The Human Genome Project

Total Page:16

File Type:pdf, Size:1020Kb

The Human Genome Project ARTICLE The Human Genome Project BY STEPHEN SCHERER RÉSUMÉ Il existe désormais une séquence préliminaire de ABSTRACT We now have a draft sequence of the entire human l’ensemble du génome humain et de la plupart des gènes encodés. genome and most of the genes it encodes. Here we explain what Dans le présent article, nous expliquons ce qu’est le génome, ce the genome is, what it means to sequence it, outline how the que représente son séquençage et comment il a été réalisé, avant sequencing was done, and reflect on what this means for the way d’aborder une réflexion sur l’incidence de cette découverte sur we do science and, more fundamentally, how we understand notre façon de faire de la recherche scientifique et, sur un plan plus ourselves. A comprehensive description of the human genome is fondamental, sur notre connaissance de nous-mêmes. La descrip- the foundation of human biology and the essential prerequisite for tion complète du génome humain constitue le fondement de la an in-depth understanding of disease mechanisms. As such, biologie humaine et la condition essentielle à la connaissance information generated by the sequenced human genome will approfondie des mécanismes de la maladie. Comme telle, l’infor- represent a source book for biomedical science in the 21st century. mation découlant du séquençage du génome humain équivaudra à It will help scientists and clinicians to understand, diagnose and un guide de référence pour la science biomédicale XXIe siècle. Elle eventually treat many of the 5000 genetic diseases that afflict aidera les chercheurs et les cliniciens à comprendre, diagnostiquer humankind, including the multifactorial diseases in which genetic et finalement traiter nombre des 5 000 maladies génétiques qui predisposition and environmental cues play an important role. : KATY LEMAY affligent l’humanité, notamment les maladies plurifactorielles dans lesquelles la prédisposition génétique et les éléments environne- mentaux jouent un rôle important. (Traduction : www.isuma.net) ILLUSTRATIONS isuma 11 the human genome project enes are instructions that contrary to “garbage” which we, and dna was painstakingly slow and give organisms their charac- the cell, throw away). expensive. Sequencing the entire teristics. The instructions are human genome seemed impractical. Gstored in each cell of every living The Human Genome Project Others felt it made more sense to organism in a long string-like mole- and DNA sequencing focus research effort and money only cule called Deoxyribonucleic Acid “Sequencing” is the process of deter- on discovering particular genes (dna). dna molecules are subdivided mining the specific order and identity thought to be associated with dis- into finite structures called chromo- of the three billion base pairs in the eases, rather than trying to spell out somes (Figure 1). Each organism has a genome with the ultimate goal of iden- the entire genome. However, even for characteristic number of chromo- tifying all of the genes. “Mapping” is disease projects aimed at finding sin- somes. For humans the number is 46 the process of identifying discrete dna gle gene disorders (such as that for (23 pairs) and this complete set of segments of known position on a cystic fibrosis) the worldwide cost genetic information is called the chromosome which are then used for could often run in the tens of millions genome (Figure 2). sequencing (mapping is a crucial step dollars before success was achieved. for proper reconstruction of the The idea for the human genome pro- DNA, genes and genomes genome; it usually precedes sequenc- ject eventually won support, justified Human dna looks like a twisted lad- ing but is also necessary in post- as an investment in fundamental bio- der with three billion rungs. If sequencing). To give one a sense of the logical infrastructure upon which the unwound, your dna would stretch enormity of the task to decode the scientific community around the over five feet, but it is only 50 tril- human genome, a simple listing of all world would build exciting new lionths of an inch wide. The total of the atcg combinations would fill research that would lead to the diag- amount of dna in the 100 trillion or hundreds of phone books. And hav- nosis and treatment of disease. so cells in the human body laid end to ing the sequence is only a first step in The enormity of the challenge end would run to the sun and back finding the genes, understanding how inspired the creation of an interna- some 20 times. The three billion rungs they operate, and how particular tional, publicly funded research ini- are made up of chemical units, called genetic discrepancies are associated tiative called the Human Genome “base pairs,” of nucleotides — with diseases. Using this dna sequence Project (hgp), officially launched in adenines, thymines, cytosines and gua- information to diagnose, prevent or the early 1990s. The Human Genome nines, represented by the letters A, T, treat those genetic predispositions or Organization (hugo) brings together C and G. Particular combinations of causes of disease is an even more com- over 1000 scientists from 50 countries these dna base pairs (or genes) consti- plex task. worldwide, and has a mandate that tute coded instructions for the forma- When the idea of sequencing the includes promoting international col- tion and functioning of proteins, which human genome was first proposed laboration within the hgp. The earli- make up the body and govern its bio- about 15 years ago, it was highly con- est genome meetings were attended by logical functioning (examples of pro- troversial. For one thing, given the a rag-tag group of usually fewer than teins include insulin, collagen, diges- technology at the time, sequencing 100 biologists of diverse background tive enzymes, etc.). Ribonucleic acid, (rna) is a single stranded copy of dna that acts as an intermediate messenger FIGURE 1 molecule that allows dna sequence to be translated to protein. This central process, whereby dna transcribes to Gene rna, which in turn transcribes to pro- Nucleus Cell Chromosomes tein, underlies all of life. Some genes are made up of only a DNA few hundred base pairs, others run to a couple of million base pairs. It is now estimated that we have around 30,000 to 40,000 genes (much more work will be required to determine the precise Protein number), but those genes account for less than five percent of our dna, with the rest being filler. For lack of a better term, the non-genic dna is often dubbed “junk” since its role is not ful- ly known (in fact this might be a good Figure 1. The human genome consists of 23 pairs of chromosomes that are comprised of DNA. Approximately 5% of the DNA along the chromosome encodes for genes. Genes make term since just like the cell we often proteins. Proteins provide cellular structure and functional activity within the body. keep our “junk” just in case we need it 12 Autumn • Automne 2001 the human genome project FIGURE 2 It will likely take two to three years for the draft 1 23 45form ofthe dna sequence to reach 6 7 8 9 10 11 12 what is considered 181716151413 to be in a finished 19 20 21 22 X Y state. Figure 2. The 23 pairs of human chromosomes one from each pair being inherited from one parent. Note the interchange of material between chromosomes 7 and 13 which disrupts a gene leading to disease. and research interests, only a few of dyed nucleotides can attach them- whom had some type of vision of how selves to the dna fragments, but other to accomplish this distant goal (Fig- nucleotides will not adhere to the dyed ure 3). Since 1990, the strategies and nucleotides. Thus the chemical reac- measures of successes of the hgp have tion generates dna fragments of vari- most often been debated at an annual ous length that each terminate at flu- meeting held in Cold Spring Harbor ourescently dyed A, T, C or G Laboratories, New York (directed by nucleotides. The underlying sequence James Watson, co-discover of dna). for the range of the dna fragments The most accurate documentation of created in the chemical reaction is then the science and progress behind the determined by an automated sequenc- genome project can be found within ing machine. The synthesized dna the abstracts of this meeting. The ear- fragments are negatively charged. The ly consensus was that before large- sequencing machine sets up an electri- scale and cost-effective sequencing of cal field. The dna fragments move the entire genome could be complet- through a pourous gel toward the pos- ed, numerous technological develop- itive charge, with shorter fragments ments, associated with mapping and moving more quickly through the gel. sequencing processes as well as with The fluorescent, tagged bases at the the computational capacity to make end of the fragments can be detected sense of the resulting information, with the help of a laser, and the result- were essential. ing information stored on a comput- With developments in technology er. As a result, the order in which the over the last few years, the seqencing particular tagged nucleotides are read is now done through a process called reflects their order on the stretch of fluorescence-based dideoxy sequenc- dna that has been replicated in the ing (Figure 4a). Fragments of dna are chemical reaction. first cloned in bacteria. They are then Each reaction reveals the sequence put into a chemical reaction with free of about 500 letters (A,T,C,G) of dna nucleotides, some of which are tagged before the process runs its course. Once with fluorescent dyes. Nucleotides these relatively tiny sequences are attach themselves to the dna frag- obtained, their place in the overall ments in a particular order.
Recommended publications
  • Identification of Evolutionarily Conserved Md1 Splice Variants
    Identification of Evolutionarily Conserved Md1 Splice Variants That Regulate Innate Immunity through Differential Induction of NF-?B This information is current as of September 26, 2021. Sergio Candel, Sylwia D. Tyrkalska, Diana García-Moreno, José Meseguer and Victoriano Mulero J Immunol 2016; 197:1379-1388; Prepublished online 11 July 2016; doi: 10.4049/jimmunol.1502052 Downloaded from http://www.jimmunol.org/content/197/4/1379 Supplementary http://www.jimmunol.org/content/suppl/2016/07/11/jimmunol.150205 http://www.jimmunol.org/ Material 2.DCSupplemental References This article cites 67 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/197/4/1379.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Identification of Evolutionarily Conserved Md1 Splice Variants That Regulate Innate Immunity through Differential Induction of NF-кB Sergio Candel,1 Sylwia D.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Genetic and Functional Approaches to Understanding Autoimmune and Inflammatory Pathologies
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2020 Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies Abbas Raza University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Genetics and Genomics Commons, Immunology and Infectious Disease Commons, and the Pathology Commons Recommended Citation Raza, Abbas, "Genetic And Functional Approaches To Understanding Autoimmune And Inflammatory Pathologies" (2020). Graduate College Dissertations and Theses. 1175. https://scholarworks.uvm.edu/graddis/1175 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. GENETIC AND FUNCTIONAL APPROACHES TO UNDERSTANDING AUTOIMMUNE AND INFLAMMATORY PATHOLOGIES A Dissertation Presented by Abbas Raza to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Cellular, Molecular, and Biomedical Sciences January, 2020 Defense Date: August 30, 2019 Dissertation Examination Committee: Cory Teuscher, Ph.D., Advisor Jonathan Boyson, Ph.D., Chairperson Matthew Poynter, Ph.D. Ralph Budd, M.D. Dawei Li, Ph.D. Dimitry Krementsov, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Our understanding of genetic predisposition to inflammatory and autoimmune diseases has been enhanced by large scale quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, the resolution and interpretation of QTL linkage mapping or GWAS findings are limited.
    [Show full text]
  • Brain Signaling Complex, Highly Expressed in TRIL, a Functional
    TRIL, a Functional Component of the TLR4 Signaling Complex, Highly Expressed in Brain This information is current as Susan Carpenter, Thaddeus Carlson, Jerome of September 23, 2021. Dellacasagrande, Amaya Garcia, Sharon Gibbons, Paul Hertzog, Anthony Lyons, Lih-Ling Lin, Marina Lynch, Tom Monie, Caroline Murphy, Katherine J. Seidl, Christine Wells, Aisling Dunne and Luke A. J. O'Neill J Immunol 2009; 183:3989-3995; Prepublished online 26 Downloaded from August 2009; doi: 10.4049/jimmunol.0901518 http://www.jimmunol.org/content/183/6/3989 http://www.jimmunol.org/ References This article cites 30 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/183/6/3989.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 23, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology TRIL, a Functional Component of the TLR4 Signaling Complex, Highly Expressed in Brain1 Susan Carpenter,*‡ Thaddeus Carlson,§ Jerome Dellacasagrande,‡ Amaya Garcia,‡¶ Sharon Gibbons,‡ Paul Hertzog,ʈ Anthony Lyons,† Lih-Ling Lin,§ Marina Lynch,† Tom Monie,# Caroline Murphy,*‡ Katherine J.
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • In the Court of Chancery of the State of Delaware
    IN THE COURT OF CHANCERY OF THE STATE OF DELAWARE NEW ORLEANS EMPLOYEES’ RETIREMENT SYSTEM, on behalf of itself and all other similarly situated shareholders of Celera Corporation, Plaintiff, v. C.A. No. _________ RICHARD H. AYERS, JEAN-LUC BELINGARD, WILLIAM G. GREEN, PETER BARTON HUTT, GAIL K. NAUGHTON, KATHY ORDONEZ, WAYNE I. ROE, BENNETT M. SHAPIRO, CELERA CORPORATION, QUEST DIAGNOSTICS INCORPORATED, AND SPARK ACQUISITION CORPORATION, Defendants. VERIFIED CLASS ACTION COMPLAINT Plaintiff, New Orleans Employees’ Retirement System (“NOERS” or “Plaintiff”), on behalf of itself and all other similarly situated public shareholders of Celera Corporation (hereafter, “Celera” or the “Company”), brings the following Verified Class Action Complaint (the “Complaint”) against the members of the board of directors of Celera (the “Celera Board” or “Board”) for breaching their fiduciary duties, and against Quest Diagnostics Incorporated (“Quest”) and Spark Acquisition Corporation (“Spark”) for aiding and abetting the same. The allegations of the Complaint are based on the knowledge of Plaintiff as to itself, and on information and belief, including the investigation of counsel and review of publicly available information as to all other matters. INTRODUCTION 1. This is a case about a corporate board that chose to negotiate an all-cash sale of the company while operating under the same material conflict of interest that lay at the heart of the Delaware Supreme Court’s ruling in Revlon, Inc. v. MacAndrews & Forbes, Inc., 506 A.2d 173 (Del. 1986). Over the weeks leading to this action, the Celera Board faced a clear choice: disclose a material accounting fraud and risk liability that would flow from that disclosure, or negotiate a desperate and rushed sale of the company at whatever price a potential bidder would offer in order to insulate themselves from liability and secure their own financial well-being.
    [Show full text]
  • Preliminary Healthcare Agenda 01.03X
    29th Annual J.P. Morgan Healthcare Conference January 10 - 13, 2011 Westin St. Francis Hotel, San Francisco, CA Preliminary Conference Agenda SUNDAY, JANUARY 9 - Registration in Tower Salon A - 3 to 9 PM MONDAY, JANUARY 10 - Registration in Tower Salon A - 6:45 AM, Breakfast in Italian Foyer Grand Ballroom Colonial Room California West California East Elizabethan A/B Elizabethan C/D Alexandra's Breakout: Borgia Room Breakout: Georgian Room Breakout: Olympic Room Breakout: Yorkshire Room Breakout: Sussex Room Private Company Track Not-for-Profit Track 7:30 AM Opening Remarks: Doug Braunstein - Chief Financial Officer, JPMorgan Chase & Co., Grand Ballroom Astra Tech 8:00 AM Celgene Corporation Kinetic Concepts, Inc Alkermes, Inc. Biocon Limited Catalent (private company) 8:30 AM Express Scripts Inc. Agilent Technologies Inc. Beckman Coulter Inc. Bio-Rad Laboratories, Inc. Quality Systems Axcan Intermediate Holdings 9:00 AM Roche Holding AG Zimmer Holdings, Inc. Genoptix, Inc. ImmunoGen, Inc Health Net Inc. Merrimack Pharmaceuticals Inc. Vertex Pharmaceuticals Allscripts Healthcare Solutions, 9:30 AM Medicis Pharmaceutical Corp. Lonza Group Ltd Henry Schein Inc. Surgical Care Affiliates Incorporated Inc. 10:00 AM Medtronic, Inc. WellPoint, Inc. Onyx Pharmaceuticals Inc. Sigma-Aldrich Corporation Align Technology Inc.* Symphogen 10:30 AM Room Not Available Medco Health Solutions, Inc. Smith & Nephew plc* Medivation, Inc. Lexicon Pharmaceuticals, Inc. Zeltiq Aesthetics 11:00 AM Room Not Available Merck KGaA Perrigo Company Healthways Incorporated BioMimetic Therapeutics, Inc. Penumbra, Inc. 11:30 AM Room Not Available Dendreon Corporation Gen-Probe Inc. Select Medical Corporation ArthroCare Corporation PTC Therapeutics, Inc. 12:00 PM Luncheon & Keynote: Nancy-Ann DeParle - Counselor to the President and Director of the White House Office of Health Reform, Grand Ballroom Endo Pharmaceuticals Holdings 1:30 PM Room Not Available Amylin Pharmaceuticals Inc.
    [Show full text]
  • Celera CORP Form 10-KT Filed 2009-03-25
    SECURITIES AND EXCHANGE COMMISSION FORM 10-KT Transition report pursuant to Rule 13a-10 or 15d-10 Filing Date: 2009-03-25 | Period of Report: 2008-12-27 SEC Accession No. 0001193125-09-063099 (HTML Version on secdatabase.com) FILER Celera CORP Mailing Address Business Address 1401 HARBOR BAY 1401 HARBOR BAY CIK:1428156| IRS No.: 262028576 | State of Incorp.:DE | Fiscal Year End: 0630 PARKWAY PARKWAY Type: 10-KT | Act: 34 | File No.: 001-34116 | Film No.: 09704683 ALAMEDA CA 94502 ALAMEDA CA 94502 SIC: 8731 Commercial physical & biological research 510-749-4200 Copyright © 2014 www.secdatabase.com. All Rights Reserved. Please Consider the Environment Before Printing This Document Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 10-KT ¨ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE FISCAL YEAR ENDED x TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE TRANSITION PERIOD FROM JULY 1, 2008 TO DECEMBER 27, 2008 COMMISSION FILE NUMBER: 001-34116 Celera Corporation (Exact name of registrant as specified in its charter) Delaware 26-2028576 (State or other jurisdiction (I.R.S. Employer of incorporation) Identification No.) 1401 Harbor Bay Parkway Alameda, CA 94502 (Address of principal executive offices, with zip code) (510) 749-4200 (Registrants telephone number, including area code) Securities registered pursuant to Section 12(b) of the Act: Name of Each Exchange on Which Title of Each Class Registered Common Stock, $.01 par value The NASDAQ Stock Market LLC Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act.
    [Show full text]
  • In the Court of Chancery of the State of Delaware In
    IN THE COURT OF CHANCERY OF THE STATE OF DELAWARE IN RE CELERA CORPORATION Consolidated SHAREHOLDER LITIGATION C.A. No. 6304-VCP VERIFIED CONSOLIDATED AMENDED CLASS ACTION COMPLAINT Plaintiff New Orleans Employees’ Retirement System (“NOERS”) on behalf of itself and all other similarly situated public shareholders of Celera Corporation (hereafter, “Celera” or the “Company”), bring the following Verified Consolidated Amended Class Action Complaint (the “Complaint”) against the members of the board of directors of Celera (the “Celera Board” or the “Board”) for breaching their fiduciary duties, and against Quest Diagnostics Incorporated (“Quest”) and Spark Acquisition Corporation (“Spark”) for aiding and abetting the same. The allegations of the Complaint are based on the knowledge of Plaintiff as to itself, and on information and belief, including the investigation of counsel and review of publicly available information as to all other matters. INTRODUCTION 1. This is a case about a corporate board that chose to negotiate an all-cash sale of the company while operating under the same material conflict of interest that lay at the heart of the Delaware Supreme Court’s ruling in Revlon, Inc. v. MacAndrews & Forbes, Inc., 506 A.2d 173 (Del. 1986). During the past two years, the Celera Board struggled with a multitude of improper accounting practices. These practices caused the Company to issue numerous financial restatements, and resulted in a number of related lawsuits. In the face of mounting personal liability, the Celera Board struck a deal to sell the Company in exchange for broad indemnification and lucrative continued employment. 2. On March 17, 2011, Celera entered into an Agreement and Plan of Merger (the “Merger Agreement”) with Quest, whereby Quest would, within a week of the deal’s announcement, commence a tender offer (the “Tender Offer”) to acquire all of the issued and outstanding shares of Celera common stock for $8.00 per share in cash (the “Proposed Transaction”).
    [Show full text]
  • Biostrings: Efficient Manipulation of Biological Strings
    Package ‘Biostrings’ September 28, 2021 Title Efficient manipulation of biological strings Description Memory efficient string containers, string matching algorithms, and other utilities, for fast manipulation of large biological sequences or sets of sequences. biocViews SequenceMatching, Alignment, Sequencing, Genetics, DataImport, DataRepresentation, Infrastructure URL https://bioconductor.org/packages/Biostrings BugReports https://github.com/Bioconductor/Biostrings/issues Version 2.60.2 License Artistic-2.0 Encoding UTF-8 Author H. Pagès, P. Aboyoun, R. Gentleman, and S. DebRoy Maintainer H. Pagès <[email protected]> Depends R (>= 4.0.0), methods, BiocGenerics (>= 0.37.0), S4Vectors (>= 0.27.12), IRanges (>= 2.23.9), XVector (>= 0.29.2), GenomeInfoDb Imports methods, utils, grDevices, graphics, stats, crayon, LinkingTo S4Vectors, IRanges, XVector Enhances Rmpi Suggests BSgenome (>= 1.13.14), BSgenome.Celegans.UCSC.ce2 (>= 1.3.11), BSgenome.Dmelanogaster.UCSC.dm3 (>= 1.3.11), BSgenome.Hsapiens.UCSC.hg18, drosophila2probe, hgu95av2probe, hgu133aprobe, GenomicFeatures (>= 1.3.14), hgu95av2cdf, affy (>= 1.41.3), affydata (>= 1.11.5), RUnit LazyLoad yes Collate 00datacache.R utils.R IUPAC_CODE_MAP.R AMINO_ACID_CODE.R GENETIC_CODE.R XStringCodec-class.R seqtype.R coloring.R XString-class.R XStringSet-class.R XStringSet-comparison.R XStringViews-class.R MaskedXString-class.R XStringSetList-class.R xscat.R XStringSet-io.R letter.R 1 2 R topics documented: getSeq.R seqinfo.R letterFrequency.R dinucleotideFrequencyTest.R chartr.R reverseComplement.R
    [Show full text]
  • Embryonic Periventricular Endothelial Cells Demonstrate a Unique Pro
    www.nature.com/scientificreports OPEN Embryonic periventricular endothelial cells demonstrate a unique pro‑neurodevelopment and anti‑infammatory gene signature Franciele Cristina Kipper1,5,7, Cleide Angolano2,5,7, Ravi Vissapragada1,4, Mauricio A. Contreras3, Justin Moore1,7, Manoj Bhasin6, Christiane Ferran2,3,5,7,8 & Ajith J. Thomas1,5,7,8* Brain embryonic periventricular endothelial cells (PVEC) crosstalk with neural progenitor cells (NPC) promoting mutual proliferation, formation of tubular‑like structures in the former and maintenance of stemness in the latter. To better characterize this interaction, we conducted a comparative transcriptome analysis of mouse PVEC vs. adult brain endothelial cells (ABEC) in mono‑culture or NPC co‑culture. We identifed > 6000 diferentially expressed genes (DEG), regardless of culture condition. PVEC exhibited a 30‑fold greater response to NPC than ABEC (411 vs. 13 DEG). Gene Ontology (GO) analysis of DEG that were higher or lower in PVEC vs. ABEC identifed “Nervous system development” and “Response to Stress” as the top signifcantly diferent biological process, respectively. Enrichment in canonical pathways included HIF1A, FGF/stemness, WNT signaling, interferon signaling and complement. Solute carriers (SLC) and ABC transporters represented an important subset of DEG, underscoring PVEC’s implication in blood–brain barrier formation and maintenance of nutrient‑rich/ non‑toxic environment. Our work characterizes the gene signature of PVEC and their important partnership with NPC, underpinning their unique role in maintaining a healthy neurovascular niche, and in supporting brain development. This information may pave the way for additional studies to explore their therapeutic potential in neuro‑degenerative diseases, such as Alzheimer’s and Parkinson’s disease.
    [Show full text]
  • Transcriptome Analysis for Novel Peptide in Breeding Gland of Hymenochirus Boettgeri Minjin Ko University of the Pacific, M [email protected]
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 2019 Transcriptome analysis for novel peptide in breeding gland of Hymenochirus boettgeri Minjin Ko University of the Pacific, [email protected] Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Ko, Minjin. (2019). Transcriptome analysis for novel peptide in breeding gland of Hymenochirus boettgeri. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/3615 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 1 TRANSCRIPTOME ANALYSIS FOR NOVEL PEPTIDES IN BREEDING GLAND OF HYMENOCHIRUS BOETTGERI By Minjin Ko A Thesis Submitted to the Graduate School In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE College of the Pacific Biological Sciences University of the Pacific Stockton, California 2019 2 TRANSCRIPTOME ANALYSIS FOR NOVEL PEPTIDES IN BREEDING GLAND OF HYMENOCHIRUS BOETTGERI By Minjin Ko APPROVED BY: Dissertation Advisor: Eric Thomas, Ph.D. Committee Member: Jane Khudyakov, Ph.D. Committee Member: Doug Risser, Ph.D. Committee Member: Ajna Rivera, Ph.D. Department Co-Chairs: Lisa Wrischnik, Ph.D. and Eric Thomas, Ph.D. Dean of the Graduate School: Thomas Naehr, Ph.D. 3 DEDICATION I dedicate this to my parents. 4 Transcriptome Analysis for Novel Peptides in Breeding Gland of Hymenochirus Boettgeri Abstract By Minjin Ko University of the Pacific 2019 The primary goal of the project was to find nucleotide sequences potentially encoding a pheromone from the breeding gland of Hymenochirus boettgeri .
    [Show full text]