Phasmida: Phasmatidae: Phasmatinae), with the Description of a New Large Species

Total Page:16

File Type:pdf, Size:1020Kb

Phasmida: Phasmatidae: Phasmatinae), with the Description of a New Large Species Zootaxa 1282: 1–15 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1282 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Studies on the Australian stick insect genus Ctenomorpha Gray (Phasmida: Phasmatidae: Phasmatinae), with the description of a new large species JACK HASENPUSCH1 & PAUL D. BROCK² 1Australian Insect Farm, PO Box 26, Garradunga, Nr. Innisfail, Queensland 4860, Australia. ²The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. Abstract The little-known Australian genus Ctenomorpha Gray, 1833 is reviewed and an extraordinarily large species from north Queensland Ctenomorpha gargantua spec. nov. described. Variability of the type species, Phasma (Ctenomorpha) marginipennis Gray, 1833 is discussed and a lectotype designated. Lectotypes are also designated for Acrophylla aliena Redtenbacher, 1908, Acrophylla oxyacantha Redtenbacher, 1908 and Acrophylla phyllocerca Redtenbacher, 1908. Several insects previously listed as Ctenomorpha species are treated as follows: Ctenomorpha acheron Gray, 1834 is synonymised with Eurycnema goliath Gray, 1834, Ctenomorpha macleayi Gray, 1835 is synonymised with Ctenomorphodes briareus Gray, 1834, Acrophylla salmacis Westwood, 1859 is synonymised with Eurycnema osiris (Gray, 1834). Anchiale marmorata (Redtenbacher, 1908) comb. nov. is transferred from Ctenomorpha (originally described in Acrophylla Gray, 1835), Acrophylla aliena Redtenbacher, 1908 stat. rev. is returned to its original genus, from Ctenomorpha, whilst Phibalosoma caprella Westwood, 1859 is left as a doubtful Australian species, requiring transfer to another genus in due course. Keys to Ctenomorpha species are provided. Key words: Ctenomorpha, Ctenomorpha gargantua new species, Queensland, Australia Introduction The Australian genus Ctenomorpha Gray, 1833 has seldom been mentioned in the literature, although specimens of C. marginipennis are common in museum collections and this species is known to have been reared by several enthusiasts in Australia. Gray (1833) described two new Australian species in his new genus Ctenomorpha: Phasma Accepted by B. Mantovani: 5 Jul 2006; published: 7 Aug. 2006 1.
Recommended publications
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Stick Insects Fact Sheet
    Stick Insects Fact Sheet Female Titan Stick Insect. Image: QM, Jeff Wright. Introduction Biology Stick and leaf insects, scientifically known as phasmids, Females lay eggs one at a time, often with a flick of their are among the largest of all insects in the world. At 26 cm, abdomens to throw the egg some distance. An individual the Titan Stick Insect (Acrophylla titan) is the longest of female drops eggs at a rate of one to several per day and all Australian insects. Phasmids have perfected the art of she can produce between 100 and 1,300 eggs in her life- camouflage. Some resemble sticks and foliage so closely time. They fall to the ground and lie in the leaf litter. they even feature false buds, thorns and ragged leaf-like flanges. Small wonder they are rarely seen except after storms when they are blown out of threes and shrubs. Phasmids are sometimes confused with a different group of insects, the mantids. Also called Praying Mantids, these are predators with large, spiny front legs, held folded ready to strike and grasp prey. In contrast, Phasmids are herbivores (plant-eaters) with simple front legs that are similar in size and structure to their other legs. A variety of insect eggs. (on left). An ant carrying a stick insect egg (on right). Images: QM, Jeff Wright. All stick insects feed on fresh leaves. Some browse on a wide variety of trees and shrubs but others are fussy, eating only a limited range of host plants that are often closely Stick insect eggs are generally oval, and superficially seed- related to each other.
    [Show full text]
  • Insects, Beetles, Bugs and Slugs of Mt Gravatt Conservation Reserve
    Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Compiled by: Michael Fox www.megoutlook.org/flora-fauna/ © 2015-20 Creative Commons – free use with attribution to Mt Gravatt Environment Group Ants Dolichoderinae Iridomyrmex sp. Small Meat Ant Attendant “Kropotkin” ants with caterpillar of Imperial Hairstreak butterfly. Ants provide protection in return for sugary fluids secreted by the caterpillar. Note the strong jaws. These ants don’t sting but can give a powerful bite. Kropotkin is a reference to Russian biologist Peter Kropotkin who proposed a concept of evolution based on “mutual aid” helping species from ants to higher mammals survive. 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 1 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Opisthopsis rufithorax Black-headed Strobe Ant Formicinae Camponotus consobrinus Banded Sugar Ant Size 10mm Eggs in rotting log 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 2 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Camponotus nigriceps Black-headed Sugar Ant 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 3 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis ammon Golden-tailed Spiny Ant Large spines at rear of thorax Nest 4-Nov-20 Insects Beetles and Bugs - ver 5.9.docx Page 4 of 59 Mt Gravatt Environment Group – www.megoutlook.wordpress.com Insects, beetles, bugs and slugs of Mt Gravatt Conservation Reserve Formicinae Polyrhachis australis Rattle Ant Black Weaver Ant or Dome-backed Spiny Ant Feeding on sugar secretions produced by Redgum Lerp Psyllid.
    [Show full text]
  • Goliath Stick Insect
    Husbandry Manual for Eurycnema goliath Tara Bearman Husbandry Manual for Goliath Stick Insect Eurycnema goliath (Gray, 1834) (Insecta: Phasmatidae) Compiled by: Tara Bearman Date of Preparation: 2007 Western Sydney Institute of TAFE, Richmond Course Name and Number: 1068 Certificate III –Captive Animals Lecturer: Graeme Phipps 1 Husbandry Manual for Eurycnema goliath Tara Bearman TABLE OF CONTENTS 1 INTRODUCTION .............................................................................................................................. 6 2 TAXONOMY ....................................................................................................................................... 7 2.1 NOMENCLATURE............................................................................................................................. 7 2.2 SUBSPECIES................................................................................................................................... 7 2.3 RECENT SYNONYMS ....................................................................................................................... 7 2.4 OTHER COMMON NAMES ................................................................................................................ 7 3 NATURAL HISTORY........................................................................................................................ 8 3.1 MORPHOMETRICS........................................................................................................................... 9 3.1.1 Mass and
    [Show full text]
  • Stick Insects Feed on Common Garden Leaves, Like Eucalyptus (Gum) and Only Require a Quick Mist with Water Daily
    Care Sheet Easily Handled Absolutely harmless, but delicate. Quite at home crawling on their new owners, gently exploring Great First Pets Stick Insects feed on common garden leaves, like Eucalyptus (gum) and only require a quick mist with water daily between 16degC to 28degC. Avoid direct sunlight as this can become too hot, also avoid draughty locations. Do not use Stick Insect insecticide or other chemicals anywhere near your insect. Crowned - Onchestus Rentzi You should clean your enclosure on a regular basis, checking Goliath - Eurycnema goliath for eggs if you wish to keep them. Spiny Leaf - Extatosoma tiaratum (pictured) Feeding/ Diet Strong - Anchiale briareus Stick Insect eat any types of Eucalypt (Gum) leaves and Titan - Acrophylla titan Acadia (Wattle) species. Small braches with fresh clean leaves should be placed in your enclosure in a container of General Information water. Your stick insect can drown so it is best to have a lid Stick Insects hatch from a small egg and grow by undergoing on the container and have small holes for the branches to be put through. Check that your insects are eating; look to see if a series of moults (shedding their outer skeleton) and moults the leaves are being eaten and if there are droppings in your into an adult at about 6 months of age. Stick Insects generally enclosure. If the aren't eating, try a different type of eucalypt. live from eight to eighteen months. This age variation is due Braches should be changed once or twice a week or as soon to many factors, including species type, temperature and sex as they start drying out.
    [Show full text]
  • Phasmid Studies ISSN 0966-0011 Volume 9, Numbers 1 & 2
    Phasmid Studies ISSN 0966-0011 volume 9, numbers 1 & 2. Contents Species Report PSG. 122, Anisomorpha monstrosa Hebard Paul A. Hoskisson . 1 Cigarrophasma, a new genus of stick-insect (Phasmatidae) from Australia Paul D. Brock & Jack Hasenpusch . 0 •••••• 0 ••• 0 ••••••• 4 A review of the genus Medaura Stal, 1875 (Phasmatidae: Phasmatinae), including the description of a new species from Bangladesh Paul Do Brock & Nicolas Cliquennois 11 First records and discovery of two new species of Anisomorpha Gray (Phasmida: Pseudophasmatidae) in Haiti and Dominican Republic Daniel E. Perez-Gelabert 0 .. .. 0 • • • • • • 0 • • • • 0 • • 0 • 0 • • 0 0 • • • 27 Species report on Pharnacia biceps Redtenbacher, PSG 203 Wim Potvin 0 ••• 28 How Anisomorpha got its stripes? Paul Hoskisson . 33 Reviews and Abstracts Book Reviews . 35 Phasmid Abstracts 38 Cover illustr ation : Orthonecroscia pulcherrima Kirby, drawing by PoE. Bragg. Species Report PSG. 122, Anisomorpha monstrosa Hebard Paul A. Hoskisson, School of Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, 13 3AF, UK. With illustrations by P.E. Bragg. Abstract This report summarises the care and breeding of Anisomorpha monstrosa Hebard, the largest species in the genus. Behaviour and defence mechanism are also discussed along with descriptions of the eggs, nymphs, and adults. Key words Phasmida, Anisomorpha monstrosa, Pseudophasmatinae, Rearing, Distribution, Defence. Taxonomy Anisomorpha monstrosa belongs to the sub-family Pseudophasmatinae. It was described in 1932 by Hebard (1932: 214) and is the largest species in the genus. The type specimen is a female collected from Merida, in Yucatan, Mexico. Culture History The original culture of this species was collected in Belize, approximately 150km north of Belize City by Jan Meerman in 1993 or 1994 (D'Hulster, personal communication).
    [Show full text]
  • Annual Report 2014 Zoological Society of Ireland
    Annual Report 2014 Zoological Society of Ireland LETTER FROM THE PRESIDENT Dear Member, This progress will be carried out in a measured and responsible manner by the reinvestment of surpluses The Council of the Zoological Society of Ireland presents achieved by both sites. the 20th annual report, together with the consolidated audited financial results of Dublin Zoo and Fota Wildlife Members of council acknowledge with thanks the Park, for the year ended 31 December 2014. dedication and comittment of the Dublin Zoo and Fota Wildlife teams, our many loyal volunteers, and our I am delighted to report that 2014 was another very directors Leo and Sean who have provided the vision and successful year and both our locations achieved record drive behind the truly magnificent progress achieved in attendances. Dublin Zoo had its fourth consecutive year the past year and prior. of one million plus visitors and achieved a record number of 1,076,876 and Fota Wildlife Park had a record 438,114 Finally I would like to acknowledge the considerable visitors. contributions of the council members of the zoological society and the governers of Fota Wildlife Park who have Our operating surplus also achieved a record of been most generous with their time and expertise and €2,721,000 which is of critical importance to the funding their support to me. of future investments in both our sites. Tom Dunphy These results show an impressive response by our visitors President to the continued enhancements of the animal habitats in recent years and the progress, detailed in the directors’ reports, that both Dublin Zoo and Fota Wildlife Park have made towards reaching the highest standards of animal welfare and visitor experience.
    [Show full text]
  • The Biology of the Three Species of Phasmatids (Phasmatodea) Which Occur in Plague Numbers in Forests of Southeastern Australia K
    This document has been scanned from hard-copy archives for research and study purposes. Please note not all information may be current. We have tried, in preparing this copy, to make the content accessible to the widest possible audience but in some cases we recognise that the automatic text recognition maybe inadequate and we apologise in advance for any inconvenience this may cause. sL.df /0 fl.u I /4r~ / FORESTRY COMMISSION OF N.S.W. DIVISION OF FOREST MANAGEMENT RESEARCH NOTE No. 20 Published January, 1967 THE BIOLOGY OF THE THREE SPECIES OF PHASMATIDS (PHASMATODEA) WmCH OCCUR IN PLAGUE NUMBERS IN FORESTS OF SOUTHEASTERN AUSTRALIA AUTHORS K. G. CAMPBELL, D.F.C., B.Se.(For.), Dip.For., M.Se. and P. HADLINGTON, B.Se.Agr. G771 ~- Issued under the authority of -J The Hon. J. G. Beale, M.E., M.L.A., Minister for Conservation, New South Wales THE BIOLOGY OF THE THREE SPECIES OF PHASMATIDS (PHASMATODEA) WHICH OCCUR IN PLAGUE NUMBERS IN FORESTS OF SOUTHEASTERN AUSTRALIA K. G. CAMPBELL AND P. HADLINGTON FORESTRY COMMISSION OF N.S.W. INTRODUCTION Most species of the Phasmatodea usually occur in low numbers, but some species have occurred in plagues and in such instances serious defoliation of trees has resulted. Plagues have been recorded from the D.S.A. by Craighead (1950), from Fiji by O'Connor (1949) and from the highland areas of southeastern Australia by various workers. The species involved in the defoliation of the eucalypt forests of southeastern Australia are Podacanthus wilkinsoni Mac!., Didymuria violescens (Leach) and Ctenomorphodes tessulatus (Gray).
    [Show full text]
  • Insects, Extatosoma Tiaratum (Macleay, 1826) by David S
    The Phasmid Study Group JUNE 2013 NEWSLETTER No 130 ISSN 0268-3806 Extatosoma tiaratum © Paul Brock See Page 11. INDEX Page Content Page Content 2. The Colour Page 9. Phasmid Books – Gray 1833 3. Editorial 10. My Little Friends 3. PSG Membership Details 11. PSG Winter Meeting 19.1.13 3. The PSG Committee 12. Sticks go to School 4. PSG Website Update 13. Development of Phasmid Species List Part 5 4. Contributions to the Newsletter 15. A New Leaf Insect Rearer’s Book 4. Diary Dates 16. X-Bugs 5. PSG Summer Meeting Agenda 16. Dad! It’s Raining Stick Insects 6. PSG Summer Meeting 17. BIAZA Big Bug Bonanza 6. Livestock Report 17. Stick Talk 7. PSG Merchandise Update 18. Holiday to Colombia 7. Newsletter Survey Results 19. Questions 8. National Insect Week @ Bristol Zoo Gardens 20. Macleay’s Spectre It is to be directly understood that all views, opinions or theories, expressed in the pages of "The Newsletter“ are those of the author(s) concerned. All announcements of meetings, and requests for help or information, are accepted as bona fide. Neither the Editor, nor Officers of "The Phasmid Study Group", can be held responsible for any loss, embarrassment or injury that might be sustained by reliance thereon. THE COLOUR PAGE! Acrophylla titan female. Picture on left, becomes picture on right. Unknown species. See page 18. See page 9. Ctenomorpha Acanthoxyla spp, brown version. See page 8. Acanthoxyla spp, green version. See page 8. marginipennis. See page 10. Pictures on the left are from when Sir David Attenborough went to Bristol Zoo Gardens on 21st May 2013 to film for his “Natural Curiosities” series, where he focused on butterflies (regarding metamorphosis) with a short piece on parthenogenesis – hence the Phyllium giganteum he is holding in the photo.
    [Show full text]
  • The Camouflage Master YEAR 4 – LIFE CYCLES Watercolour of a Goliath Stick Insect, Eurycnema Goliath, by Sally Elmer, Queensland Museum
    The Camouflage Master YEAR 4 – LIFE CYCLES Watercolour of a Goliath Stick Insect, Eurycnema goliath, by Sally Elmer, Queensland Museum. Sally Elmer, by goliath, Eurycnema of a Goliath Stick Insect, Watercolour Contents Australian Curriculum Links .............................................................................................................................1 Introduction ................................................................................................................................................................ 3 Activity 1: Creature Feature (Onsite at Queensland Museum, South Brisbane) ............... 5 Insect Anatomy Challenge .................................................................................................. 13 Museum Perspectives ............................................................................................................ 17 The Ant and the Egg ..............................................................................................................18 Activity 2: Design Challenge – Making an insectarium for your stick insects ..........19 (In the Classroom) Worksheet 1: Stick Insect Growth Chart .................................................................. 27 Worksheet 2: Stick Insect Reproduction Records ............................................. 29 Activity 3: Insectarium Report: What have you discovered? .............................................30 (In the Classroom) Bibliography & Resources ...............................................................................................................................33
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]