Chromosome Missegregation in Single Human Oocytes Is Related to the Age and Gene Expression Profile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Global Characteristics of Csig-Associated Gene Expression Changes in Human Hek293 Cells and the Implications for Csig Regulating Cell Proliferation and Senescence
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 15 May 2015 doi: 10.3389/fendo.2015.00069 Global characteristics of CSIG-associated gene expression changes in human HEK293 cells and the implications for CSIG regulating cell proliferation and senescence Liwei Ma, Wenting Zhao, Feng Zhu, Fuwen Yuan, Nan Xie, Tingting Li, Pingzhang Wang and Tanjun Tong* Research Center on Aging. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Edited by: Beijing, China Wen Zhou, Columbia University, USA Reviewed by: Cellular senescence-inhibited gene (CSIG), also named as ribosomal_L1 domain-contain- Jian Zhong, ing 1 (RSL1D1), is implicated in various processes including cell cycle regulation, cellular Mayo Clinic, USA Xiaoxu Zheng, senescence, apoptosis, and tumor metastasis. However, little is known about the regulatory University of Maryland Baltimore, USA mechanism underlying its functions. To screen important targets and signaling pathways Wensi Tao, University of Miami, USA modulated by CSIG, we compared the gene expression profiles in CSIG-silencing and control *Correspondence: HEK293 cells using Affymetrix microarray Human Genome U133 Plus 2.0 GeneChips. A Tanjun Tong, total of 590 genes displayed statistically significant expression changes, with 279 genes Department of Biochemistry and up-regulated and 311 down-regulated, respectively. These genes are involved in a broad array Molecular Biology, Research Center on Aging, Peking University Health of biological processes, mainly in transcriptional regulation, cell cycle, signal transduction, Science Center, 38 Xueyuan Road, oxidation reduction, development, and cell adhesion. -
Genetic Variation Across the Human Olfactory Receptor Repertoire Alters Odor Perception
bioRxiv preprint doi: https://doi.org/10.1101/212431; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Genetic variation across the human olfactory receptor repertoire alters odor perception Casey Trimmer1,*, Andreas Keller2, Nicolle R. Murphy1, Lindsey L. Snyder1, Jason R. Willer3, Maira Nagai4,5, Nicholas Katsanis3, Leslie B. Vosshall2,6,7, Hiroaki Matsunami4,8, and Joel D. Mainland1,9 1Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA 2Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, New York, USA 3Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA 4Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA 5Department of Biochemistry, University of Sao Paulo, Sao Paulo, Brazil 6Howard Hughes Medical Institute, New York, New York, USA 7Kavli Neural Systems Institute, New York, New York, USA 8Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina, USA 9Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA *[email protected] ABSTRACT The human olfactory receptor repertoire is characterized by an abundance of genetic variation that affects receptor response, but the perceptual effects of this variation are unclear. To address this issue, we sequenced the OR repertoire in 332 individuals and examined the relationship between genetic variation and 276 olfactory phenotypes, including the perceived intensity and pleasantness of 68 odorants at two concentrations, detection thresholds of three odorants, and general olfactory acuity. -
Supplementary Table S1. Upregulated Genes Differentially
Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2/// -
Redundant and Specific Roles of Cohesin STAG Subunits in Chromatin Looping and Transcriptional Control
Downloaded from genome.cshlp.org on October 10, 2021 - Published by Cold Spring Harbor Laboratory Press Research Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control Valentina Casa,1,6 Macarena Moronta Gines,1,6 Eduardo Gade Gusmao,2,3,6 Johan A. Slotman,4 Anne Zirkel,2 Natasa Josipovic,2,3 Edwin Oole,5 Wilfred F.J. van IJcken,1,5 Adriaan B. Houtsmuller,4 Argyris Papantonis,2,3 and Kerstin S. Wendt1 1Department of Cell Biology, Erasmus MC, 3015 GD Rotterdam, The Netherlands; 2Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; 3Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075 Göttingen, Germany; 4Optical Imaging Centre, Erasmus MC, 3015 GD Rotterdam, The Netherlands; 5Center for Biomics, Erasmus MC, 3015 GD Rotterdam, The Netherlands Cohesin is a ring-shaped multiprotein complex that is crucial for 3D genome organization and transcriptional regulation during differentiation and development. It also confers sister chromatid cohesion and facilitates DNA damage repair. Besides its core subunits SMC3, SMC1A, and RAD21, cohesin in somatic cells contains one of two orthologous STAG sub- units, STAG1 or STAG2. How these variable subunits affect the function of the cohesin complex is still unclear. STAG1- and STAG2-cohesin were initially proposed to organize cohesion at telomeres and centromeres, respectively. Here, we uncover redundant and specific roles of STAG1 and STAG2 in gene regulation and chromatin looping using HCT116 cells with an auxin-inducible degron (AID) tag fused to either STAG1 or STAG2. Following rapid depletion of either subunit, we perform high-resolution Hi-C, gene expression, and sequential ChIP studies to show that STAG1 and STAG2 do not co-occupy in- dividual binding sites and have distinct ways by which they affect looping and gene expression. -
S41467-020-18249-3.Pdf
ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible. -
REPORT Mutations in Cohesin Complex Members SMC3 and SMC1A Cause a Mild Variant of Cornelia De Lange Syndrome with Predominant Mental Retardation
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector REPORT Mutations in Cohesin Complex Members SMC3 and SMC1A Cause a Mild Variant of Cornelia de Lange Syndrome with Predominant Mental Retardation Matthew A. Deardorff, Maninder Kaur, Dinah Yaeger, Abhinav Rampuria, Sergey Korolev, Juan Pie, Concepcion Gil-Rodrı´guez, Marı´a Arnedo, Bart Loeys, Antonie D. Kline, Meredith Wilson, Kaj Lillquist, Victoria Siu, Feliciano J. Ramos, Antonio Musio, Laird S. Jackson, Dale Dorsett, and Ian D. Krantz Mutations in the cohesin regulators NIPBL and ESCO2 are causative of the Cornelia de Lange syndrome (CdLS) and Roberts or SC phocomelia syndrome, respectively. Recently, mutations in the cohesin complex structural component SMC1A have been identified in two probands with features of CdLS. Here, we report the identification of a mutation in the gene encoding the complementary subunit of the cohesin heterodimer, SMC3, and 14 additional SMC1A mutations. All mutations are predicted to retain an open reading frame, and no truncating mutations were identified. Structural analysis of the mutant SMC3 and SMC1A proteins indicate that all are likely to produce functional cohesin complexes, but we posit that they may alter their chromosome binding dynamics. Our data indicate that SMC3 and SMC1A mutations (1) contribute to ∼5% of cases of CdLS, (2) result in a consistently mild phenotype with absence of major structural anomalies typically associated with CdLS, and (3) in some instances, result in a phenotype that approaches -
Low Tolerance for Transcriptional Variation at Cohesin Genes Is Accompanied by Functional Links to Disease-Relevant Pathways
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037358; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title Low tolerance for transcriptional variation at cohesin genes is accompanied by functional links to disease-relevant pathways Authors William Schierdingǂ1, Julia Horsfieldǂ2,3, Justin O’Sullivan1,3,4 ǂTo whom correspondence should be addressed. 1 Liggins Institute, The University of Auckland, Auckland, New Zealand 2 Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand 3 The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand 4 MRC Lifecourse Epidemiology Unit, University of Southampton Acknowledgements This work was supported by a Royal Society of New Zealand Marsden Grant to JH and JOS (16-UOO- 072), and WS was supported by the same grant. Contributions WS planned the study, performed analyses, and drafted the manuscript. JH and JOS revised the manuscript. Competing interests None declared. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.11.037358; this version posted April 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Variants in DNA regulatory elements can alter the regulation of distant genes through spatial- regulatory connections. -
Whole-Exome Sequencing in a Japanese Pedigree Implicates A
Bone 122 (2019) 193–198 Contents lists available at ScienceDirect Bone journal homepage: www.elsevier.com/locate/bone Full Length Article Whole-exome sequencing in a Japanese pedigree implicates a rare non- T synonymous single-nucleotide variant in BEST3 as a candidate for mandibular prognathism ⁎ Takashi S. Kajiia, , Akira Okab, Fumio Saitoc, Jun Mitsuid, Junichiro Iidac a Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan b Institute of Medical Sciences, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan c Department of Orthodontics, Division of Oral Functional Science, Graduate School of Dental Medicine, Hokkaido University, Kita 13 Nishi 7, Kita-ku, Sapporo 060-8586, Japan d Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan ARTICLE INFO ABSTRACT Keywords: Mandibular prognathism is a phenotype of facial deformity seen in populations around the world, but with Genetics higher incidence among East Asian populations. Five genome-wide nonparametric linkage analyses and a Whole-exome sequencing genome-wide association study to identify susceptibility loci of the phenotype have shown inconsistent results. Bestrophin 3 To explore variants related to mandibular prognathism, we undertook whole-exome sequencing in a Japanese Mandibular prognathism pedigree. The pedigree was ascertained as mandibular prognathism. The pedigree comprised 15 individuals from Endochondral growth 4 generations. Four affected individuals across 2 generations and 5 unaffected individuals were chosenfor Japanese whole-exome sequencing. Five non-synonymous single-nucleotide variants (SNVs) of UBASH3B, OR6M1, OR8D4, OR8B4, and BEST3 genes were detected in all 4 affected individuals, but in none of the 5 unaffected individuals. -
Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition
Published OnlineFirst December 19, 2013; DOI: 10.1158/1535-7163.MCT-13-0749 Molecular Cancer Cancer Biology and Signal Transduction Therapeutics Glioblastoma Cells Containing Mutations in the Cohesin Component STAG2 Are Sensitive to PARP Inhibition Melanie L. Bailey1, Nigel J. O'Neil1, Derek M. van Pel2, David A. Solomon3, Todd Waldman4, and Philip Hieter1 Abstract Recent data have identified STAG2, a core subunit of the multifunctional cohesin complex, as a highly recurrently mutated gene in several types of cancer. We sought to identify a therapeutic strategy to selectively target cancer cells harboring inactivating mutations of STAG2 using two independent pairs of isogenic glioblastoma cell lines containing either an endogenous mutant STAG2 allele or a wild-type STAG2 allele restored by homologous recombination. We find that mutations in STAG2 are associated with significantly increased sensitivity to inhibitors of the DNA repair enzyme PARP. STAG2-mutated, PARP-inhibited cells accumulated in G2 phase and had a higher percentage of micronuclei, fragmented nuclei, and chromatin bridges compared with wild-type STAG2 cells. We also observed more 53BP1 foci in STAG2-mutated glioblastoma cells, suggesting that these cells have defects in DNA repair. Furthermore, cells with mutations in STAG2 were more sensitive than cells with wild-type STAG2 when PARP inhibitors were used in combination with DNA-damaging agents. These data suggest that PARP is a potential target for tumors harboring inactivating mutations in STAG2, and strongly recommend that STAG2 status be determined and correlated with therapeutic response to PARP inhibitors, both prospectively and retrospectively, in clinical trials. Mol Cancer Ther; 13(3); 724–32. -
Gene Regulation by Cohesin in Cancer: Is the Ring an Unexpected Party to Proliferation?
Published OnlineFirst September 22, 2011; DOI: 10.1158/1541-7786.MCR-11-0382 Molecular Cancer Review Research Gene Regulation by Cohesin in Cancer: Is the Ring an Unexpected Party to Proliferation? Jenny M. Rhodes, Miranda McEwan, and Julia A. Horsfield Abstract Cohesin is a multisubunit protein complex that plays an integral role in sister chromatid cohesion, DNA repair, and meiosis. Of significance, both over- and underexpression of cohesin are associated with cancer. It is generally believed that cohesin dysregulation contributes to cancer by leading to aneuploidy or chromosome instability. For cancers with loss of cohesin function, this idea seems plausible. However, overexpression of cohesin in cancer appears to be more significant for prognosis than its loss. Increased levels of cohesin subunits correlate with poor prognosis and resistance to drug, hormone, and radiation therapies. However, if there is sufficient cohesin for sister chromatid cohesion, overexpression of cohesin subunits should not obligatorily lead to aneuploidy. This raises the possibility that excess cohesin promotes cancer by alternative mechanisms. Over the last decade, it has emerged that cohesin regulates gene transcription. Recent studies have shown that gene regulation by cohesin contributes to stem cell pluripotency and cell differentiation. Of importance, cohesin positively regulates the transcription of genes known to be dysregulated in cancer, such as Runx1, Runx3, and Myc. Furthermore, cohesin binds with estrogen receptor a throughout the genome in breast cancer cells, suggesting that it may be involved in the transcription of estrogen-responsive genes. Here, we will review evidence supporting the idea that the gene regulation func- tion of cohesin represents a previously unrecognized mechanism for the development of cancer. -
The Emerging Role of Cohesin in the DNA Damage Response
G C A T T A C G G C A T genes Review The Emerging Role of Cohesin in the DNA Damage Response Ireneusz Litwin * , Ewa Pilarczyk and Robert Wysocki Institute of Experimental Biology, University of Wroclaw, 50-328 Wroclaw, Poland; [email protected] (E.P.); [email protected] (R.W.) * Correspondence: [email protected]; Tel.: +48-71-375-4126 Received: 29 October 2018; Accepted: 21 November 2018; Published: 28 November 2018 Abstract: Faithful transmission of genetic material is crucial for all organisms since changes in genetic information may result in genomic instability that causes developmental disorders and cancers. Thus, understanding the mechanisms that preserve genome integrity is of fundamental importance. Cohesin is a multiprotein complex whose canonical function is to hold sister chromatids together from S-phase until the onset of anaphase to ensure the equal division of chromosomes. However, recent research points to a crucial function of cohesin in the DNA damage response (DDR). In this review, we summarize recent advances in the understanding of cohesin function in DNA damage signaling and repair. First, we focus on cohesin architecture and molecular mechanisms that govern sister chromatid cohesion. Next, we briefly characterize the main DDR pathways. Finally, we describe mechanisms that determine cohesin accumulation at DNA damage sites and discuss possible roles of cohesin in DDR. Keywords: cohesin; cohesin loader; DNA double-strand breaks; replication stress; DNA damage tolerance 1. Introduction Genomes of all living organisms are continuously challenged by endogenous and exogenous insults that threaten genome stability. It has been estimated that human cells suffer more than 70,000 DNA lesions per day, most of which are single-strand DNA breaks (SSBs) [1]. -
RESEARCH ARTICLE Regulatory Network of Micrornas, Target
DOI:http://dx.doi.org/10.7314/APJCP.2015.16.2.475 Regulatory Network of MicroRNAs, Target Genes, Transcription Factors and Host Genes in Endometrial Cancer RESEARCH ARTICLE Regulatory Network of MicroRNAs, Target Genes, Transcription Factors and Host Genes in Endometrial Cancer Lu-Chen Xue1,3, Zhi-Wen Xu2,3*, Kun-Hao Wang2,3, Ning Wang2,3, Xiao-Xu Zhang1, Shang Wang2,3 Abstract Genes and microRNAs (miRNAs) have important roles in human oncology. However, most of the biological factors are reported in disperse form which makes it hard to discover the pathology. In this study, genes and miRNAs involved in human endometrial cancer(EC) were collected and formed into regulatory networks following their interactive relations, including miRNAs targeting genes, transcription factors (TFs) regulating miRNAs and miRNAs included in their host genes. Networks are constructed hierarchically at three levels: differentially expressed, related and global. Among the three, the differentially expressed network is the most important and fundamental network that contains the key genes and miRNAs in EC. The target genes, TFs and miRNAs are differentially expressed in EC so that any mutation in them may impact on EC development. Some key pathways in networks were highlighted to analyze how they interactively influence other factors and carcinogenesis. Upstream and downstream pathways of the differentially expressed genes and miRNAs were compared and analyzed. The purpose of this study was to partially reveal the deep regulatory mechanisms in EC using a new method that combines comprehensive genes and miRNAs together with their relationships. It may contribute to cancer prevention and gene therapy of EC.