Total Synthesis of Biologically Relevant Natural

Total Page:16

File Type:pdf, Size:1020Kb

Total Synthesis of Biologically Relevant Natural Total synthesis of biologically relevant natural products in the diketopiperazine and oxepine series : oxidative functionalizations and oxa-Cope rearrangement studies Wei Zhang To cite this version: Wei Zhang. Total synthesis of biologically relevant natural products in the diketopiperazine and oxepine series : oxidative functionalizations and oxa-Cope rearrangement studies. Organic chemistry. Sorbonne Université, 2018. English. NNT : 2018SORUS433. tel-02957219 HAL Id: tel-02957219 https://tel.archives-ouvertes.fr/tel-02957219 Submitted on 5 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 406, Chimie Moléculaire Molécules de Communication et Adaptation des Micro-organismes (UMR 7245, CNRS-MNHN) TOTAL SYNTHESIS OF BIOLOGICALLY RELEVANT NATURAL PRODUCTS IN THE DIKETOPIPERAZINE AND OXEPINE SERIES Oxidative functionalizations and oxa-Cope rearrangement studies Par Wei ZHANG Thèse de doctorat de Chimie organique Dirigée par Bastien NAY et Didier BUISSON Présentée et soutenue publiquement le 3 OCTOBRE 2018 Devant un jury composé de : Dr. GRIMAUD Laurence Directrice de Recherche Examinatrice Dr. EVANNO Laurent Maître de conférences Rapporteur Dr. DE PAOLIS Michaël Chargé de Recherche Rapporteur Dr. ROUSSI Fanny Directrice de Recherche Examinatrice Dr. NAY Bastien Directeur de Recherche Examinateur Dr. BUISSON Didier Directeur de Recherche Examinateur ACKNOWLEDGEMENTS First and foremost, I would like to express my deepest gratitude to my research supervisors Dr. Bastien Nay and Dr. Didier Buisson, for giving me this great opportunity to work with them. Thank you for your patient guidance, enthusiastic encouragement and useful advises already from my master internship. Thanks, Bastien, your broad knowledge and experience in organic chemistry brought me a lot and helped me understand the chemical research field. Thank Didier, for sharing your great knowledge in biotransformation and every interesting skill in lab with me. Your scientific rigor and passion taught me how to be a real chemist. The discussions with all of you has motivated me to keep moving forward in my project and as well in my future. I want to express my very special thanks to Dr. Gilles Frison. Thank you for investing time for guiding me to finish all the calculation work. I enjoyed immensely the project I’ve worked on, even only several months. With your help, I have learned more than I could have imagined during my thesis project. Many thanks go equally to Dr. Emmanuel Baudouin for carrying out all biological testes for radulanins. Your amazing work brought more value to my project. I would like to thank all the members of the jury committee, Dr. Laurent Evanno, Dr. Michaël De Paolis, Dr. Laurance Grimaud and Dr. Fanny Roussi for sparing your time to evaluate my Ph.D. research work and come to my defense. Secondly, I would like also to thank all the group members from MCAM and LSO for their warm welcome and generous help during my stay. Dr. Sébastien Prevost and Dr. Alexis Archambeau, thanks for giving thought-provoking chemical and technical suggestions every time when I need help, as well as for your patience to help me solve all problems. Your contributions to the lab of Muséum and LSO make the lab life much easier. I would like also to acknowledge Pr. Bernard Bodo, Dr. Stéphane Mann, Pr. Soizic Prado, Dr. Caroline Kuntz for rich conversations and useful advices during the seminars or coffee time. Dr. Benjamin Laroche and Dr. Mehdi Zaghouani, thanks for all your chemical help from my very beginning work in the lab. Your guys have set up outstanding examples for me. Even for today, I’m still learn from you and regard you as models (Some of your advices, I began to understand in the end of my thesis, such a pity). i Dr. Marine Vallet, Dr. Ambre Dezaire, Cécile Anne, Margot Barenstrauch, Anne Tourneroche, Laura Guedon and Andrea Diaz, thank you for all your help in Myco and for every pleasant chat with you. I can still remember the birthday surprise you brought me in my first year of my Ph.D. It’s always been much appreciated to go out with you girls. Lunch, drinking and of course our 10km running, such unforgettable moments. I promise that there will be for sure a big party organized in my home after my defense! Vincent Revil-Baudard and Oscar Gayraud, thanks for helping me dealing with any small or big problems (NMR, computer…). I really enjoy having coffee time with you guys and appreciate all fruitful discussions about science and life. We should go back again to the best falafel with Eloi Astier! Gabriela Siemiaszko, thank you for sharing your research experiences at lunch break and especially thanks for shifting your schedule to night-work mode at last period of our Ph.D., so that I could finish a lot of work even after Pjotr Roest left. My thanks also go to Dr. Qi Huang for taking time to read this manuscript and giving helpful and constructive criticism. PhD made all of us great friends. I really love to spend every joyful moment with you. We’ll for sure play the card game together! I would like to give a big hug for Aimilia Meichanetzoglou. Thank you for your constant companion from our M2 internships. I’ll never forget your support whenever I feel joyful or upset. Best wishes for your Ph.D. journey (καλή τύχη). It should be as great as you! I would like to thank cordially Alain Blond, Alexandre Deville, Arul Marie, Lionel Dubost and Vincent Jactel. Thank you for dealing with equipments and affording great NMR and HRMS analytic work. Big thanks to Séverine Amand, Christine Bailly, Brice Mollinelli, Zhilai Hong, Djéna Mokhtari, Cethaise Hyacinathe, Samir Zard, Yvan Six, Laurent El Kaïm, Béatrice Sire, Kieu Dung Ly, Xuan Chen, Julien Morain and any other group members in MCAM and LSO that I haven’t mentioned. You’ve all helped me in some way over these years, thank you for setting a great and funny work environment. I really enjoy working with you and will definitely miss all the moments that we spent together. Last but not least, I would like to express especially my love and gratitude to my Mum and Dad, who worked so hard to help me get here, and who always let me do things my own way and in my own time. Thank you for your unconditional support, both financially and ii emotionally for all my decision through these years abroad. Your love and encouragement keep me strong. I need also to give my grateful acknowledgment to all my friends, who have been always so encouraging and supportive during this journey, and so understanding of my hobbit-like social reclusiveness while I’ve been writing up this thesis. Thanks to you, I’m living a wonderful and colorful life. iii iv LIST OF ABBREVIATIONS A: adenylation domain aa: amino acids Ac: acetyl Ac2O: acetic anhydride AIBN: 2,2’-azobis(2-methylpropionitrile) Ar/ar: aryl Bn: benzyl Boc: tert-butoxycarbonyl BSTFA: N,O-bis(trimethylsilyl)trifluoroacetamide C: condensation domain CAN: ceric ammonium nitrate cat.: catalytic quantity CoA: coenzyme-A Cbz: benzyloxycarbonyl CDI: 1,1’-carbonyldiimidazole CSA: camphor sulfonic acid CDPS: cyclodipeptide synthase COD: 1,5-cyclooctadiene DKP: diketopiperazine DCM: dichloromethane DMAP: 4-N, N-dimethylaminopyridine DMF: dimethylformamide DMSO: dimethylsulfoxide DIPEA: N,N-diisopropylethylamine d.r.: diastereomeric ratio DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene DCE: 1,2-dichloroethane DMDO: dimethyldioxirane DMBn: dimethoxybenzoin DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone DFT: density functional theory DEAD: diethyl azodicarboxylate DIAD: diisopropyl azodicarboxylate equiv.: equivalent E+: electrophile EWG: electron withdrawing group EDG: electron donating group Fmoc: fluorenylmethyloxycarbonyl HMDS: hexamethyldisilazane HTIB: hydroxy(tosyloxy)iodobenzene (Koser’s reagent) IEFPCM: integral equation formalism polarizable continuum model IBX: 2-iodoxybenzoic acid IC50: half maximal inhibitory concentration LA: Lewis acid L: liter or neutral ligand v LDA: lithium diisopropylamide LAH: lithium aluminium hydride LSF: late-stage functionalization mCPBA: m-chloroperoxybenzoic acid Ms: mesylate MIC: minimum inhibitory concentration MoOPH: oxodiperoxymolybdenum(pyridine)-(hexamethylphosphoric triamide) MPO: 4-methoxypyridine N-oxide MS: molecular seive NRPS: non-ribosomal peptide synthase NBS: N-Bromosuccinamide NMO: N-methylmorpholine-N-oxide Nu: nucleophile NR: no reaction [O]: oxidation pH: hydrogen ion concentration in aqueous solution pKa: acid dissociation constant p-TSA: p-toluenesulfonic acid p-ABSA: para-acetamidobenzenesulfonyl azide PCC: pyridinium chlorochromate py: pyridine PG: protecting group PE: petroleum ether ph: phenyl piv: pivalate PCP (or T): peptide carrier protein PHBP: pyridinium bromide perbromide RCM: ring-closing metathesis Rf: retention factor rt: room temperature (~25 °C) sat.: saturated TBAF: tetrabutyl ammonium fluoride TBDPS: tert-butyldiphenylsilyl TBS: tert-butyl silyl TFA: trifluoroacetic acid Tf: triflate (trifluoromethanesulfonyl) TfO2: triflic anhydride TMS: trimethylsilyl THF: tetrahydrofuran TFDO: methyl(trifluoromethyl)dioxirane
Recommended publications
  • By Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1
    Vol. 4, 2089-2093, September 1998 Clinical Cancer Research 2089 In Vivo Inhibition of Aromatization by Exemestane, a Novel Irreversible Aromatase Inhibitor, in Postmenopausal Breast Cancer Patients1 Jfirgen Geisler, Nick King, Gun Anker, ation aromatase inhibitor AG3 has been used for breast cancer Giorgio Ornati, Enrico Di Salle, treatment for more than two decades (1). Because of substantial side effects associated with AG treatment, several new aro- Per Eystein L#{248}nning,2 and Mitch Dowsett matase inhibitors have been introduced in clinical trials. Department of Oncology, Haukeland University Hospital, N-502l Aromatase inhibitors can be divided into two major classes Bergen, Norway [J. G., G. A., P. E. L.]; Academic Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, United of compounds, steroidal and nonsteroidal drugs. Nonsteroidal Kingdom [N. K., M. D.]; and Department of Experimental aromatase inhibitors include AG and the imidazole/triazole Endocrinology, Pharmacia and Upjohn, 20014 Nerviano, Italy [G. 0., compounds. With the exception of testololactone, a testosterone E. D. S.] derivative (2), steroidal aromatase inhibitors are all derivatives of A, the natural substrate for the aromatase enzyme (3). The second generation steroidal aromatase inhibitor, 4- ABSTRACT hydroxyandrostenedione (4-OHA, formestane), was found to The effect of exemestane (6-methylenandrosta-1,4- inhibit peripheral aromatization by -85% when administered diene-3,17-dione) 25 mg p.o. once daily on in vivo aromati- by the i.m. route at a dosage of 250 mg every 2 weeks as zation was studied in 10 postmenopausal women with ad- recommended (4) but only by 50-70% (5) when administered vanced breast cancer.
    [Show full text]
  • Aromasin (Exemestane)
    HIGHLIGHTS OF PRESCRIBING INFORMATION ------------------------------ADVERSE REACTIONS------------------------------­ These highlights do not include all the information needed to use • Early breast cancer: Adverse reactions occurring in ≥10% of patients in AROMASIN safely and effectively. See full prescribing information for any treatment group (AROMASIN vs. tamoxifen) were hot flushes AROMASIN. (21.2% vs. 19.9%), fatigue (16.1% vs. 14.7%), arthralgia (14.6% vs. 8.6%), headache (13.1% vs. 10.8%), insomnia (12.4% vs. 8.9%), and AROMASIN® (exemestane) tablets, for oral use increased sweating (11.8% vs. 10.4%). Discontinuation rates due to AEs Initial U.S. Approval: 1999 were similar between AROMASIN and tamoxifen (6.3% vs. 5.1%). Incidences of cardiac ischemic events (myocardial infarction, angina, ----------------------------INDICATIONS AND USAGE--------------------------- and myocardial ischemia) were AROMASIN 1.6%, tamoxifen 0.6%. AROMASIN is an aromatase inhibitor indicated for: Incidence of cardiac failure: AROMASIN 0.4%, tamoxifen 0.3% (6, • adjuvant treatment of postmenopausal women with estrogen-receptor 6.1). positive early breast cancer who have received two to three years of • Advanced breast cancer: Most common adverse reactions were mild to tamoxifen and are switched to AROMASIN for completion of a total of moderate and included hot flushes (13% vs. 5%), nausea (9% vs. 5%), five consecutive years of adjuvant hormonal therapy (14.1). fatigue (8% vs. 10%), increased sweating (4% vs. 8%), and increased • treatment of advanced breast cancer in postmenopausal women whose appetite (3% vs. 6%) for AROMASIN and megestrol acetate, disease has progressed following tamoxifen therapy (14.2). respectively (6, 6.1). ----------------------DOSAGE AND ADMINISTRATION----------------------- To report SUSPECTED ADVERSE REACTIONS, contact Pfizer Inc at Recommended Dose: One 25 mg tablet once daily after a meal (2.1).
    [Show full text]
  • Nomenclature of Carboxylic Acid Derivatives Acid Halide Substituents
    Gentilucci, Carboxylic Acid Derivatives Nomenclature of Carboxylic Acid Derivatives Gentilucci, Carboxylic Acid Derivatives Acid halides 1. Alkane + the suffix -oyl followed by the halogen. 2. Select the longest continuous carbon chain, containing the acyl group. 3. Number the carbon chain, beginning at the end nearest to the acyl group. 4. Number the substituents and write the name, listing substituents alphabetically. Acid halide substituents attached to rings are named using the suffix - carbonyl. 1 Gentilucci, Carboxylic Acid Derivatives Anhydrides 1. Symmetrical: replace the ending "acid" with "anhydride ". 2. Asymmetrical: select the longest continuous carbon chain, containing the carboxylic acid group, and derive the parent name by replacing the -e ending with -oic anhydride . 3. Number the carbon chain, beginning at the end nearest to the acyl group. 4. Number the substituents and write the name, listing substituents alphabetically. Gentilucci, Carboxylic Acid Derivatives Amides are named by replacing the ending -oic acid with -amide . 1. Select the longest continuous carbon chain, containing the acyl group, and derive the parent name by replacing the -e ending with -amide . 2. Number the carbon chain, beginning at the end nearest to the acyl group. 3. Number the substituents and write the name, listing substituents alphabetically. 4. If the nitrogen atom is further substituted, the substituents are preceded by N- to indicate that they are attached to the nitrogen. Acid halide substituents attached to rings are named using the suffix - carboxamide. 2 Gentilucci, Carboxylic Acid Derivatives Carboxylate esters 1. Select the longest continuous carbon chain containing the acyl group, and derive the parent name by replacing the -e ending with –oate .
    [Show full text]
  • Carbonyl Compounds
    Carbonyl Compounds What are Carbonyl Compounds? Carbonyl compounds are compounds that contain the C=O (carbonyl) group. Preparation of Aldehydes: 1. Preparation from Acid Chloride (Rosenmund Reduction): This reaction was named after Karl Wilhelm Rosenmund, who first reported it in 1918. The reaction is a hydrogenation process in which an acyl chloride is selectively reduced to an aldehyde. The reaction, a hydrogenolysis, is catalysed by palladium on barium sulfate, which is sometimes called the Rosenmund catalyst. 2. Preparation from Nitriles: This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R- CN) using SnCl2 and HCl and quenching the resulting iminium salt ([R- + − CH=NH2] Cl ) with water (H2O). During the synthesis, ammonium chloride is also produced. The reaction is known as Stephen Aldehyde synthesis. Dr. Sumi Ganguly Page 1 3. Preparation from Grignard Reagent: When Grignard Reagent is reacted with HCN followed by hydrolysis aldehyde is produced. Preparation of Ketones: 1. Preparation from Acid Chloride (Friedel-Crafts Acylation): Acid chlorides when reacted with benzene in presence of anhydrous AlCl3, aromatic ketone are produced. However, only aromatic ketones can be prepared by following this method. In order to prepare both aromatic and aliphatic ketones acid chlorides is reacted with lithium dialkylcuprate (Gilman Reagnt). Dr. Sumi Ganguly Page 2 The lithium dialkyl cuprate is produced by the reaction of two equivalents of the organolithium reagent with copper (I) iodide. Example: 3. Preparation from Nitriles and Grignard Reagents: When Grignard Reagent is reacted with RCN followed by hydrolysis aldehyde is produced. Dr. Sumi Ganguly Page 3 Physical Characteristic of Carbonyl Compounds: 1) The boiling point of carbonyl compounds is higher than the alkanes with similar Mr.
    [Show full text]
  • Indium Promoted-Convenient Method for Acylation of Alc이iols with Acyl Chlorides
    Communications to the Editor Bull. Korean Chem. Soc. 2003, Vol. 24, No. 2 155 Indium Promoted-Convenient Method for Acylation of Alc이iols with Acyl Chlorides Dae Hyan Cho, Joong Gon Kim,f and Doo Ok Jang* Department of Chemistry, Yonsei University, Wonju 220-710, Korea ‘Biotechnology Division, Hanwha Chemical R & D Center, Daejeon 305-345, Korea Received November 9, 2002 Key Words : Indium, Alcohol, Acylation, Acyl chloride Even though various reagents for coupling of alcohols tions for the acylation of alcohols with acyl chlorides in the with carboxylic acids and transesterification of esters have presence of indium. The results are summarized in Table 1. been developed,1 there is still a great demand for a process Reaction of 2 (1 equiv) with 1 (1 equiv) in the presence of by using acyl chlorides for the acylation of alcohols in the indium (1 equiv) in CH3CN at room temperature produced case of substrates having steric hindrance or low reactivity. the corresponding ester in only 21% yield and the starting The acylation of alcohols with acyl chlorides is commonly acyl chloride and alcohol were recovered. The optimal yield carried out in the presence of tertiary amines such as 4- of the ester was attained with 3 equiv of 1 or 2 in the presence (methylamino) pyridine or 4 -pyrrolidinopyridine.2 Many of 3 equiv of indium. The solvent effect of acylation of 2 methods for the acylation of alcohols with acyl chlorides with 1 in the presence of indium was studied. The reaction have been developed using a variety of reagents.3 Most proceeded efficiently in common organic solvents such as recently, benzoylation of alcohols with lithium perchlorate DMF, Et2。,THF or CHzCh whereas non-polar solvents hase been reported.4 However, these methods have their own such as n-hexane or benzene gave poor yields of the ester.
    [Show full text]
  • Strategic Applications of Tandem Reactions in Complex Natural Product Synthesis
    Strategic Applications of Tandem Reactions in Complex Natural Product Synthesis: Rapid Access to the (Iso)Cyclocitrinol Core Christopher W. Plummer Submitted in partial fulfillment of the Requirement for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences Columbia University 2012 © 2012 Christopher Wainwright Plummer All Rights Reserved Abstract Strategic Applications of Tandem Reactions in Complex Natural Product Synthesis: Rapid Access to the (Iso)Cyclocitrinol Core Christopher W. Plummer This thesis describes the efforts of Professor James Leighton and myself toward the synthesis of the tetracyclic core of a class of steroidal natural products known as the cyclocitrinols. Our initial work in this area was performed on racemic model systems in order to validate our ring contraction-Cope rearrangement strategy. Novel chemistry was then identified to access the functionalized core in enantio-enriched form. Finally, in line with our efforts to probe the transition state of our key tandem Claisen-Cope reaction, additional substrates were prepared supporting our proposed transition state and improving the efficiency of this transformation. Table of Contents Chapter I. Background………………………………………………………....……………1 1.1: Isolation and Characterization of the Cyclocitrinols 1 1.2: Biosynthesis and Previous Synthetic Approach 2 1.3: Retrosynthetic Analysis 5 1.4: Previous Synthetic Efforts in the Leighton Laboratory 9 Chapter II. Model Studies……………………………………………………………….….13 2.1: 1st Generation Macrolactone Approach 13 2.2:
    [Show full text]
  • Part I. the Total Synthesis Of
    AN ABSTRACT OF THE THESIS OF Lester Percy Joseph Burton forthe degree of Doctor of Philosophy in Chemistry presentedon March 20, 1981. Title: Part 1 - The Total Synthesis of (±)-Cinnamodialand Related Drimane Sesquiterpenes Part 2 - Photochemical Activation ofthe Carboxyl Group Via NAcy1-2-thionothiazolidines Abstract approved: Redacted for privacy DT. James D. White Part I A total synthesis of the insect antifeedant(±)-cinnamodial ( ) and of the related drimanesesquiterpenes (±)-isodrimenin (67) and (±)-fragrolide (72)are described from the diene diester 49. Hydro- boration of 49 provided the C-6oxygenation and the trans ring junction in the form of alcohol 61. To confirm the stereoselectivity of the hydroboration, 61 was convertedto both (t)-isodrimenin (67) and (±)-fragrolide (72) in 3 steps. A diisobutylaluminum hydride reduction of 61 followed by a pyridiniumchlorochromate oxidation and treatment with lead tetraacetate yielded the dihydrodiacetoxyfuran102. The base induced elimination of acetic acid preceded theepoxidation and provided 106 which contains the desired hydroxy dialdehydefunctionality of cinnamodial in a protected form. The epoxide 106 was opened with methanol to yield the acetal 112. Reduction, hydrolysis and acetylation of 112 yielded (t)- cinnamodial in 19% overall yield. Part II - Various N- acyl- 2- thionothiazolidineswere prepared and photo- lysed in the presence of ethanol to provide the corresponding ethyl esters. The photochemical activation of the carboxyl function via these derivatives appears, for practical purposes, to be restricted tocases where a-keto hydrogen abstraction and subsequent ketene formation is favored by acyl substitution. Part 1 The Total Synthesis of (±)-Cinnamodial and Related Drimane Sesquiterpenes. Part 2 Photochemical Activation of the Carboxyl Group via N-Acy1-2-thionothiazolidines.
    [Show full text]
  • Isolation, Structure Elucidation, and Biomimetic Total Synthesis
    Angewandte Chemie DOI: 10.1002/anie.200800106 Structure Elucidation Isolation, Structure Elucidation, and Biomimetic Total Synthesis of Versicolamide B, and the Isolation of Antipodal (À)-Stephacidin A and (+)-Notoamide B from Aspergillus versicolor NRRL 35600** Thomas J. Greshock, Alan W. Grubbs, Ping Jiao, Donald T. Wicklow, James B. Gloer, and Robert M. Williams* Prenylated indole alkaloids containing the bicyclo- shiprefers to the relative configuration between the C19 ÀC22 [2.2.2]diazaoctane ring system as a core structure, now bond (sclerotiamide numbering) and the C17ÀN13 bond of number more than 38 family members. These natural the cyclic amino acid residue (proline, b-methylproline, or substances, produced by various genera of fungi, in particular pipecolic acid; Scheme 2). This relationship reveals that to Aspergillus and Penicillium spp. (among others), exhibit a construct the core ring system biosynthetically in the oxida- range of interesting structural and stereochemical features. tive cyclization process(es) both faces of the isoprene-derived Significantly, a myriad of biological activities, including dienophile participate in the ring-forming process. However, insecticidal, antitumor, anthelmintic, calmodulin inhibitory, and antibacterial properties, are displayed by members of this family. Structurally, these substances arise from the oxidative condensation of one or two isoprene units, tryptophan, and another cyclic amino acid residue such as proline, b-methyl- proline, or pipecolic acid. With respect to the relative stereochemistry within the core bicyclo[2.2.2]diazaoctane ring system, all of the known members of the paraherquamide family, for example, paraherquamides (1 and 2), stephacidins (3 and 4), and notoamides (5 and 6) possess a syn config- uration, while only the brevianamides (9 and 10) possess the anti relative configuration (Scheme 1).
    [Show full text]
  • Hydrogen Bond-Directed Stereospecific Interactions in (A) General Synthesis of Chiral Vicinal Diamines and (B) Generation of Helical Chirality with Amino Acids
    HYDROGEN BOND-DIRECTED STEREOSPECIFIC INTERACTIONS IN (A) GENERAL SYNTHESIS OF CHIRAL VICINAL DIAMINES AND (B) GENERATION OF HELICAL CHIRALITY WITH AMINO ACIDS by Hyunwoo Kim A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Chemistry University of Toronto © Copyright by Hyunwoo Kim, 2009 Hydrogen Bond-Directed Stereospecific Interactions in (A) General Synthesis of Chiral Vicinal Diamines and (B) Generation of Helical Chirality with Amino Acids Hyunwoo Kim Doctor of Philosophy 2009 Department of Chemistry University of Toronto ABSTRACT Hydrogen bonding interactions have been applied to the synthesis of chiral vicinal diamines and the generation of helical chirality. A stereospecific synthesis of vicinal diamines was developed by using the diaza-Cope rearrangement reaction driven by resonance-assisted hydrogen bonds (RAHBs). This process for making a wide variety of chiral diamines requires only a single starting chiral diamine, 1,2-bis(2-hydroxyphenyl)-1,2-diaminoethane (HPEN) and aldehydes. Experimental and computational studies reveal that this process provides one of the simplest and most versatile approaches to preparing chiral vicinal diamines including not only C2 symmetric diaryl and dialkyl diamines but also unsymmetrical alkyl-aryl and aryl-aryl diamines with excellent yields and enantiopurities. Weak forces affecting kinetics and thermodynamics of the diaza-Cope rearrangement were systematically studied by combining experimental and computational approaches. These forces include hydrogen bonding effects, electronic effects, steric effects, and oxyanion effects. As an example of tuning diamine catalysts, a vicinal diamine-catalyzed synthesis of warfarin is described. Detailed mechanistic studies lead to a new mechanism involving diimine intermediates.
    [Show full text]
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • Acute Stimulation of Aromatization in Leydig Cells by Human Chorionic Gonadotropin in Vitro
    Proc. Natl. Acad. Sci. USA Vol. 76, No. 9, pp. 4460-4463, September 1979 Cell Biology Acute stimulation of aromatization in Leydig cells by human chorionic gonadotropin in vitro (estradiol synthesis/testes/aromatase/luteinizing hormone/testosterone metabolism) Luis E. VALLADARES AND ANITA H. PAYNE* Reproductive Endocrinology Program, Departments of Obstetrics and Gynecology and Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109 Communicated by Seymour Lieberman, May 24, 1979 ABSTRACT Arbmatization of testosterone in Leydig cells according to a modification of the method described by Conn purified from mature rat testes was assessed. Leydig cells in- et al. (10). Cells from four testes were resuspended in 2.0 ml of cubated for 4 hr with increasing concentrations of 1 Hitestos- medium 199/0. 1% bovine serum albumin, applied to a 40-ml terone exhibited maximal aroiiiatfration at 0.6, M testosterone. At saturating concentrations of testosterone, human chorionic gradient of 0-40% metrizamide (Nyegard, Oslo, Sweden) dis- gonadotropin (hCG) acutely stimulatted aromatization. This solved in medium 199/0.1% albumin, and centrifuged at 3300 stimulation was first observed atMllr, an 8-fold increase being X g for 5 min. One-milliliter fractions were removed from the found during a 4-hr incubation. RTe maximal amount of estra- top of the tube and fractions 25-29 were combined and diluted diol produced at saturating conpentratidns of testosterone and with 35 ml of medium 199/0.1% albumin; cells were collected hCG was 1.8 ng per 106 cells. These results demonstrate that by centrifugation for 10 min at 220 X g.
    [Show full text]
  • Aromatase and Its Inhibitors: Significance for Breast Cancer Therapy † EVAN R
    Aromatase and Its Inhibitors: Significance for Breast Cancer Therapy † EVAN R. SIMPSON* AND MITCH DOWSETT *Prince Henry’s Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia; †Department of Biochemistry, Royal Marsden Hospital, London SW3 6JJ, United Kingdom ABSTRACT Endocrine adjuvant therapy for breast cancer in recent years has focussed primarily on the use of tamoxifen to inhibit the action of estrogen in the breast. The use of aromatase inhibitors has found much less favor due to poor efficacy and unsustainable side effects. Now, however, the situation is changing rapidly with the introduction of the so-called phase III inhibitors, which display high affinity and specificity towards aromatase. These compounds have been tested in a number of clinical settings and, almost without exception, are proving to be more effective than tamoxifen. They are being approved as first-line therapy for elderly women with advanced disease. In the future, they may well be used not only to treat young, postmenopausal women with early-onset disease but also in the chemoprevention setting. However, since these compounds inhibit the catalytic activity of aromatase, in principle, they will inhibit estrogen biosynthesis in every tissue location of aromatase, leading to fears of bone loss and possibly loss of cognitive function in these younger women. The concept of tissue-specific inhibition of aromatase expression is made possible by the fact that, in postmenopausal women when the ovaries cease to produce estrogen, estrogen functions primarily as a local paracrine and intracrine factor. Furthermore, due to the unique organization of tissue-specific promoters, regulation in each tissue site of expression is controlled by a unique set of regulatory factors.
    [Show full text]