Grass Carp Effectiveness and Effects Stage 2: Knowledge Review

Total Page:16

File Type:pdf, Size:1020Kb

Grass Carp Effectiveness and Effects Stage 2: Knowledge Review Grass carp Effectiveness and Effects Stage 2: Knowledge review Prepared for the Department of Conservation May 2014 DISCLAIMER: The Department of Conservation takes no responsibility for the accuracy of this report and the findings and opinions expressed therein. The opinions and recommendations expressed are those of the contractor and may not reflect Department of Conservation policy and practice. Authors/Contributors : Dr DE Hofstra For any information regarding this report please contact: Dr DE Hofstra Scientist Aquatic Plants +64-7-859 1812 [email protected] National Institute of Water & Atmospheric Research Ltd Gate 10, Silverdale Road Hillcrest, Hamilton 3216 PO Box 11115, Hillcrest Hamilton 3251 New Zealand Phone +64-7-856 7026 Fax +64-7-856 0151 NIWA Client Report No: HAM2014-060 Report date: May 2014 NIWA Project: DOC13214 © All rights reserved. This publication may not be reproduced or copied in any form without the permission of the copyright owner(s). Such permission is only to be given in accordance with the terms of the client’s contract with NIWA. This copyright extends to all forms of copying and any storage of material in any kind of information retrieval system. Whilst NIWA has used all reasonable endeavours to ensure that the information contained in this document is accurate, NIWA does not give any express or implied warranty as to the completeness of the information contained herein, or that it will be suitable for any purpose(s) other than those specifically contemplated during the Project or agreed by NIWA and the Client. Contents Executive summary ..................................................................................................... 4 1 Introduction ........................................................................................................ 6 1.1 Grass carp .................................................................................................. 6 1.2 Scope, Stage Two – knowledge review ....................................................... 8 2 Approach ............................................................................................................ 9 3 Lakes ................................................................................................................. 10 3.1 Northland lakes ......................................................................................... 10 3.2 Auckland Region – rural lakes ................................................................... 37 3.3 Auckland Region – urban or man-made ponds ......................................... 51 3.4 Waikato ..................................................................................................... 67 3.5 Hawke’s Bay ............................................................................................. 67 3.6 Taranaki .................................................................................................... 92 3.7 Wellington Region ..................................................................................... 96 3.8 Canterbury .............................................................................................. 100 4 Discussion ...................................................................................................... 103 4.1 Effectiveness ........................................................................................... 103 4.2 Effects ..................................................................................................... 106 5 Summary and Recommendations ................................................................. 109 6 Acknowledgements ........................................................................................ 111 7 References ...................................................................................................... 112 Appendix A List of potential field sites from DOC ..................................... 134 Appendix B Short-list of lakes .................................................................... 135 Appendix C Location of lakes and ponds .................................................. 136 Reviewed by Approved for release by Dr Dave Rowe Dr John Clayton Formatting checked by Grass carp Effectiveness and Effects Executive summary Department of Conservation (DOC) contracted NIWA to prepare a report that collated the existing knowledge on the effectiveness and effects of using grass carp ( Ctenopharyngodon idella ) for weed control in New Zealand, drawing on published, unpublished and other information for the lakes of interest. The information was used to review the effectiveness of grass carp in terms of the weed control and/or eradication outcomes for which they were stocked and the effects of the grass carp on water quality, habitat quality and flora and fauna at the transfer locations. Grass carp are a species of herbivorous fish that were introduced to New Zealand for aquatic weed control. Grass carp have been deployed for weed control in a wide range of locations in New Zealand including lakes, ponds, drains and stormwater retention systems. DOC have a statutory role in the approval of grass carp release to a new location (where grass carp do not already exist). However DOC consider that insufficient information is available regarding the effects of grass carp on the ecosystems that they have been transferred into. The purpose of this review of the effects and effectiveness of grass carp is to improve future decision making. A total of 24 lakes and ponds were selected by DOC. Information for those waterbodies was sourced primarily from NIWA, DOC, MPI (Ministry for Primary Industries) and regional councils. Amongst the sites, grass carp had not been released into two of the lakes, nine were natural lakes and fifteen were man-made lakes, the majority of which are used for storm water retention. NIWA visited 15 of the sites within the summer to early autumn field season (2013/2014) and updated the vegetation records. Although some significant data sets on vegetation and water quality were readily available, there were information gaps in other aspects of the lake ecology, such as adequate pre- release baseline information, actual grass carp stocking density, and post-stocking monitoring. Information, and lake records were generally more complete for natural lakes, and recent stocking events (i.e., within the last six years). Grass carp can be effective weed control agents for submerged aquatic plants. Total removal of all submerged vegetation is normally the long-term outcome, and partial weed control is rarely achieved. Grass carp are preferential browsers of plants, consuming both target and non-target species in order of their relative palatability and their accessibility to the grass carp. Impacts on non-target plant species, effects on fauna, water and habitat quality were reported for some sites and were largely dependent on waterbody characteristics. In making recommendations for future decision making it was recognised that DOC only approves releases to new locations (MPI approves subsequent releases), and that DOC procedures already reflect some aspects of the recommendations. It is recommended that; 1. Assessment of an application to release grass carp, takes in to account the ecological functions, the weed issues, and the appropriateness of using grass carp in the waterbody. 2. Applications are assessed on the basis that there will be complete removal of submerged aquatic plants. Grass carp Effectiveness and Effects 4 3. The approval includes (i) the grass carp stocking density and containment measures, (ii) monitoring requirements for the aquatic plants, (iii) environmental monitoring that aligns with the risks and consequences of adverse effects to that waterbody, and (iv) submission of monitoring reports to DOC and MPI (ideally in a centralised repository, see point 4). 4. Environmental impact assessments, applications for stocking grass carp, actual stocking records, and monitoring reports are supplied and maintained, through a centralised system with DOC and MPI so that information can be readily tracked for waterbodies and catchments. Grass carp Effectiveness and Effects 5 1 Introduction 1.1 Grass carp Grass carp ( Ctenopharyngodon idella ) are a herbivorous fish, native to Asia, that derive their other common name, white amur, from the Amur River system that borders China and Russia (Cudmore and Mandrak 2004). They have been introduced to New Zealand and many other countries for aquatic weed control. The first consignments of grass carp arrived in New Zealand in 1966 (Chapman & Coffey 1971), and again in 1971 (Edwards & Hine 1974) with initial studies focussed on feeding preferences (Edwards 1973, 1974). Grass carp were subsequently released for a variety of field studies in small lakes to assess their potential impacts, such as Parkinsons and the Waihi Beach reservoir (Mitchell 1980, Rowe 1984) and drainage systems on the Rangitaiki Plain (Edwards & Moore 1975) and the Mangawhero Stream (Schipper 1983) in the Waikato. These initial studies provided data on the potential use of grass carp for weed control in temperate New Zealand environments and addressed the potential impacts of grass carp in lakes (Rowe and Hill 1989). Issues with respect to containment arose after fish escaped into the Waikato River (McDowall 1984), and this event resulted in the production of an Environmental Impact Assessment to formally address the use of this fish for weed control in New Zealand (Rowe & Schipper 1985). The report analysed the
Recommended publications
  • Otanewainuku ED (Report Prepared on 13 August 2013)
    1 NZFRI collection wish list for Otanewainuku ED (Report prepared on 13 August 2013) Fern Ally Isolepis cernua Lycopodiaceae Isolepis inundata Lycopodium fastigiatum Isolepis marginata Lycopodium scariosum Isolepis pottsii Psilotaceae Isolepis prolifera Tmesipteris lanceolata Lepidosperma australe Lepidosperma laterale Gymnosperm Schoenoplectus pungens Cupressaceae Schoenoplectus tabernaemontani Chamaecyparis lawsoniana Schoenus apogon Cupressus macrocarpa Schoenus tendo Pinaceae Uncinia filiformis Pinus contorta Uncinia gracilenta Pinus patula Uncinia rupestris Pinus pinaster Uncinia scabra Pinus ponderosa Hemerocallidaceae Pinus radiata Dianella nigra Pinus strobus Phormium cookianum subsp. hookeri Podocarpaceae Phormium tenax Podocarpus totara var. totara Iridaceae Prumnopitys taxifolia Crocosmia xcrocosmiiflora Libertia grandiflora Monocotyledon Libertia ixioides Agapanthaceae Watsonia bulbillifera Agapanthus praecox Juncaceae Alliaceae Juncus articulatus Allium triquetrum Juncus australis Araceae Juncus conglomeratus Alocasia brisbanensis Juncus distegus Arum italicum Juncus edgariae Lemna minor Juncus effusus var. effusus Zantedeschia aethiopica Juncus sarophorus Arecaceae Juncus tenuis var. tenuis Rhopalostylis sapida Luzula congesta Asparagaceae Luzula multiflora Asparagus aethiopicus Luzula picta var. limosa Asparagus asparagoides Orchidaceae Cordyline australis x banksii Acianthus sinclairii Cordyline banksii x pumilio Aporostylis bifolia Asteliaceae Corunastylis nuda Collospermum microspermum Diplodium alobulum Commelinaceae
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Aquatic Insects Recorded from Westland National Park
    ISSN 1171-9834 ® 1994 Department of Conservation Reference to material in this report should be cited thus: Eward, D., Putz R. & McLellan, I.D., 1994. Aquatic insects recorded from Westland National Park. Conservation Advisory Science Notes No. 78, Department of Conservation, Wellington. 18p. Commissioned by: West Coast Conservancy Location: NZMS Aquatic insects recorded from Westland National Park D. Eward R. Putz & I. D. McLellan Institute fur Zoologie, Freiburg University, Albertstrasse 21a, 7800 Freiburg, Germany. Research Associate, Landcare Research Institute, Private Box 95, Westport. ABSTRACT This report provides a list of aquatic insects found in Westland National Park, with a brief comment on their ecology. The list was compiled from the authors' collections, the literature and communications with other workers, in order to fill in gaps in the knowledge of aquatic insects in Westland National Park. It is also a plea for more taxonomic work to be carried out on New Zealand's invertebrate fauna. 1. INTRODUCTION This list arose out of frustration experienced by I.D. McLellan, when discussions about management plans and additions to Westland National Park revealed that although the botanical resources (through the dedicated work of Peter Wardle) and introduced mammal and bird fauna were well known, the invertebrate fauna had been ignored. The opportunity to remedy this occurred when D. Eward and R. Putz were referred to I. D. McLellan in order to complete a University semester of practical work in New Zealand. Part of the semester was spent collecting aquatic insects in the park, determining the material and compiling a preliminary list of aquatic insects.
    [Show full text]
  • The Naturalized Vascular Plants of Western Australia 1
    12 Plant Protection Quarterly Vol.19(1) 2004 Distribution in IBRA Regions Western Australia is divided into 26 The naturalized vascular plants of Western Australia natural regions (Figure 1) that are used for 1: Checklist, environmental weeds and distribution in bioregional planning. Weeds are unevenly distributed in these regions, generally IBRA regions those with the greatest amount of land disturbance and population have the high- Greg Keighery and Vanda Longman, Department of Conservation and Land est number of weeds (Table 4). For exam- Management, WA Wildlife Research Centre, PO Box 51, Wanneroo, Western ple in the tropical Kimberley, VB, which Australia 6946, Australia. contains the Ord irrigation area, the major cropping area, has the greatest number of weeds. However, the ‘weediest regions’ are the Swan Coastal Plain (801) and the Abstract naturalized, but are no longer considered adjacent Jarrah Forest (705) which contain There are 1233 naturalized vascular plant naturalized and those taxa recorded as the capital Perth, several other large towns taxa recorded for Western Australia, com- garden escapes. and most of the intensive horticulture of posed of 12 Ferns, 15 Gymnosperms, 345 A second paper will rank the impor- the State. Monocotyledons and 861 Dicotyledons. tance of environmental weeds in each Most of the desert has low numbers of Of these, 677 taxa (55%) are environmen- IBRA region. weeds, ranging from five recorded for the tal weeds, recorded from natural bush- Gibson Desert to 135 for the Carnarvon land areas. Another 94 taxa are listed as Results (containing the horticultural centre of semi-naturalized garden escapes. Most Total naturalized flora Carnarvon).
    [Show full text]
  • Indigenous Insect Fauna and Vegetation of Rakaia Island
    Indigenous insect fauna and vegetation of Rakaia Island Report No. R14/60 ISBN 978-1-927299-84-2 (print) 978-1-927299-86-6 (web) Brian Patrick Philip Grove June 2014 Report No. R14/60 ISBN 978-1-927299-84-2 (print) 978-1-927299-86-6 (web) PO Box 345 Christchurch 8140 Phone (03) 365 3828 Fax (03) 365 3194 75 Church Street PO Box 550 Timaru 7940 Phone (03) 687 7800 Fax (03) 687 7808 Website: www.ecan.govt.nz Customer Services Phone 0800 324 636 Indigenous insect fauna and vegetation of Rakaia Island Executive summary The northern end of Rakaia Island, a large in-river island of the Rakaia River, still supports relatively intact and extensive examples of formerly widespread Canterbury Plains floodplain and riverbed habitats. It is managed as a river protection reserve and conservation area by Canterbury Regional Council, having been retired from grazing since 1985. This report describes the insect fauna associated with indigenous and semi-indigenous forest, shrubland-grassland and riverbed vegetation of north Rakaia Island. A total of 119 insect species of which 112 (94%) are indigenous were recorded from the area during survey and sampling in 2012-13. North Rakaia Island is of very high ecological significance for its remnant indigenous vegetation and flora (including four nationally threatened plant species), its insect communities, and insect-plant relationships. This survey, which focused on Lepidoptera, found many of the common and characteristic moths and butterflies that would have been abundant across the Canterbury Plains before European settlement. Three rare/threatened species and several new species of indigenous moth were also found.
    [Show full text]
  • A Vegetation Tool for Wetland Delineation in New Zealand
    A vegetation tool for wetland delineation in New Zealand A vegetation tool for wetland delineation in New Zealand Beverley R Clarkson Landcare Research doi:10.7931/J2TD9V77 Prepared for: Meridian Energy Limited 25 Sir William Pickering Drive PO Box 2454 Christchurch December 2013 Landcare Research, Gate 10 Silverdale Road, University of Waikato Campus, Private Bag 3127, Hamilton 3240, New Zealand, Phone +64 7 859 3700, Fax +64 7 859 3701, www.landcareresearch.co.nz Reviewed by: Approved for release by: Philppe Gerbeaux Bill Lee Technical Advisor Portfolio Leader Department of Conservation Landcare Research Landcare Research Contract Report: LC1793 Disclaimer This report has been prepared by Landcare Research for Meridian Energy. If used by other parties, no warranty or representation is given as to its accuracy and no liability is accepted for loss or damage arising directly or indirectly from reliance on the information in it. © Landcare Research New Zealand Ltd 2014 No part of this work covered by copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, taping, information retrieval systems, or otherwise) without the written permission of the publisher. Contents Summary ..................................................................................................................................... v 1 Introduction ....................................................................................................................... 1 2 Background .......................................................................................................................
    [Show full text]
  • HLUTIRAMOUNTUS 20170295783A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub
    HLUTIRAMOUNTUS 20170295783A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2017/ 0295783 A1 LI et al. ( 43) Pub . Date : Oct . 19 , 2017 (54 ) COMPOSITIONS AND METHODS TO Publication Classification SELECTIVELY CONTROL SPECIES (51 ) Int. Cl. ( 71 ) Applicant: STEPHEN F . AUSTIN STATE AOIN 35 /02 ( 2006 .01 ) UNIVERSITY , Nacogdoches, TX ( US ) AOIN 65 / 18 (2009 . 01 ) AOIN 65 /04 ( 2009 .01 ) ( 72 ) Inventors: Shiyou LI, Nacogdoches , TX (US ) ; A01N 35 / 06 ( 2006 .01 ) Ping WANG , Nacogdoches, TX (US ) ; A01N 65 /03 ( 2009. 01 ) Wei YUAN , Nacogdoches, TX (US ) ; A01N 43 / 20 ( 2006 .01 ) Zushang SU , Nacogdoches, TX (US ) ; AOIN 65 /40 (2009 . 01 ) Steven H . BULLARD , Nacogdoches , A01N 65 / 06 (2009 . 01) TX (US ) ( 52 ) U . S . CI. CPC .. .. .. .. A01N 35 / 02 ( 2013 .01 ) ; A01N 65 /40 ( 21) Appl . No. : 15 /523 , 576 (2013 .01 ) ; A01N 65 / 18 ( 2013 . 01 ) ; AOIN 65 /06 (2013 .01 ) ; AOIN 35 / 06 ( 2013 . 01 ) ; ( 22 ) PCT Filed : Nov. 3 , 2015 AOIN 65 / 03 ( 2013 .01 ) ; AOIN 43 / 20 ( 86 ) PCT No. : PCT/ US15 /58817 (2013 .01 ) ; AOIN 65 / 04 ( 2013 .01 ) $ 371 (c ) ( 1 ) , (57 ) ABSTRACT ( 2 ) Date : May 1, 2017 Methods and compositions for controlling an invasive or Related U . S . Application Data unwanted species by application of a composition comprised (60 ) Provisional application No . 62 /074 ,426 , filed on Nov. of an endocide derived from the same species or a closely 3 , 2014 . related species. DADID , Sig = 280 , 8 Ret = 360 , 80 (WATER SAMPLE 06- 0601. 0 ) PAUL Day 1 100 507TITI:TIT ITT DADID . SG - 250 , 5 R & t= 360 .
    [Show full text]
  • Gimme Shelter: Differential Utilisation and Propagule Creation of Invasive Macrophytes by Native Caddisfly Larvae
    Gimme Shelter: differential utilisation and propagule creation of invasive macrophytes by native caddisfly larvae Crane, K., Cuthbert, R. N., Ricciardi, A., Kregting, L., Coughlan, N. E., MacIsaac, H. J., Reid, N., & Dick, J. T. A. (2021). Gimme Shelter: differential utilisation and propagule creation of invasive macrophytes by native caddisfly larvae. Biological Invasions, 23, 95-109. https://doi.org/10.1007/s10530-020-02358-7 Published in: Biological Invasions Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2020 The Authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:30. Sep. 2021 Biol Invasions https://doi.org/10.1007/s10530-020-02358-7 (0123456789().,-volV)( 0123456789().,-volV) ORIGINAL PAPER Gimme Shelter: differential utilisation and propagule creation of invasive macrophytes by native caddisfly larvae Kate Crane .
    [Show full text]
  • Management and Control Methods of Invasive Alien Freshwater
    Aquatic Botany 136 (2017) 112–137 Contents lists available at ScienceDirect Aquatic Botany jou rnal homepage: www.elsevier.com/locate/aquabot Review Management and control methods of invasive alien freshwater aquatic plants: A review a,b,∗ c d d d e A. Hussner , I. Stiers , M.J.J.M. Verhofstad , E.S. Bakker , B.M.C. Grutters , J. Haury , f g h i j J.L.C.H. van Valkenburg , G. Brundu , J. Newman , J.S. Clayton , L.W.J. Anderson , i D. Hofstra a Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany b Jackels Umweltdienste GmbH, D-41334 Nettetal, Germany c Plant Biology and Nature Management (APNA), Department of Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium d Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands e Department of Ecology, UMR ESE, AGROCAMPUS OUEST, 35042 Rennes Cedex, France f Netherlands Food and Consumer Product Safety Authority, National Reference Centre, P.O. Box 9102, 6700 HC, Wageningen, The Netherlands g Department of Agriculture, University of Sassari, 07100 Sassari, Italy h Centre for Ecology & Hydrology, Wallingford, Oxon, United Kingdom i National Institute of Water and Atmospheric Research, PO Box 11115, Hamilton, New Zealand j Waterweed Solutions, P.O. Box 807, Pt. Reyes Station, CA, 94956, United States a r t i c l e i n f o a b s t r a c t Article history: Introduced invasive alien aquatic plants (IAAPs) threaten ecosystems due to their excessive growth Received 27 April 2016 and have both ecological and economic impacts. To minimize these impacts, effective management of Received in revised form 2 August 2016 IAAPs is required according to national or international laws and regulations (e.g.
    [Show full text]
  • (Lepidoptera: Pyralidae) Associated with Hydrilla Verticillata (Hydrocharitaceae) in North Queensland
    Blackwell Science, LtdOxford, UKAENAustralian Journal of Entomology1326-67562005 Australian Entomological Society0 2005444354363Original ArticleLarvae of Nymphulinae on hydrillaD H Habeck and J K Balciunas Australian Journal of Entomology (2005) 44, 354–363 Larvae of Nymphulinae (Lepidoptera: Pyralidae) associated with Hydrilla verticillata (Hydrocharitaceae) in North Queensland Dale H Habeck1* and Joseph K Balciunas2† 1Department of Entomology and Nematology, University of Florida, PO Box 110620, Gainesville, FL 32611-0620, USA. 2USDA-ARS, Australian Biological Control Laboratory, James Cook University, Townsville, Qld 4811, Australia. Abstract Australian Nymphulinae are a diverse group of moths with aquatic caterpillars that probably play an important role in determining the composition and abundance of aquatic macrophytes in Australian freshwater systems. Less than 10% of the nymphuline larvae in Australia have been described. As part of a project to develop biological control agents for hydrilla, Hydrilla verticillata, we encountered a variety of Nymphulinae larvae feeding on this and other aquatic plants. We illustrate, describe and provide a key to five species of Nymphulinae larvae (Ambia ptolycusalis (Walker), Parapoynx diminutalis Snellen, Hygraula nitens Butler, Margarosticha repititalis (Warren) and Theila siennata (Warren)) that feed on hydrilla in North Queensland. Information on their host plants also is included. Our field research indicates that none of these species should be considered as potential biological control agents for hydrilla. Key words Ambia, aquatic caterpillars, Hygraula, Margarosticha, Parapoynx, Theila. INTRODUCTION H. nitens. This appears to be the only species of Nymphulinae larvae from Australia to have been illustrated. However, larvae Worldwide, some 12 families of Lepidoptera have been of four widely distributed Nymphulinae species whose range reported to have aquatic larvae (Lange 1984).
    [Show full text]
  • Darkwood Reserve NSW Report, 2010
    Bush Blitz s pecies Discovery p r o g r a m Darkwood reserve NsW 12–16 February 2010 REPORT What is contents Bush Blitz? Bush Blitz is a three- What is Bush Blitz 2 year, multi-million dollar Executive summary 3 partnership between the Introduction 3 australian government, Reserve Overview 4 Bhp Billiton, earthwatch Methods 5 australia, and ausplots- Results 6 rangelands to document plants and animals in selected Discussion 7 properties across australia’s Appendix A: Species Lists 9 National reserve system. Fauna Taxa 10 Flora Taxa 16 Appendix B: Listed Species 19 this innovative partnership Fauna Taxa 20 harnesses the expertise of many Appendix C: Exotic Pest Species 21 of australia’s top scientists from Fauna Taxa 22 museums, herbaria, universities, Flora Taxa 22 and other institutions and organisations across the country. 2 Bush Blitz survey report Executive Introduction summary A short (six day) Bush Blitz was The Bush Blitz program aims to survey the flora and fauna of conducted on Darkwood Reserve in recent additions to the National Reserve System (NRS). Bush New South Wales during February 2010 Blitz is an initiative of the Australian Government, through the in conjunction with the Bush Blitz Australian Biological Resources Study (ABRS) in partnership with Media Launch. In total, 363 species were BHP Billiton, Earthwatch Australia and AusPlots-Rangelands. The identified on the reserve. With previous Bush Blitz objectives are: records for the Reserve, the total number ++ to promote, publicise and demonstrate the importance of of species known from Darkwood is taxonomy through the vehicle of species discovery; now 392.
    [Show full text]
  • Adaptivní Evoluce Genu Cenh3 U Rostlin S Holocentrickými Chromozómy Diplomová Práce Marie Krátká
    MASARYKOVA UNIVERZITA Pøírodovìdecká fakulta Ústav experimentální biologie Diplomová práce Brno 2019 Marie Krátká Pøírodovìdecká fakulta Ústav experimentální biologie Adaptivní evoluce genu CenH3 u rostlin s holocentrickými chromozómy Diplomová práce Marie Krátká Vedoucí práce: Mgr. František Zedek, Ph.D. Brno 2019 Bibliograficky´za´znam Autor: Bc. Marie Kra´tka´ Prˇı´rodoveˇdecka´fakulta, Masarykova univerzita U´ stav experimenta´lnı´biologie Na´zev pra´ce: Adaptivnı´evoluce genu CenH3 u rostlin s holocentricky´mi chro- mozo´my Studijnı´program: Experimenta´lnı´biologie Studijnı´obor: Molekula´rnı´biologie a genetika Vedoucı´pra´ce: Mgr. Frantisˇek Zedek, Ph.D. Akademicky´rok: 2018/2019 Pocˇet stran: 54 Klı´cˇova´slova: CenH3; CENP-A; holocentricke´ chromozomy; adaptivnı´ evo- luce, centromericky´tah; asymetricka´meio´za; CENP-C; Cypera- ceae; kodon-substitucˇnı´modely; MEME; aBSREL Bibliographic Entry Author: Bc. Marie Kra´tka´ Faculty of Science, Masaryk University Department of Experimental Biology Title of Thesis: Adaptive evolution of the CenH3 gene in plants with holocent- ric chromosomes Degree Programme: Experimental biology Field of Study: Molecular biology and genetics Supervisor: Mgr. Frantisˇek Zedek, Ph.D. Academic Year: 2018/2019 Number of Pages: 54 Keywords: CenH3; CENP-A; holocentric chromosomes; centromeric drive; asymmetric meiosis; CENP-C; adaptive evolution Cyperaceae; codon-substitution models; MEME; aBSREL Abstrakt U organismu˚ s monocentricky´m usporˇa´da´nı´m chromozomu˚ probı´ha´ centromericky´ tah, evolucˇnı´proces iniciovany´expanzı´centromericky´ch repetic, ktere´jsou tak na sebe schopny nava´zat veˇtsˇı´mnozˇstvı´kinetochorovy´ch proteinu˚a pote´by´t dı´ky asymetrii deˇ- licı´ho vrˇete´nka prˇisamicˇı´meio´ze preferencˇneˇsegregova´ny do vajı´cˇka. V reakci na tyto sobecke´centromery docha´zı´k adaptivnı´evoluci kinetochorove´ho proteinu CenH3, ktery´ doka´zˇe zabra´nit tahu sobecky´ch centromer obnovenı´m jejich rovnocennosti.
    [Show full text]