LEISHMANIA in Dogs: Life Cycle, Occurrence and Zoonotic Aspects

Total Page:16

File Type:pdf, Size:1020Kb

LEISHMANIA in Dogs: Life Cycle, Occurrence and Zoonotic Aspects LEISHMANIA in dogs: life cycle, occurrence and zoonotic aspects Stig Milan Thamsborg Professor, DVM, PhD KU-SUND, [email protected] Heidi L. Enemark Seniorforsker, DVM, PhD DTU National Veterinary Institute, [email protected] Leishmaniosis One of the most important vector-borne diseases, endemic in the Mediterranean Bassin but possibly spreading in countries in Central Europe and North The vectors arewww.onleish.org Phlebotomus spp. (“sandflies” = mosquitoes) (e.g. P. perniciosus ) - multiplies in the gut of The agent - Leishmania vectors and are trans- infantum inside a mitted by bites or faeces macrophage www.onleish.org Hosts (vertebrates): dogs and other carnivores + homo 2 © Prof. Luis de Carvalho & Prof. Guadalupe Miró Corrales - ESCCAP Forum Lisbon 2012 Leishmaniasis in a global context 3 Leishmania in dogs, including zoonotic aspects • Etiolgy – The parasite – Vectors • Biology and epidemiology – Life cycle – Hosts – Transmission – Prevalence • Pathogenesis and clinics • Zoonotic aspects • Diagnostics • Control – Therapy – Prevention • Re-cap and discussion 4 Etiology 1 Sub-phylum: Flagellates Order Family Genus Diplomonadida Hexamitidae Giardia intestinalis (in organs) Trichomonadida Trichomonadidae Tritrichomonas foetus (organs) Trichomonas gallinae Monocercomonadidae Histomonas meleagridis Trypanosomatida Trypanosomatidae Trypanosoma spp. (blood+lymphatic Leishmania spp. systems, tissues) 5 Etiology 2 Morphology ( Leishmania and Trypanosoma) Different forms/stages: a) Promastigot 10-15 µm (Leishmania in vector) b) Epimastigot c) Trypomastigot (typical form in blood of final host) d) Amastigot 2-3 µm (Leishmania in RES in final host) a)+b) commonly found in vectors 6 Etiology 3 Leishmania spp. in dogs/cats in Europe Agent Vectors Final hosts Leishmania Phlebotomus spp. (sand Dog, fox jackal, rodents infantum flies) e.g.: cats, a.o. mammals + (s. L. chagasi i P. perniciosus , P. ariasi, homo Americas) P. perfiliewi, P. neglectus, (more genotypes) P. tobbi, P. langeroni Leishmania P. sergenti, P. arabicus Dog+homo tropica – cutan form in dogsh (rare) (Orient sores) The species can not be differentiated by morphology but clinics, vectors etc. and recently, PCR!! Blurry! 7 Etiology 4 Vector: Phlebotomus spp. (sandflies) • Sandflies(Phlebotomus spp.) are mosquitoes (2-4 mm) • Egg are laid in soil rich in organic matter, e.g., garbage • Females eat blood • Fourage during night, most activity in mornings and >18 oC; right after sunset • During day hiding in crevices and holes, e.g. animal holes, walls, rocks, trees or sheds. • Widespread in Mediterranean area, Africa and Middle East • Local endemic foci in North France, South Germany and Switzerland (e.g. P. mascittii ) • http://www.ecdc.europa.eu/en/healthtopics/vectors/vector -maps/Pages/VBORNET_maps_sandflies.aspx • Parasite development in vector: 1-2 weeks at 18 oC 8 Biology and transmission 1 Life cycle Multiplication: - as extracellular promastigots in the gut of sandflies - as intracellular amastigots in dogs 9 Biology and transmission 2 Dogs comprise the main reservoir in Europe, but other reservoir host are present… Fox (Marín-Iniesta et al ., 1982) Wolf (Beck et al. , 2008) Genet (Sobrino et al., 2008) Lynx (Sobrino et al., 2008) Desmer (Sobrino et al., 2008) Rat (Morillas et al ., 1985) Cat (Maroli, 2007) 10 © Prof. Luis de Carvalho & Prof. Guadalupe Miró Corrales - ESCCAP Forum Lisbon 2012 Biology and transmission 3 Dokumented but probably limited importance : • Vertical (Rosypal, 2005; Pangrazio et al. 2009; Boggiatto et al. 2011) • Blood transfusion (Owens et al., 2001, De Freitas et al., 2006; Tabar et al, 2008) • Venereal transmission (Silva et al. 2009) * Solano Gallego et al, 2011 • Other arthropods ?? (increasing evidence) – fleas, ticks (Coutinho et al. 2007; Paz et al. 2010; Dantas-Torres, 2011) 11 © Prof. Luis de Carvalho & Prof. Guadalupe Miró Corrales - ESCCAP Forum Lisbon 2012 Biology and transmission 4 Distribution in dogs in Europe • Black line represents north limit of sandflies and endemic leishmaniosis • Prevalence of infection in Med. Bassin: 1-40% (Ab), some places 80% (PCR) • 2.5 mio. infected dogs (Baneth, 2007) • Most likely spreading North, e.g. in Italian Alps but also spreading within endemic areas • Single autochtonous cases in D, F, UK, B, NL in dogs (© ESCCAP) 12 Biology and transmission 5 Epidemiology • New findings in Leishmania endemic areas : – fast and efficient spread when environmental factors are optimal, e.g., high prevalence of vectors – more widespread than expected (PCR) but only few become clinically afffected • Cats: importance? (60% PCR+ in Sicily) • North Europe – travelling: NL 58000/year South; risc 0.027-0.23% (Teske et al. 2002) – import of infected dogs – non-vectorborne transmission – (USA: foxhounds in NYS) 13 Pathogenesis and clinics 1 Leishmania infantum in dogs • Pathogenesis – infects macrophages in the skin after bite – chanker formation and spread with blood/lymph to mainly RES – granulomatous inflammation with necrosis and tissue destruction when amastigotes proliferate in macrophages – multi-systemic immun-mediated pathology depending on Th1/Th2 balance – glomerulonephritis, polymyositis, haemostasis problems a.o. • Clinics – varies with strain and host genetics – visceral form (liver,spleen, bone marrow) but SKIN LESIONS dominates commonly Top formation of goggles – typically: severe sacling with ulcers, alopecia, evt. pustules and nodules in skin initially in visceral form – poor body condition, generalised muscle atrophy, swelling of lymph nodes – also: fever, anaemia, cachexia – eye disease and kidney failure • Incubation period: 3 mths to 7 years • Chronic course 14 Patogenese og klinik 2 Infection versus disease NO clinical signs Clinical signs AND/OR No laboratory Infection laboratory abnormalities abnormalities confirmed 15 © Prof. Luis de Carvalho & Prof. Guadalupe Miró Corrales - ESCCAP Forum Lisbon 2012 Patogenese og klinik 3 Tip of the iceberg (<10%) © G. Miró Clinical cases (always) and sero+ PCR+ Distribution of leishmaniosis in a dog population Sero+ Rarely PCR- in an endemic area (Baneth et al, 2008) G. Miró16 Pathogenesis and clinics 3 Severe disease in some dogs! • Rapid development with clinical disease in some dogs that do not develop protective cell-mediated immunity (CMI) despite solid humoral response • Antibody response positively correlated with severity of disease and parasite density • Other dogs remain infected for years with symptoms and develop protective CMI • Function of macrophages very important • Immune response is mixed Th1/Th2 under strong genetic regulation: • Genetically resistant: Ibizean hound • Genetically susceptible: German shepherd, rottweiler, cocker spaniel, and boxer • Single genes and SNPs identified • Dog with/without symptoms are INFECTIVE for sandflies but ill dogs much more so!! G. Miró17 Zoonotic aspects 1 18 Zoonotic aspects 2 Global distribution in humans L. donovani + L. infantum/chagasi (visceral) L. tropica + L. major 19 Zoonotic aspects 3 Leishmaniosis in humans • 90% of human cases of cutan leishmaniosis in Afghanistan, Brazil, Iran, Peru, Saudi Arabia, and Syria (WHO) • L. major : >700 cases during war in Iraq; L. tropica : visceral cases after Operation Desert Storm • More than 90% of human cases of visceral leishmaniosis in India, Bangladesh, Nepal, Sudan, and Brazil (WHO). Continued spread to new areas due to HIV • Co-infections of HIV and visceral leishmaniosis are reported from 34 countries in Africa, Asia, Europe, and S-America. • 70% of human cases among adults i S-E associated with HIV (WHO) • Estimate: 700 new human cases per year in S-E • Leishmaniosis is common among travellers/tourist of S-E • Human diagnostics in DK in 2011 (Overlæge Jørgen Kurtzhals): – 6 microscopy (4719 malaria; 6145 cryptosporidiose) – 104 antibodies (531 malaria-species; 1097 toxoplasma- schistosomes-echinococcosis) 20 Diagnostics 1 Diagnostics, dogs • Tentative diagnosis: – History and clinics (obs. demodicose) – Lab test: haemogram, biochemistry and urine analysis • Detection of parasites – Smear from marrow or lymph node/Giemsa staining ( DTU-Vet ) – Aspirate lymph node, marrow, blood, conjunctiva or skin biopsy : PCR or qPCR (most sensitive + species)( Idexx ) – Histology on skin biopsy (sensitivity increased by immuno-histochemistry) – (in vitro culture to promastigote stage) • Indirecte detection - serology – At earliest 8-12 weeks after infection – IFAT, ELISA ( Laboklin )(semi-quantiative test to follow treatement success) – Snap test in clinics (first detection) 21 Diagnostics 2 Clinical pathology in dogs • Blood: – normochrom, normycytic anaemia – evt. thrombocytopenia – leukopenia – hyperglobulinaemia – hypoalbumimaemia • Biochemistry: – Varying degrees of uraemia – Increase protein/creatinin • Urin analysis – Proteinuri – Haematuri 22 Control 1 Chemotherapy of leishmaniosis in dogs Drug Type Dosage Adm. Side effects Meglumine pentavalent 75-100 mg/kg Sc Lokcal swellings antimoniate antimoniate daily in 4-8 Resistance in vitro (enzyme weeks inhibition) Allopurinol purin analog 10-20 mg/kg (2- Po Cases of nephrolithiasis (inhibit RNA) 3 x day) in 6-18 (xanthin) mths. (min. 20 Often medication rest of mg/kg daily) life! Miltefosine alkylophospho- 2 mg/kg daily in Po GI problems if not fed lipid 4 weeks with other diet (damage to membranes) Combinations: meglumin+allopurinol miltefosine+allopurinol + additional symptomatic treatments and correct diet 23 Control 2 Aspects of control in dogs • Treat when clinical disease (+clinical pathology) and/or
Recommended publications
  • Biblioteca Versão Completa
    Luciana Lima Diversidade morfológica, biológica e genética, e relações filogenéticas de tripanossomas de morcegos do Brasil e Moçambique (África) Tese apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do título de Doutor em Ciências. São Paulo 2011 Luciana Lima Diversidade morfológica, biológica e genética, e relações filogenéticas de tripanossomas de morcegos do Brasil e Moçambique (África) Tese apresentada ao Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do título de Doutor em Ciências. Área de concentração: Biologia da Relação Patógeno-Hospedeiro Orientadora: Profa. Dra. Marta Maria Geraldes Teixeira São Paulo 2011 DADOS DE CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e Informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo reprodução não autorizada pelo autor Lima, Luciana. Diversidade morfológica, biológica e genética, e relações filogenéticas de tripanossomas de morcegos do Brasil e Moçambique (África). / Luciana Lima. -- São Paulo, 2011. Orientador: Marta Maria Geraldes Teixeira. Tese (Doutorado) – Universidade de São Paulo. Instituto de Ciências Biomédicas. Departamento de Parasitologia. Área de concentração: Biologia da Relação Patógeno-Hospedeiro. Linha de pesquisa: Biologia e filogenia de tripanossomatídeos. Versão do título para o inglês: Morphological, biological and genetic diversity, and phylogenetic relationships of bat trypanosomes from Brazil and Mozambique (Africa) Descritores: 1. Trypanosoma 2. Morcegos 3. Filogenia 4. Catepsina L 5. Schizotrypanum 6. Taxonomia I. Teixeira, Marta Maria Geraldes II. Universidade de São Paulo. Instituto de Ciências Biomédicas. Programa de Pós-Graduação em Biologia da Relação Patógeno-Hospedeiro III.
    [Show full text]
  • Tetratrichomonas and Trichomonas Spp
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Veterinary Medicine -- Faculty Publications and Biomedical and Diagnostic Sciences Other Works Spring 3-2018 Tetratrichomonas and Trichomonas spp.-Associated Disease in Free-Ranging Common Eiders (Somateria mollissima) from Wellfleet Bay, MA and Description of ITS1 Region Genotypes Caroline M. Grunenwald University of Tennessee, Knoxville Inga Sidor [email protected] Randal Mickley [email protected] Chris Dwyer [email protected] Richard W. Gerhold Jr. University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_compmedpubs Part of the Parasitology Commons Recommended Citation C. Grunenwald, I. Sidor, R. Mickley, C. Dwyer and R. Gerhold. "Tetratrichomonas and Trichomonas spp.- Associated Disease in Free-Ranging Common Eiders (Somateria mollissima) from Wellfleet Bay, MA and Description of ITS1 Region Genotypes." Avian Diseases March 2018: Vol 62 no 1. This Article is brought to you for free and open access by the Veterinary Medicine -- Faculty Publications and Other Works at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Faculty Publications and Other Works -- Biomedical and Diagnostic Sciences by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Tetratrichomonas and Trichomonas spp.-Associated Disease in Free-Ranging Common Eiders (Somateria mollissima) from Wellfleet Bay, MA and Description of ITS1 Region Genotypes Author(s): C. Grunenwald, I. Sidor, R. Mickley, C. Dwyer, and R. Gerhold, Source: Avian Diseases, 62(1):117-123. Published By: American Association of Avian Pathologists https://doi.org/10.1637/11742-080817-Reg.1 URL: http://www.bioone.org/doi/full/10.1637/11742-080817-Reg.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences.
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil
    DISPATCHES Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil Sandra R. Maruyama,1 Alynne K.M. de Santana,1,2 performed whole-genome sequencing of 2 clinical isolates Nayore T. Takamiya, Talita Y. Takahashi, from a patient with a fatal illness with clinical characteris- Luana A. Rogerio, Caio A.B. Oliveira, tics similar to those of VL. Cristiane M. Milanezi, Viviane A. Trombela, Angela K. Cruz, Amélia R. Jesus, The Study Aline S. Barreto, Angela M. da Silva, During 2011–2012, we characterized 2 parasite strains, LVH60 Roque P. Almeida,3 José M. Ribeiro,3 João S. Silva3 and LVH60a, isolated from an HIV-negative man when he was 64 years old and 65 years old (Table; Appendix, https:// Through whole-genome sequencing analysis, we identified wwwnc.cdc.gov/EID/article/25/11/18-1548-App1.pdf). non-Leishmania parasites isolated from a man with a fatal Treatment-refractory VL-like disease developed in the man; visceral leishmaniasis–like illness in Brazil. The parasites signs and symptoms consisted of weight loss, fever, anemia, infected mice and reproduced the patient’s clinical mani- festations. Molecular epidemiologic studies are needed to low leukocyte and platelet counts, and severe liver and spleen ascertain whether a new infectious disease is emerging that enlargements. VL was confirmed by light microscopic exami- can be confused with leishmaniasis. nation of amastigotes in bone marrow aspirates and promas- tigotes in culture upon parasite isolation and by positive rK39 serologic test results. Three courses of liposomal amphotericin eishmaniases are caused by ≈20 Leishmania species B resulted in no response.
    [Show full text]
  • What Is Known About Tritrichomonas Foetus Infection in Cats?
    Review Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Braz. J. Vet. Parasitol., Jaboticabal, v. 28, n. 1, p. 1-11, jan.-mar. 2019 Doi: https://doi.org/10.1590/S1984-29612019005 What is known about Tritrichomonas foetus infection in cats? O que sabemos sobre a infecção por Tritrichomonas foetus em gatos? Bethânia Ferreira Bastos1 ; Flavya Mendes de Almeida1 ; Beatriz Brener2 1 Departamento de Clínica e Patologia Veterinária, Faculdade de Medicina Veterinária, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil 2 Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense – UFF, Niterói, RJ, Brasil Received September 6, 2018 Accepted January 29, 2019 Abstract Tritrichomonas foetus is a parasite that has been definitively identified as an agent of trichomonosis, a disease characterized by chronic diarrhea. T. foetus colonizes portions of the feline large intestine, and manifests as chronic and recurrent diarrhea with mucus and fresh blood, which is often unresponsive to common drugs. Diagnosis of a trichomonad infection is made by either the demonstration of the trophozoite on a direct fecal smear, fecal culture and subsequent microscopic examination of the parasite, or extraction of DNA in feces and amplification by the use of molecular tools. T. foetus is commonly misidentified as other flagellate protozoa such asGiardia duodenalis and Pentatrichomonas hominis. Without proper treatment, the diarrhea may resolve spontaneously in months to years, but cats can remain carriers of the parasite. This paper intends to serve as a source of information for investigators and veterinarians, reviewing the most important aspects of feline trichomonosis, such as trichomonad history, biology, clinical manifestations, pathogenesis, world distribution, risk factors, diagnosis, and treatment.
    [Show full text]
  • Molecular Identification and Evolution of Protozoa Belonging to the Parabasalia Group and the Genus Blastocystis
    UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari UNIVERSITAR DEGLI STUDI DI SASSARI SCUOLA DI DOTTORATO IN SCIENZE BIOMOLECOLARI E BIOTECNOLOGICHE (Intenational PhD School in Biomolecular and Biotechnological Sciences) Indirizzo: Microbiologia molecolare e clinica Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Direttore della scuola: Prof. Masala Bruno Relatore: Prof. Pier Luigi Fiori Correlatore: Dott. Eric Viscogliosi Tesi di Dottorato : Dionigia Meloni XXIV CICLO Nome e cognome: Dionigia Meloni Titolo della tesi : Molecular identification and evolution of protozoa belonging to the Parabasalia group and the genus Blastocystis Tesi di dottorato in scienze Biomolecolari e biotecnologiche. Indirizzo: Microbiologia molecolare e clinica Universit degli studi di Sassari Abstract My thesis was conducted on the study of two groups of protozoa: the Parabasalia and Blastocystis . The first part of my work was focused on the identification, pathogenicity, and phylogeny of parabasalids. We showed that Pentatrichomonas hominis is a possible zoonotic species with a significant potential of transmission by the waterborne route and could be the aetiological agent of gastrointestinal troubles in children.
    [Show full text]
  • Molecular Characterization of Histomonas Meleagridis in Clinical
    Original Article Molecular characterization of Histomonas meleagridis in clinical samples of chickens from Eastern China Jinjun Xu1,2 Chanbao Qu1,2 Pin Guo1,2 Zhennan Zhuo1,2 Dandan Liu1,2 Jianping Tao1,2* Abstract Histomonas meleagridis (H. meleagridis) is a protozoan parasite that may cause histomoniasis, a disease of special importance to the poultry industry and public health. The molecular characterization of H. meleagridis in China has not been established. The 5.8S and flanking ITS regions were amplified by polymerase chain reaction from 15 liver samples of chickens which were preliminarily diagnosed with H. meleagridis infection by observing clinical symptoms and macroscopic changes in the organs in Eastern China between 2012 and 2013. The obtained sequences were aligned and compared with other known sequences of H. meleagridis and related protozoan species based on ITS1-5.8S rRNA-ITS2 or 5.8S rRNA region alone. Out of the 15 obtained sequences, 8 sequences were identified as H. meleagridis and were grouped into five clades, suggesting the possibility of multiple genotypes within the samples. Among the remaining 7 sequences, 4 sequences were more related to Trichomonas and 3 sequences were more related to Tetratrichomonas, which suggests the possibility of misdiagnosis or coinfection with other protozoans. Therefore, there is obvious genetic diversity of H. meleagridis based on the 5.8S and flanking ITS regions, which suggests the presence of different genotypes in chickens from Eastern China. Keywords: Histomonas meleagridis, internal transcribed spacer sequence, 5.8S rRNA, homology, phylogenetic relationship 1Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Province 225009, P.R.
    [Show full text]
  • A Global Analysis of Enzyme Compartmentalization to Glycosomes
    pathogens Article A Global Analysis of Enzyme Compartmentalization to Glycosomes Hina Durrani 1, Marshall Hampton 2 , Jon N. Rumbley 3 and Sara L. Zimmer 1,* 1 Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA; [email protected] 2 Mathematics & Statistics Department, University of Minnesota Duluth, Duluth, MN 55812, USA; [email protected] 3 College of Pharmacy, University of Minnesota, Duluth Campus, Duluth, MN 55812, USA; [email protected] * Correspondence: [email protected] Received: 25 March 2020; Accepted: 9 April 2020; Published: 12 April 2020 Abstract: In kinetoplastids, the first seven steps of glycolysis are compartmentalized into a glycosome along with parts of other metabolic pathways. This organelle shares a common ancestor with the better-understood eukaryotic peroxisome. Much of our understanding of the emergence, evolution, and maintenance of glycosomes is limited to explorations of the dixenous parasites, including the enzymatic contents of the organelle. Our objective was to determine the extent that we could leverage existing studies in model kinetoplastids to determine the composition of glycosomes in species lacking evidence of experimental localization. These include diverse monoxenous species and dixenous species with very different hosts. For many of these, genome or transcriptome sequences are available. Our approach initiated with a meta-analysis of existing studies to generate a subset of enzymes with highest evidence of glycosome localization. From this dataset we extracted the best possible glycosome signal peptide identification scheme for in silico identification of glycosomal proteins from any kinetoplastid species. Validation suggested that a high glycosome localization score from our algorithm would be indicative of a glycosomal protein.
    [Show full text]
  • The Amoeboid Parabasalid Flagellate Gigantomonas Herculeaof
    Acta Protozool. (2005) 44: 189 - 199 The Amoeboid Parabasalid Flagellate Gigantomonas herculea of the African Termite Hodotermes mossambicus Reinvestigated Using Immunological and Ultrastructural Techniques Guy BRUGEROLLE Biologie des Protistes, UMR 6023, CNRS and Université Blaise Pascal de Clermont-Ferrand, Aubière Cedex, France Summary. The amoeboid form of Gigantomonas herculea (Dogiel 1916, Kirby 1946), a symbiotic flagellate of the grass-eating subterranean termite Hodotermes mossambicus from East Africa, is observed by light, immunofluorescence and transmission electron microscopy. Amoeboid cells display a hyaline margin and a central granular area containing the nucleus, the internalized flagellar apparatus, and organelles such as Golgi bodies, hydrogenosomes, and food vacuoles with bacteria or wood particles. Immunofluorescence microscopy using monoclonal antibodies raised against Trichomonas vaginalis cytoskeleton, such as the anti-tubulin IG10, reveals the three long anteriorly-directed flagella, and the axostyle folded into the cytoplasm. A second antibody, 4E5, decorates the conspicuous crescent-shaped structure or cresta bordered by the adhering recurrent flagellum. Transmission electron micrographs show a microfibrillar network in the cytoplasmic margin and internal bundles of microfilaments similar to those of lobose amoebae that are indicative of cytoplasmic streaming. They also confirm the internalization of the flagella. The arrangement of basal bodies and fibre appendages, and the axostyle composed of a rolled sheet of microtubules are very close to that of the devescovinids Foaina and Devescovina. The very large microfibrillar cresta supporting an enlarged recurrent flagellum resembles that of Macrotrichomonas. The parabasal apparatus attached to the basal bodies is small in comparison to the cell size; this is probably related to the presence of many Golgi bodies supported by a striated fibre that are spread throughout the central cytoplasm in a similar way to Placojoenia and Mixotricha.
    [Show full text]
  • APOSTILA DIDATICA 402 Protozoa
    UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE VETERINÁRIA CLASSIFICAÇÃO E MORFOLOGIA DE PROTOZOÁRIOS E RICKÉTTSIAS EM MEDICINA VETERINÁRIA SEROPÉDICA 2016 PREFÁCIO Este material didático foi produzido como parte do projeto intitulado “Desenvolvimento e produção de material didático para o ensino de Parasitologia Animal na Universidade Federal Rural do Rio de Janeiro: atualização e modernização”. Este projeto foi financiado pela Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) Processo 2010.6030/2014-28 e coordenado pela professora Maria de Lurdes Azevedo Rodrigues (IV/DPA). SUMÁRIO Caracterização morfológica dos táxons superiores de eukaryota 08 1. Império Eukaryota 08 1.1. Reino Protozoa 08 1.2. Reino Chromista 08 1.3. Reino Fungi 08 1.4. Reino Animalia 08 1.5. Reino Plantae 08 Caracterização morfológica de parasitos do reino Protozoa 08 1.1.A. Filo Metamonada 09 A.1. Classe Trepomonadea 09 A.1.1. Ordem Diplomonadida 09 1. Família Hexamitidae 09 a. Gênero Giardia 09 a.1. Espécie Giardia intestinalis 09 1.2.B. Filo Rhizopoda 09 A.1. Classe Entamoebidea 10 A.1.1. Ordem Amoebida 10 1. Família Endamoebidae 10 a. Gênero Entamoeba 10 a.1. Espécie Entamoeba histolytica 10 a.2. Espécie Entomoeba coli 10 1.2.C. Filo Parabasala 11 A.1. Classe Trichomonadea 11 A.1.1. Ordem Trichomonadida 11 1. Família Trichomonadidae 11 a. Gênero Tritrichomonas 11 a.1. Espécie Tritrichomonas foetus 11 2. Família Monocercomonadidae 12 a. Gênero Histomonas 12 a.2. Espécie Histomonas meleagridis 12 1.2.D. Filo Euglenozoa 13 C.1. Classe Kinotoplastidea 13 C.1.1.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Trichomonas Stableri N. Sp., an Agent of Trichomonosis in Pacific Coast Band-Tailed Pigeons (Patagioenas Fasciata Monilis)
    University of the Pacific Scholarly Commons College of the Pacific acultyF Articles All Faculty Scholarship 4-1-2014 Trichomonas stableri n. sp., an agent of trichomonosis in Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis) Yvette A. Girard University of California, Davis, [email protected] Krysta H. Rogers California Department of Fish and Wildlife, [email protected] Richard Gerhold University of Tennessee, [email protected] Kirkwood M. Land University of the Pacific, [email protected] Scott C. Lenaghan University of Tennessee, [email protected] See next page for additional authors Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles Part of the Biology Commons Recommended Citation Girard, Y. A., Rogers, K. H., Gerhold, R., Land, K. M., Lenaghan, S. C., Woods, L. W., Haberkern, N., Hopper, M., Cann, J. D., & Johnson, C. K. (2014). Trichomonas stableri n. sp., an agent of trichomonosis in Pacific Coast band-tailed pigeons (Patagioenas fasciata monilis). International Journal for Parasitology: Parasites and Wildlife, 3(1), 32–40. DOI: 10.1016/j.ijppaw.2013.12.002 https://scholarlycommons.pacific.edu/cop-facarticles/789 This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in College of the Pacific acultyF Articles by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Authors Yvette A. Girard, Krysta H. Rogers, Richard Gerhold, Kirkwood M. Land, Scott C. Lenaghan, Leslie W. Woods, Nathan Haberkern, Melissa Hopper, Jeff D. Cann, and Christine K. Johnson This article is available at Scholarly Commons: https://scholarlycommons.pacific.edu/cop-facarticles/789 International Journal for Parasitology: Parasites and Wildlife 3 (2014) 32–40 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Trichomonas stableri n.
    [Show full text]