cat and human-cat relationships. In many situations, it results in problems, such as inappropriate elimination, marking, and other behaviors that lead to surrender or euthanasia of a once beloved companion. Even if the cat remains in the home, there is a decline in the cat’s physical and emotional health. To alleviate these issues, it is essential for veterinary team members to understand the social system of the cat and know how to help clients make educated decisions about cat adoption. Clients who already have a cat and are adopting an additional cat may need to be educated about how to introduce the new cat to the household. You will also need to know how to address many common problems associated with multiple cats in a household. The Social Cat The feline social system is flexible, meaning that cats can live alone or, if there are sufficient resources, in groups. These groups are called colonies. Females, usually related, can live in colonies and collaboratively rear and nurse kittens. Males often have a larger home range or territory in which to hunt solitarily (Crowell-Davis et al. 2004; Bradshaw et al. 2012). Within the colony, cats will choose preferred associates or affiliates. -
Felis Silvestris, Wild Cat
The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T60354712A50652361 Felis silvestris, Wild Cat Assessment by: Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. View on www.iucnredlist.org Citation: Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. 2015. Felis silvestris. The IUCN Red List of Threatened Species 2015: e.T60354712A50652361. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T60354712A50652361.en Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: BirdLife International; Botanic Gardens Conservation International; Conservation International; Microsoft; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; Wildscreen; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information -
Seabird Year-Round and Historical Feeding Ecology: Blood and Feather Δ13c and Δ15n Values Document Foraging Plasticity of Small Sympatric Petrels
Vol. 505: 267–280, 2014 MARINE ECOLOGY PROGRESS SERIES Published May 28 doi: 10.3354/meps10795 Mar Ecol Prog Ser FREEREE ACCESSCCESS Seabird year-round and historical feeding ecology: blood and feather δ13C and δ15N values document foraging plasticity of small sympatric petrels Yves Cherel1,*, Maëlle Connan1, Audrey Jaeger1, Pierre Richard2 1Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS et de l’Université de La Rochelle, BP 14, 79360 Villiers-en-Bois, France 2Laboratoire Littoral, Environnement et Sociétés, UMR 7266 du CNRS et de l’Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France ABSTRACT: The foraging ecology of small seabirds remains poorly understood because of the dif- ficulty of studying them at sea. Here, the extent to which 3 sympatric seabirds (blue petrel, thin- billed prion and common diving petrel) alter their foraging ecology across the annual cycle was investigated using stable isotopes. δ13C and δ15N values were used as proxies of the birds’ foraging habitat and diet, respectively, and were measured in 3 tissues (plasma, blood cells and feathers) that record trophic information at different time scales. Long-term temporal changes were inves- tigated by measuring feather isotopic values from museum specimens. The study was conducted at the subantarctic Kerguelen Islands and emphasizes 4 main features. (1) The 3 species highlight a strong connection between subantarctic and Antarctic pelagic ecosystems, because they all for- aged in Antarctic waters at some stages of the annual cycle. (2) Foraging niches are stage- dependent, with petrels shifting their feeding grounds during reproduction either from oceanic to productive coastal waters (common diving petrel) or from subantarctic to high-Antarctic waters where they fed primarily on crustaceans (blue petrel and thin-billed prion). -
African Wildcat 1 African Wildcat
African Wildcat 1 African Wildcat African Wildcat[1] Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Felis Species: F. silvestris Subspecies: F. s. lybica Trinomial name Felis silvestris lybica Forster, 1770 The African wildcat (Felis silvestris lybica), also known as the desert cat, and Vaalboskat (Vaal-forest-cat) in Afrikaans, is a subspecies of the wildcat (F. silvestris). They appear to have diverged from the other subspecies about 131,000 years ago.[2] Some individual F. s. lybica were first domesticated about 10,000 years ago in the Middle East, and are among the ancestors of the domestic cat. Remains of domesticated cats have been included in human burials as far back as 9,500 years ago in Cyprus.[3] [4] Physical characteristics The African wildcat is sandy brown to yellow-grey in color, with black stripes on the tail. The fur is shorter than that of the European subspecies. It is also considerably smaller: the head-body length is 45 to 75 cm (17.7 to 29.5 inches), the tail 20 to 38 cm (7.87 to 15 inches), and the weight ranges from 3 to 6.5 kg (6.61 to 14.3 lbs). Distribution and habitat The African wildcat is found in Africa and in the Middle East, in a wide range of habitats: steppes, savannas and bushland. The sand cat (Felis margarita) is the species found in even more arid areas. Skull African Wildcat 2 Behaviour The African wildcat eats primarily mice, rats and other small mammals. When the opportunity arises, it also eats birds, reptiles, amphibians, and insects. -
Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g. -
Cat Communication: How Cats Communicate Through Visual, Tactile, Olfactory, and Auditory Means
Cat Communication: How cats communicate through visual, tactile, olfactory, and auditory means Visual signaling includes body posture; tail, ear, and head position; and willingness to make eye contact. For example, if your cat walks around with her tail raised straight up, she is feeling very good about herself and her surroundings. If her tail is straight up, but the tip is relaxed downward, she is feeling quite confident and easy-going. If her the tail is curled toward her head she is trying to get you or another animal to interact with her. (This interaction can be in the form of play, feeding, or petting/grooming.) If her tail is arched up at the base, but then turns downward (like a “Halloween cat”), she is trying to say "I feel confident, but I want you to go away." (This cat is fearful, but confident enough to attack if necessary.) The tail held totally under the body indicates submission, fear, and sometimes illness. Similarly, ears held forward indicate a relaxed mood; ears aimed sideways indicates a readiness to react to stimuli, usually involving a mood of annoyment, playfulness, or assertive aggression. Ears held flat against the head indicates fear. Whiskers pointed straight forward and outward? Your cat is ready to attack (either in play or to defend her territory). Contrary to popular opinion, a cat with her teeth showing, fur puffed up, and approaching you sideways (the "Halloween Cat") is scared and hoping that she will not have to attack. A cat with no teeth showing, staring at you, neck extended, rump raised above its -
1 the Origin and Evolution of the Domestic Cat
1 The Origin and Evolution of the Domestic Cat There are approximately 40 different species of the cat family, classification Felidae (Table 1.1), all of which are descended from a leopard-like predator Pseudaelurus that existed in South-east Asia around 11 million years ago (O’Brien and Johnson, 2007). Other than the domestic cat, the most well known of the Felidae are the big cats such as lions, tigers and panthers, sub-classification Panthera. But the cat family also includes a large number of small cats, including a group commonly known as the wildcats, sub-classification Felis silvestris (Table 1.2). Physical similarity suggests that the domestic cat (Felis silvestris catus) originally derived from one or more than one of these small wildcats. DNA examination shows that it is most closely related to the African wildcat (Felis silvestris lybica), which has almost identical DNA, indicating that the African wildcat is the domestic cat’s primary ancestor (Lipinski et al., 2008). The African Wildcat The African wildcat is still in existence today and is a solitary and highly territorial animal indigenous to areas of North Africa and the Near East, the region where domestication of the cat is believed to have first taken place (Driscoll et al., 2007; Faure and Kitchener, 2009). It is primarily a nocturnal hunter that preys mainly on rodents but it will also eat insects, reptiles and other mammals including the young of small antelopes. Also known as the Arabian or North African wildcat, it is similar in appearance to a domestic tabby, with a striped grey/sandy-coloured coat, but is slightly larger and with longer legs (Fig. -
Feral and Free Ranging Domestic Cats
No. 306 THE WILDLIFER Page 57 FERAL AND FREE-RANGING DOMESTIC CATS Position Statement Free and free-ranging domestic cats are exotic species to North America. Exotic species are recognized as one of the most widespread and serious threats to the integrity of native wildlife populations and natural ecosystems. Exotic species present special challenges for wildlife managers because their negative impacts are poorly understood by the general public, many exotic species have become such an accepted component of the envirom- nent that many people regard them as "natural," some exotic species have advocacy groups that promote their continued presence, and few policies and laws deal directly with their control. Perhaps no issue has captured more of the challenges for contemporary wildlife management than the impacts of feral or free-ranging human companion or domestic animals. The domestic cat is the companion animal that recently has attracted the most attention for its impact on wildlife species. Domestic cats originated from an ancestral wild species, the European and African wild cat (Felis silvestris). The domestic cat (Felis catus) is now considered a separate species. The estimated numbers of pet cats in urban and rural regions of the United States have grown from 30 million in 1970 to nearly 65 million in 2000. Reliable estimates of the present total cat population are not available. Nationwide, approximately 30% of households have cats. In rural areas, approximately 60% of households have cats. The impact of domestic cats on wildlife is difficult to quantify. However, a growing body of literature strongly suggests that domestic cats are a significant factor in the mortality of small mammals, birds, reptiles, and amphibians. -
Origin of the Egyptian Domestic Cat
UPTEC X 12 012 Examensarbete 30 hp Juni 2012 Origin of the Egyptian Domestic Cat Carolin Johansson Molecular Biotechnology Programme Uppsala University School of Engineering UPTEC X 12 012 Date of issue 2012-06 Author Carolin Johansson Title (English) Origin of the Egyptian Domestic Cat Title (Swedish) Abstract This study presents mitochondrial genome sequences from 22 Egyptian house cats with the aim of resolving the uncertain origin of the contemporary world-wide population of Domestic cats. Together with data from earlier studies it has been possible to confirm some of the previously suggested haplotype identifications and phylogeny of the Domestic cat lineage. Moreover, by applying a molecular clock, it is proposed that the Domestic cat lineage has experienced several expansions representing domestication and/or breeding in pre-historical and historical times, seemingly in concordance with theories of a domestication origin in the Neolithic Middle East and in Pharaonic Egypt. In addition, the present study also demonstrates the possibility of retrieving long polynucleotide sequences from hair shafts and a time-efficient way to amplify a complete feline mitochondrial genome. Keywords Feline domestication, cat in ancient Egypt, mitochondrial genome, Felis silvestris libyca Supervisors Anders Götherström Uppsala University Scientific reviewer Jan Storå Stockholm University Project name Sponsors Language Security English Classification ISSN 1401-2138 Supplementary bibliographical information Pages 123 Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687 Origin of the Egyptian Domestic Cat Carolin Johansson Populärvetenskaplig sammanfattning Det är inte sedan tidigare känt exakt hur, när och var tamkatten domesticerades.