Periodic Trends Remember from the "Periodic Table" Notes

Total Page:16

File Type:pdf, Size:1020Kb

Periodic Trends Remember from the November 07, 2014 Periodic Trends Remember from the "Periodic Table" Notes... • The periodic table is a tabular display of the chemical elements, organized by their atomic number, electron configuration, and recurring properties. • Periodic law: There is a periodic repetition of chemical and physical properties of the elements when they are arranged by increasing atomic number November 07, 2014 Atomic Radius Graph • What are some initial observations about the atomic radius data/graph? • What is atomic radius? November 07, 2014 Go finish the rest of the worksheet with your group! You have 20 minutes. November 07, 2014 Atomic Radius Trend Discussion • What happens to atomic radius as you go across the period? Why? • What happens to atomic radius as you go down the group? Why? November 07, 2014 Periodic Trends Notes Get your handout out! November 07, 2014 Why is it called a periodic table? • The properties of the elements in the table repeat in a "periodic" way (specific pattern). • Periodic law: There is a periodic repetition of chemical and physical properties of the elements when they are arranged by increasing atomic number • The modern periodic table is arranged by > atomic number = # of protons > properties > electron configuration November 07, 2014 Periodic Law • Now lets look at some properties of elements > We looked at some of these in "Meet My Family"! Alkali Metals Halogens November 07, 2014 Periodic Trends • Chemical properties of elements are determined by their electron configuration. • Properties are periodic because the number of valence electrons is periodic. November 07, 2014 Electron Configuration and the Periodic Table • Remember electrons are found in atomic orbitals > Principle energy level (n, shells) tells us the relative size and energy of atomic orbitals. > Each shell can hold a certain number of electrons. > # of e- = # of p+ for a neutral atom > Valence electrons = electrons in outermost shell 32 18 8 2 November 07, 2014 Electron Configuration and the Periodic Table • If we draw these orbital diagrams for H, He, Li, Be Na, Mg, 32 18 8 2 November 07, 2014 Electron Configuration and the Periodic Table • Periods: Period equals the highest principle energy level of electrons (shell of the valence electrons) • Groups: Elements in the same group have the same number of valence electrons November 07, 2014 Now lets look at two trends 1. Atomic radius 2. Ionization energy November 07, 2014 1. Atomic Radius The electron cloud surrounding a nucleus is based on probability and does not have a clearly defined edge. • Atomic radius: half the distance between nuclei of adjacent identical atoms > Adjacent nuclei in a crystal > Nuclei of two atoms bonded together http://en.wikibooks.org/wiki/High_School_Chemistry/Atomic_Size November 07, 2014 Atomic Radius • Atomic radius is determined by the strength of attraction between the valence electrons and the nucleus > # of protons in nucleus > # of shielding electrons that "block" protons from valence electrons November 07, 2014 Atomic Radius Trend • What happens to atomic radius as you go across the period? • What happens to atomic radius as you go down the group? November 07, 2014 So why does the atomic radius... • Decrease across a period? • Increase down a group? http://employees.csbsju.edu/cschaller/Principles%20Chem/atoms/atomperiodic.htm November 07, 2014 Atomic Radius • Moving down a group: Atomic radius increases > Principal energy levels increase (bigger shell) = increased orbital size, electrons are farther from nucleus http://employees.csbsju.edu/cschaller/Principles%20Chem/atoms/atomperiodic.htm http://www.chem.ox.ac.uk/vrchemistry/Machinery/html/page02.htm November 07, 2014 Atomic Radius • Moving across a period: Atomic radius decreases > Principal energy level remains the same > # of protons increases: electrons pulled in more http://chemwiki.ucdavis.edu/ http://chemwiki.ucdavis.edu/ http://employees.csbsju.edu/cschaller/Principles%20Chem/atoms/atomperiodic.htm November 07, 2014 Example 1: Order the following atoms from smallest to biggest atomic radius: Ga, Se, K I, F, Cl November 07, 2014 2. Ionization Energy • Ionization energy = energy required to remove an electron from a gaseous atom. (kJ/mol) When you remove an electron from an atom, what do you get? November 07, 2014 Ionization energy • Ionization energy is an indication of how strongly an atom's nucleus holds onto its valence electrons > Greater IE = harder to ionize • Ionization energy is always a positive value • You can take off more than one electron! > IE1 (1st ionization energy) = energy required to remove 1st valence e- > IE2 (2nd ionization energy) = energy required to remove a 2nd e- Na Na+ + e- H=495.8 kJ/mol Mg Mg+ + e- H=737.7 kJ/mol Mg+ Mg2+ + e- H=1450.6 kJ/mol November 07, 2014 Ionization Energy • Is an atom with a high ionization energy more likely or less likely to form a positive ion? • What about one with low ionization energy? What is the periodic trend for ionization energy? What factors affect ionization energy? November 07, 2014 Ionization Energy What pattern do you see? November 07, 2014 Ionization Energy • Moving down a group: IE decreases > There are more electrons in between the nucleus and the valence electrons (shielding effect) > Electrons are not as tightly bound to nucleus. > Electrons are further away, attraction decreases. • Moving across a period: IE increases > Increased nuclear charge (more p+, greater attractive force) November 07, 2014 Ionization Energy • What about successive IE (removing more than one e-)? > Successive IE increases • There is a big "jump" in some IE required. Why? > W/in a sublevel: small increases > Between sublevels: greater increase > Between energy levels: greatest increase http://www.avon-chemistry.com/p_table_lecture.html November 07, 2014 Example 2: In the following pairs, which atom is more difficult to ionize/Has the higher IE? Na or Li Na or Mg C or Na Cl or Al November 07, 2014 Using these trends, can you explain the alkali metal reactions?.
Recommended publications
  • CHEM 1A03 UNIT 3: Periodic Trends Introduction
    CHEM 1A03 UNIT 3: Periodic Trends Introduction Hey! Thanks for opening up this Chemistry Periodic Trends Review! The education team at WebStraw McMaster has put together a comprehensive breakdown for you that covers all the key concepts for Chemistry Periodic Trends Members of our team have taken the course in previous years, and we understand better than anyone else what specific ideas and concepts tend to trip students up throughout the semester. We are essentially offering you the key takeaways from the course, after having completed the course ourselves. Before you read further, also keep in mind that these review packages are not meant to be a tool for you to learn the course from scratch. The content presented below was designed with the assumption that you already have a preliminary understanding of Periodic Trends. Our goal is to help give you a more in-depth understanding of key outcomes, as well as to help you see how concepts relate/connect to one another within the scope of the course as a whole. We do our best to cover every topic within the unit; however, some testable outcomes may not be discussed. With that said, best of luck in your studying! Remember to make good use of your time, but to also take breaks as well. Yousef Abumustafa & Julia Ma The WebStraw McMaster Chemistry team WebStraw McMaster Periodic properties of elements The periodic table is divided into called columns called groups that group elements with similar chemical/physical properties together and rows called periods that group elements with the same
    [Show full text]
  • Periodic Trends and the S-Block Elements”, Chapter 21 from the Book Principles of General Chemistry (Index.Html) (V
    This is “Periodic Trends and the s-Block Elements”, chapter 21 from the book Principles of General Chemistry (index.html) (v. 1.0M). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/ 3.0/) license. See the license for more details, but that basically means you can share this book as long as you credit the author (but see below), don't make money from it, and do make it available to everyone else under the same terms. This content was accessible as of December 29, 2012, and it was downloaded then by Andy Schmitz (http://lardbucket.org) in an effort to preserve the availability of this book. Normally, the author and publisher would be credited here. However, the publisher has asked for the customary Creative Commons attribution to the original publisher, authors, title, and book URI to be removed. Additionally, per the publisher's request, their name has been removed in some passages. More information is available on this project's attribution page (http://2012books.lardbucket.org/attribution.html?utm_source=header). For more information on the source of this book, or why it is available for free, please see the project's home page (http://2012books.lardbucket.org/). You can browse or download additional books there. i Chapter 21 Periodic Trends and the s-Block Elements In previous chapters, we used the principles of chemical bonding, thermodynamics, and kinetics to provide a conceptual framework for understanding the chemistry of the elements. Beginning in Chapter 21 "Periodic Trends and the ", we use the periodic table to guide our discussion of the properties and reactions of the elements and the synthesis and uses of some of their commercially important compounds.
    [Show full text]
  • Periodic Activity of Metals Periodic Trends and the Properties of the Elements SCIENTIFIC
    Periodic Activity of Metals Periodic Trends and the Properties of the Elements SCIENTIFIC Introduction Elements are classified based on similarities, differences, and trends in their properties, including their chemical reactions. The reactions of alkali and alkaline earth metals with water are pretty spectacular chemical reactions. Mixtures bubble and boil, fizz and hiss, and may even smoke and burn. Introduce the study of the periodic table and periodic trends with this exciting demonstration of the activity of metals. Concepts • Alkali and alkaline earth metals • Periodic table and trends • Physical and chemical properties • Metal activity Materials Calcium turnings, Ca, 0.3 g Beaker, Berzelius (tall-form), Pyrex®, 500-mL, 4 Lithium metal, Li, precut piece Forceps or tongs Magnesium ribbon, Mg, 3-cm Knife (optional) Sodium metal, Na, precut piece Petri dishes, disposable, 4 Phenolphthalein, 1% solution, 2 mL Scissors Water, distilled or deionized, 600 mL Safety Precautions Lithium and sodium are flammable, water-reactive, corrosive solids; dangerous when exposed to heat or flame. They react violently with water to produce flammable hydrogen gas and solutions of corrosive metal hydroxides. Hydrogen gas may be released in sufficient quantities to cause ignition. Do NOT “scale up” this demonstration using larger pieces of sodium or lithium! These metals are shipped in dry mineral oil. Store them in mineral oil until immediately before use. Do not allow these metals to stand exposed to air from one class period to another or for extended periods of time. Purchasing small, pre-cut pieces of lithium and sodium greatly reduces their potential hazard. Calcium metal is flammable in finely divided form and reacts upon contact with water to give flammable hydrogen gas and corrosive calcium hydroxide.
    [Show full text]
  • CHEMISTRY 130 Periodic Trends
    CHEMISTRY 130 General Chemistry I Periodic Trends Elements within a period or group of the periodic table often show trends in physical and chemical properties. The variation in relative sizes of the halogens is shown above. DEPARTMENT OF CHEMISTRY UNIVERSITY OF KANSAS 1 Periodic Trends Introduction In the modern periodic table (shown below in Figure 1), elements are arranged according to increasing atomic number in horizontal rows called “periods.” In Figure 1, atomic numbers, which represent the number of protons in an atom of a given element, are listed directly above the element symbols. Figure 1: The modern periodic table. Elements in boxes shaded blue, orange, and purple are characterized as metals, metalloids, and nonmetals, respectively. The structure of the periodic table is such that elements with similar properties are aligned vertically in columns called “groups” or “families.” As indicated in Figure 1, each group has a number (1-18) associated with it. Select groups have also been assigned special names. For instance, the elements in Group 1 (hydrogen excluded) are called the alkali metals. These metallic elements react with oxygen to form bases. They also form alkaline (basic) solutions when mixed with water. Elements in other columns of the periodic table have also been given special “family” names. For instance, the elements in Groups 2, 11 (Cu, Ag, and Au), 16, 17, and 18 are commonly referred to as the alkaline earth metals, the coinage metals, the chalcogens, the halogens, and the noble gases, respectively. Many of these names reflect, unsurprisingly, the reactivity (or the lack thereof) of the elements found within the given group.
    [Show full text]
  • Periodic Trends
    Periodic Trends There are three main properties of atoms that we are concerned with. Ionization Energy- the amount of energy need to remove an electron from an atom. Atomic Radius- the estimate of atomic size based on covalent bonding. Electron Affinity- the amount of energy absorbed or released when an atom gains an electron. All three properties have regularly varying trends we can identify in the periodic table and all three properties can be explained using the same properties of electronic structure. Explaining Periodic Trends All of the atomic properties that we are interested in are caused by the attractive force between the positively charged nucleolus and the negatively charged electrons. We need to consider what would affect that relationship. The first thing to consider is the effective nuclear charge. We need to look at the number of protons. Secondly we will need to look at the nucleolus - electron distance and the electron shielding. Lastly we will need to consider electron - electron repulsion. Ionization Energy As we move across a period the general trend is an increase in IE. However when we jump to a new energy level the distance increases and the amount of e-- shielding increases dramatically. Reducing the effective nuclear charge. In addition to the over all trend we need to explain the discrepancies. The discrepancies can be explained by either electron shielding or by electron electron repulsion. 1 Atomic Radius The trend for atomic radius is to decrease across a period and to increase down a family. These trends can be explained with the same reasons as IE.
    [Show full text]
  • Periodic Trends: Electronegativity Answers. Name
    Periodic trends: Electronegativity answers. Name _______________________________________ 1. What is the electronegativity of an element? It is the tendency of a bonded atom to accept or to donate an electron. 2. Is the “electronegativity” the same thing as the “electron affinity”? No, the electronegativity relates to bonded atoms and their tendency to attract electrons. Electron affinity has to do with an unbonded atom in the gaseous phase becoming an anion. 3. Do you think that the electron affinity might have any impact on the electronegativity? Yes, if an element has a higher electron affinity, it is reasonable to assume it will have a higher electronegativity. Energy is released when you add an electron to elements with a high electron affinity. They should be more apt to attract electrons from a less electronegative element. 4. Robert Mulliken developed the following equation to quantify electronegativity based on atomic properties: EN = (IE + EA)/2, where EN = electronegativity, IE = ionization energy, and EA = electron affinity. Does this equation make sense based on what you know about ionization energy and electron affinity? Explain. A higher IE means that it is more difficult to get an electron away from an atom. A higher EA means that it is easier to put an extra electron onto an atom. If you add a high IE to a large EA, then you end up with a high electronegativity. Both a high EA and IE indicate an atom that strongly attracts electrons, which is consistent with an electronegative element. 5. Make a prediction about the trend you expect to see in electronegativity: a.
    [Show full text]
  • Periodic Trends 2015.Notebook October 13, 2016
    periodic trends 2015.notebook October 13, 2016 Periodic Trends objectives: (#2­3) How do the properties of electrons and the electron shells contribute to the periodic trends? 1. (#2­3a) I can determine how gaining or losing electrons affects the atomic radius justified by Coulomb's Law and orbital structure. 2. (#2­3b) I can determine how gaining or losing protons affects the atomic radius justified by Coulomb's Law and orbital structure. 3. (#2­3c) I can determine how gaining or losing electrons affects the ionization energy justified by Coulomb's Law and orbital structure. 4. (#2­3d) I can determine how gaining or losing protons affects the ionization energy justified by Coulomb's Law and orbital structure. 5. (#2­3e) I can determine whether an atom is more or less reactive then another justified by Coulomb's Law and orbital structure. Atomic Radius Ionization Energy Reactivity Oct 4­5:28 AM 1 periodic trends 2015.notebook October 13, 2016 Coulomb's Law basis stability of atoms and ions and periodic trends 2 variables: distance and charges Distance: Charge: The greater the charges are, the stronger the force of attraction F = Force q = charge of a particle, need + and ­ to attract r = radius (distance) k = constant protons/nucleus ­­ like a "beacon" sending out a positive charge to attract e­ electron charge does not change move closer or farther away depending on the amount of charge from the nucleus Oct 15­1:31 PM 2 periodic trends 2015.notebook October 13, 2016 Atomic Radius Distance between center and outer electron What do the
    [Show full text]
  • Periodic Table Key Concepts
    Periodic Table Key Concepts Periodic Table Basics The periodic table is a table of all the elements which make up matter Elements initially grouped in a table by Dmitri Mendeleev Symbols – each element has a symbol which is either a Capital Letter or a Capital Letter followed by a lower case letter Atomic Number – the number above an element’s symbol which shows the number of protons Atomic Mass – the number found below an elements symbol which shows the mass of the element. Mass = the number of protons + the number of neutrons Metals – the elements which have the properties of malleability, luster, and conductivity o These elements are good conductors of electricity & heat. o Found to the left of the zig-zag line on the periodic table Nonmetals – do not have the properties of metals. Found to the right of the zig-zag line Metalloids – elements found along the zig-zag line of the periodic table and have some properties of metals and nonmetals (B, Si, Ge, As, Sb, Te, and Po) Groups The columns going up and down (There are 18 groups) Group 1: Hydrogen, Lithium, Sodium, Potassium, Rubidium, Cesium, and Francium Elements arranged so that elements with similar properties would be in the same group. o Group 1 Alkali Metals - highly reactive metals o Group 2 Alkali Earth Metals – reactive metals o Group 3-12 Transition Metals o Group 17 Halogens – highly reactive non-metals o Group 18 Noble Gases - do not react or combine with any other elements. Elements are grouped according to their properties or reactivity Reactivity is determined by the number of electrons in an element’s outer energy level These electrons are called valence electrons Periods The rows that run from left to right on the periodic table (There are 7 periods) Period 1 contains 2 elements, Hydrogen and Helium.
    [Show full text]
  • Metal Lithium Physical and Chemical Properties
    Metal Lithium Physical And Chemical Properties UnmerchantableToffee-nosed Jan Loren piffled knobs believably. availably. Gyrose and percoid Ravil never cringe his embroideries! The lithium and metal What patch found however nice that the chemical and physical properties of the. Kay redfield jamison, whereas brine in many surface tension of the metal, the skin lesions differ somewhat protects the lighter. Before the use of molten li on being recovered from toxic effects following is lithium, conjunctivitis and metal lithium and physical properties are the winter snap and possible. Luca Attanasio and form other two die without his UN convoy is attacked near Goma. When placed in contact with less, pure lithium reacts to form lithium hydroxide and her gas. He did each and metal lithium physical properties are brines are packed in. Elemental lithium metal by physical properties? Workers should be educated in possible hazards, and proper engineering controls should be installed during production of microelectronic devices where exposure to gallium arsenide is likely. Articles manufactured air during a chemical properties are very radioactive isotopes are related to keep alkali metals have produced on a material is why is. It reacts with water gives off so visit this? Oxidation: Lithium is extra strong reducing agent and thwart a weak oxidizing agent in contract to other alkali metals. To sky for these repeating trends, Mendeleev grouped the elements in job table that concept both rows and columns. Lithium and Lithium Compounds Wietelmann Major. Chlorine atom new gosling. Corrosiveness, flammability, toxicity, acidity, or chemical reactivity are all examples of chemical properties of matter.
    [Show full text]
  • Periodic Table Trends Periodic Trends
    Periodic Table Trends Periodic Trends • Atomic Radius • Ionization Energy • Electron Affinity The Trends in Picture Atomic Radius • Unlike a ball, an atom has fuzzy edges. • The radius of an atom can only be found by measuring the distance between the nuclei of two touching atoms, and then dividing that distance by two. Atomic Radius • Atomic radius is determined by how much the electrons are attracted to the positive nucleus. • The fewer the electrons in each period, the lesser the attraction. • Lesser attraction = • larger nucleus Atomic Radius Trend • Period: in general, as we go across a period from left to right, the atomic radius decreases – Effective nuclear charge increases, therefore the valence electrons are drawn closer to the nucleus, decreasing the size of the atom • Family: in general, as we down a group from top to bottom, the atomic radius increases – Orbital sizes increase in successive principal quantum levels Concept Check • Which should be the larger atom? Why? • O or N N • K or Ca K • Cl or F Cl • Be or Na Na • Li or Mg Mg Ionization Energy • Energy required to remove an electron from an atom • Which atom would be harder to remove an electron from? • Na Cl Ionization Energy • X + energy → X+ + e– X(g) → X+ (g) + e– • First electron removed is IE1 • Can remove more than one electron (IE2 , IE3 ,…) Ex. Magnesium Mg → Mg+ + e– IE1 = 735 kJ/mol Mg+ → Mg2+ + e– IE2 = 1445 kJ/mol Mg2+ → Mg3+ + e– IE3 = 7730 kJ/mol* *Core electrons are bound much more tightly than valence electrons Periodic Ionization Trend • Trend: • Period:
    [Show full text]
  • High School Chemistry: Periodic Table
    HIGH SCHOOL CHEMISTRY: PERIODIC TABLE Standards Bundle: Standards are listed within the bundle. Bundles are created with potential instructional use in mind, based upon potential for related phenomena that can be used throughout a unit. HS-PS1-1 Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. (SEP: 2; DCI: PS1.A, PS2.B; CCC: Patterns) [Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.] HS-PS1-2 Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. (SEP: 6; DCI: PS1.A, PS1.B ; CCC: Patterns) [Clarification Statement: Examples of periodic trends could include atomic size, electronegativity strength, or reactivity of atoms forming compounds or and molecules.] [Assessment Boundary: Assessment is limited to simple chemical reactions. Assessment does not include differentiating between different types of reactions.] Content Overview This section provides a generic overview of the content or disciplinary core ideas as an entry point to the standards. The position of elements on the periodic table is based on patterns of properties of the elements including energy levels and outer electrons. An element’s position on the periodic table can be used to predict an element’s number of outer electrons.
    [Show full text]
  • Alkali Metals Demonstration for Periodic Trends
    Alkali Metals Demonstration for Periodic Trends Summary Students will watch a demonstration of the reaction of alkali metals in water. Main Core Tie Science - Chemistry Standard 1 Objective 3 Time Frame 1 class periods of 60 minutes each Group Size Large Groups Materials - student sheet (attached) 6 large beakers (600 mL will work) Lithium, Sodium, Potassium: (these three kept under oil), Magnesium, Calcium and Aluminum pieces Universal indicator (about 20 mL total) Acid (6 M HCl,about 20 mL total) Sharp knife Cutting board Forceps Appropriate safety equipment Background for Teachers Lithium, Sodium and Potassium make an excellent demonstration of the periodic trend for ionization energy going down a group. One of the chemical properties that the alkali metals share is that they react violently with water: 2 Na (s) + 2 H2O (l) 2 NaOH (aq) + H2 (g) The fact that they produce hydroxides when reacted with water is what gives them their name (alkali). In order for the reaction to happen, the alkali metals must become ions, losing an electron (ionization energy). Since Potassium's ionization energy is the lowest, the reaction will be most vigorous for Potassium. Likewise, since Lithium's ionization energy is the highest, the reaction will be least vigorous for Lithium. (I like to pull this out of the kids using questions.) Instructional Procedures Before class: Fill each of the beakers about halfway with water, enough indicator to make a nice, bright color, and a few mL of acid (optional but makes the reaction more exciting). Get samples of metal, NO MORE than 1 cubic centimeter in size.
    [Show full text]