Antarctic Peninsula, South Shetland & South Orkney Islands FINAL REPORT Important Bird Areas

Total Page:16

File Type:pdf, Size:1020Kb

Antarctic Peninsula, South Shetland & South Orkney Islands FINAL REPORT Important Bird Areas Important Bird Areas in Antarctica Antarctic Peninsula, South Shetland & South Orkney Islands FINAL REPORT Important Bird Areas in Antarctica Antarctic Peninsula South Shetland Islands South Orkney Islands FINAL REPORT Important Bird Areas in Antarctica Antarctic Peninsula South Shetland Islands South Orkney Islands FINAL REPORT Harris, C.M., Carr, R., Lorenz, K. & Jones, S August 2011 Important Bird Areas in Antarctica Antarctic Peninsula, South Shetland & South Orkney Islands FINAL REPORT Citation Harris, C.M., Carr, R., Lorenz, K. & Jones, S. 2011. Important Bird Areas in Antarctica: Antarctic Peninsula, South Shetland Islands, South Orkney Islands – Final Report. Prepared for BirdLife International and the Polar Regions Unit of the UK Foreign & Commonwealth Office. Environmental Research & Assessment Ltd., Cambridge. X:\Projects\10130-Important Bird Areas\Output\Final 2 26/08/2011 Report\1 IBA Antarctic Peninsula – TOC.doc Important Bird Areas in Antarctica Antarctic Peninsula, South Shetland & South Orkney Islands FINAL REPORT Table of Contents Table of Contents .............................................................................................................................................. 3 Preface............................................................................................................................................................... 7 Acknowledgements ............................................................................................................................................ 8 Analysis to inform IBA project for BirdLife International and the United Kingdom Foreign and Commonwealth Office ..................................................................................................................................... 9 Preface............................................................................................................................................................. 10 Important Bird Areas in the Antarctic ............................................................................................................... 11 Introduction ................................................................................................................................................. 11 Definition of IBA selection criteria ............................................................................................................... 12 PART I: Grid-analysis to derive Antarctic IBAs ............................................................................................... 14 Objectives ................................................................................................................................................... 14 Methods ...................................................................................................................................................... 15 Results ........................................................................................................................................................ 16 Analysis of IBAs for Individual Bird Species ............................................................................................... 17 For individual points .................................................................................................................................... 17 For a grid cell size of 1km2 ......................................................................................................................... 18 For a grid cell size of 2km2 ......................................................................................................................... 19 For a grid cell size of 5km2 ......................................................................................................................... 20 For a grid cell size of 10km2 ....................................................................................................................... 21 Analysis of IBAs derived from concentrations of seabirds ......................................................................... 22 PART II: IBAs derived from a review of bird species census data .................................................................. 23 Objectives ................................................................................................................................................... 23 Methods ...................................................................................................................................................... 23 Results ........................................................................................................................................................ 23 PART III: Confirmed and Potential IBAs .......................................................................................................... 24 Objectives ................................................................................................................................................... 24 Methods ...................................................................................................................................................... 24 Results ........................................................................................................................................................ 24 Confirmed IBAs .......................................................................................................................................... 24 Antarctic Peninsula ..................................................................................................................................... 25 South Shetland Islands ............................................................................................................................... 28 South Orkney Islands ................................................................................................................................. 29 Potential IBAs ............................................................................................................................................. 30 Antarctic Peninsula ..................................................................................................................................... 30 South Shetland Islands ............................................................................................................................... 34 South Orkney Islands ................................................................................................................................. 39 Discussion .................................................................................................................................................. 42 Grid analysis ............................................................................................................................................... 42 Potential and confirmed IBAs ..................................................................................................................... 42 Conclusion ....................................................................................................................................................... 44 References ...................................................................................................................................................... 45 Annex A: List of grid-derived IBAs based on criteria A1, A4i and A4ii ............................................................ 47 Annex B: List of grid-derived IBAs based on criterion A4iiii ............................................................................ 51 Annex C: List of IBA sites proposed for removal from the BirdLife / SCAR IBA site list ................................. 55 Annex D: Adjustments to grid-derived IBA list based on updates to bird species data published since 2007 56 Annex E: IBAs identified from a review of census data for an additional 12 bird species ............................... 58 Defining Model Bird Foraging Areas ........................................................................................................... 64 Preface............................................................................................................................................................. 65 Introduction ...................................................................................................................................................... 66 Objective .......................................................................................................................................................... 66 Methods ........................................................................................................................................................... 66 X:\Projects\10130-Important Bird Areas\Output\Final 3 26/08/2011 Report\1 IBA Antarctic Peninsula – TOC.doc Important Bird Areas in Antarctica Antarctic Peninsula, South Shetland & South Orkney Islands FINAL REPORT Results ............................................................................................................................................................. 69 Discussion ....................................................................................................................................................... 71 Conclusion ....................................................................................................................................................... 72 Final
Recommended publications
  • Annual Report COOPERATIVE INSTITUTE for RESEARCH in ENVIRONMENTAL SCIENCES
    2015 Annual Report COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES 2015 annual report University of Colorado Boulder UCB 216 Boulder, CO 80309-0216 COOPERATIVE INSTITUTE FOR RESEARCH IN ENVIRONMENTAL SCIENCES University of Colorado Boulder 216 UCB Boulder, CO 80309-0216 303-492-1143 [email protected] http://cires.colorado.edu CIRES Director Waleed Abdalati Annual Report Staff Katy Human, Director of Communications, Editor Susan Lynds and Karin Vergoth, Editing Robin L. Strelow, Designer Agreement No. NA12OAR4320137 Cover photo: Mt. Cook in the Southern Alps, West Coast of New Zealand’s South Island Birgit Hassler, CIRES/NOAA table of contents Executive summary & research highlights 2 project reports 82 From the Director 2 Air Quality in a Changing Climate 83 CIRES: Science in Service to Society 3 Climate Forcing, Feedbacks, and Analysis 86 This is CIRES 6 Earth System Dynamics, Variability, and Change 94 Organization 7 Management and Exploitation of Geophysical Data 105 Council of Fellows 8 Regional Sciences and Applications 115 Governance 9 Scientific Outreach and Education 117 Finance 10 Space Weather Understanding and Prediction 120 Active NOAA Awards 11 Stratospheric Processes and Trends 124 Systems and Prediction Models Development 129 People & Programs 14 CIRES Starts with People 14 Appendices 136 Fellows 15 Table of Contents 136 CIRES Centers 50 Publications by the Numbers 136 Center for Limnology 50 Publications 137 Center for Science and Technology
    [Show full text]
  • Growth and Seasonal Energetics of the Antarctic Bivalve Laternula Elliptica from King George Island, Antarctica
    MARINE ECOLOGY PROGRESS SERIES Vol. 257: 99–110, 2003 Published August 7 Mar Ecol Prog Ser Growth and seasonal energetics of the Antarctic bivalve Laternula elliptica from King George Island, Antarctica In-Young Ahn1,*, Jeonghee Surh2, You-Gyoung Park2, Hoonjeong Kwon2, Kwang-Sik Choi3, Sung-Ho Kang1, Heeseon J. Choi1, Ko-Woon Kim1, Hosung Chung1 1Polar Sciences Laboratory, Korea Ocean Research & Development Institute (KORDI), Ansan, PO Box 29, Seoul 425-600, Republic of Korea 2Department of Food and Nutrition, Seoul National University, Sillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea 3Department of Aquaculture, Cheju National University, Ara-1-dong, Cheju 690-756, Republic of Korea ABSTRACT: The Antarctic marine environment is characterized by extreme seasonality in primary production, and herbivores must cope with a prolonged winter period of food shortage. In this study, tissue mass and biochemical composition were determined for various tissues of the bivalve Later- nula elliptica (King & Broderip) over a 2 yr period, and its storage and use of energy reserves were investigated with respect to seasonal changes in food level and water temperature. Total ash-free dry mass (AFDM) accumulated rapidly following phytoplankton blooms (with peak values immediately before and after spawning) and was depleted considerably during the spawning and winter periods. Most of the variation was in the muscle, gonads and digestive gland. Spawning peaked in January and February and caused considerable protein and lipid losses in the muscle, gonads and digestive gland. In winter (March to August), the muscle and digestive gland lost considerable mass, while gonad mass increased; this suggests that the muscle tissue and digestive gland serve as major energy depots for both maintenance metabolism and gonad development in winter.
    [Show full text]
  • Chinstrap Penguin Declines
    Author's personal copy Polar Biol DOI 10.1007/s00300-012-1230-3 ORIGINAL PAPER First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins Ron Naveen • Heather J. Lynch • Steven Forrest • Thomas Mueller • Michael Polito Received: 18 April 2012 / Revised: 25 July 2012 / Accepted: 31 July 2012 Ó Springer-Verlag 2012 Abstract Deception Island (62°570S, 60°380W) is one of 1986/1987. A comparative analysis of high-resolution satel- the most frequently visited locations in Antarctica, prompt- lite imagery for the 2002/2003 and the 2009/2010 seasons ing speculation that tourism may have a negative impact suggests a 39 % (95th percentile CI = 6–71 %) decline on the island’s breeding chinstrap penguins (Pygoscelis (from 85,473 ± 23,352 to 52,372 ± 14,309 breeding pairs) antarctica). Discussions regarding appropriate management over that 7-year period and provides independent confirma- of Deception Island and its largest penguin colony at Baily tion of population decline in the abundance of breeding Head have thus far operated in the absence of concrete chinstrap penguins at Baily Head. The decline in chinstrap information regarding the current size of the penguin popu- penguins at Baily Head is consistent with declines in this lation at Deception Island or long-term changes in abun- species throughout the region, including sites that receive dance. In the first ever field census of individual penguin little or no tourism; as a consequence of regional environ- nests at Deception Island (December 2–14, 2011), we find mental changes that currently represent the dominant influ- 79,849 breeding pairs of chinstrap penguins, including ence on penguin dynamics, we cannot ascribe any direct link 50,408 breeding pairs at Baily Head and 19,177 breeding between chinstrap declines and tourism from this study.
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No 151
    Measure 5 (2019) Management Plan for Antarctic Specially Protected Area No 151 Lions Rump, King George Island, South Shetland Islands Introduction Lions Rump (62º08’S; 58º07’W) is located on the southwestern coast of King George Island, South Shetland Islands, covering approximately 1.32 km2 in area. The Area takes its name from the distinctive rocky hill lying between the southern extremity of King George Bay and Lions Cove. The Area was originally designated as Site of Special Scientific Interest No 34 through Recommendation XVI-2 (1991, SSSI No 34) after a proposal by Poland on the grounds that it contains diverse biota and geological features and is a representative example of the terrestrial, limnological, and littoral habitats of the maritime Antarctic. The Area was designated primarily to protect its ecological values. It is also valuable as a reference site with diverse avian and mammalian Antarctic fauna, against which disturbance at sites situated near locations of human activity can be measured. A revised Management Plan was adopted in Measure 1 (2000). The site was re-designated ASPA No 151 in Decision 1 (2002). A second revised Management Plan was adopted in Measure 11 (2013). Based on the Environmental Domains Analysis for Antarctica (Resolution 3 (2008)) ASPA No 151 lies within Environment A (Antarctic Peninsula northern geologic), which is a small, terrestrial environment around the northern Antarctic Peninsula consisting entirely of ice-free land cover and sedimentary geology (Morgan et al. 2007). Other protected areas containing Domain A include ASPA No 111, ASPA No 128 and ASMA No 1 (Morgan et al.
    [Show full text]
  • Emperor Island, Dion Islands, Marguerite Bay, Antarctic Peninsula
    From Measure 1 (2002) Management Plan for Antarctic Specially Protected Area No. 107 EMPEROR ISLAND, DION ISLANDS, MARGUERITE BAY, ANTARCTIC PENINSULA 1. Description of values to be protected The Dion Islands (Latitude 67°52’ S, Longitude 68°42’ W), on the western side of the central Antarctic Peninsula in north-western Marguerite Bay, were originally designated as Specially Protected Area (SPA) No. 8 through Recommendation IV-8 in 1966 after a proposal by the United Kingdom. All of the islands in the Dion Islands archipelago were included. Values protected under the original designation were described as the presence of the only colony of emperor penguins (Aptenodytes forsteri) known to exist on the west side of the Antarctic Peninsula and that the isolation of this colony from others of the same species makes it of outstanding scientific interest. A management plan for the Area was adopted through Recommendation XVI-6 (1990), which reaffirmed the values of the Area. The boundaries were extended to include the intervening sea between the islands to ensure protection of the emperors at sea or on sea-ice in the immediate vicinity. Attention was drawn to the additional important value of the colony being one of only two known in which breeding occurs on land. It was also noted as the most northerly and probably the smallest of Emperor colonies, with annual numbers fluctuating around 150 pairs. The values of the emperor penguin colony are reaffirmed in this revised management plan. The boundaries of the Area are now defined more precisely.
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No
    Management Plan for Antarctic Specially Protected Area No. 108 GREEN ISLAND, BERTHELOT ISLANDS, ANTARCTIC PENINSULA 1. Description of values to be protected Green Island (Latitude 65°19' S, Longitude 64°09' W, approximately 0.2 km2), Berthelot Islands, Grandidier Channel, Antarctic Peninsula, was originally designated as a Specially Protected Area through Recommendation IV-9 (1966, SPA No. 9) after a proposal by the United Kingdom. It was designated on the grounds that the vegetation “is exceptionally rich, [and] is probably the most luxuriant anywhere on the west side of the Antarctic Peninsula”. The Recommendation noted: “in some places the humus is 2 metres thick and that this area, being of outstanding scientific interest, should be protected because it is probably one of the most diverse Antarctic ecosystems”. A Management Plan for the site was prepared by the United Kingdom and adopted through Recommendation XVI-6 (1991). The original reasons for designation were extended and elaborated, although following comparisons to other sites in the vicinity, Green Island was no longer considered to be particularly diverse. The vegetation on the island was described as extensive on the north-facing slopes, with well-developed continuous banks of moss turf formed by Chorisodontium aciphyllum and Polytrichum strictum that, over much of their extent, overlie peat of more than one metre in depth. Antarctic hair grass (Deschampsia antarctica), one of only two native vascular plants that grow south of 56°S, was noted as frequent in small patches near a blue-eyed cormorant (Phalacrocorax atriceps) colony. The colony of blue- eyed cormorants, located on the steep, rocky northwestern corner of the island, was noted as being possibly one of the largest along the Antarctic Peninsula.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Avian Island, Marguerite Bay, Antarctic Peninsula
    Measure 2 (2013) Annex Management Plan for Antarctic Specially Protected Area No. 117 AVIAN ISLAND, MARGUERITE BAY, ANTARCTIC PENINSULA Introduction The primary reason for the designation of Avian Island, Marguerite Bay, Antarctic Peninsula (67°46'S, 68°54'W; 0.49 km2) as an Antarctic Specially Protected Area (ASPA) is to protect environmental values and primarily the abundance and diversity of breeding seabirds on the island. Avian Island is situated in northwestern Marguerite Bay, 400 m south of Adelaide Island on the western side of the central Antarctic Peninsula. It was originally designated as Site of Special Scientific Interest (SSSI) No. 30 under Recommendation XV-6 in 1989 after a proposal by the United Kingdom. Included was the island together with its littoral zone, but excluded was a small area near a refuge on the northwestern coast of the island. Values protected under the original designation were described as the abundance and diversity of breeding seabirds present on the island, that the southern giant petrel (Macronectes giganteus) colony is one of the most southerly known breeding population of this species, and that the blue-eyed cormorants (Phalacrocorax atriceps) are breeding close to the southern limit of their range. The Area was therefore considered of outstanding ornithological importance, meriting protection from unnecessary human disturbance. Designation as an SSSI was terminated with redesignation of Avian Island as a Specially Protected Area (SPA) through Recommendation XVI-4 (1991, SPA No. 21) after a proposal by the United Kingdom. The boundaries were similar to the original SSSI, but included the entire island and the littoral zone without the exclusion zone near the refuge on the northwestern coast.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Distribution and Abundance of Breeding Birds at Deception Island, South Shetland Islands, Antarctica, February to April 2000
    Bó & Copello: Deception Island breeding birds’ distribution and abundance 39 DISTRIBUTION AND ABUNDANCE OF BREEDING BIRDS AT DECEPTION ISLAND, SOUTH SHETLAND ISLANDS, ANTARCTICA, FEBRUARY TO APRIL 2000 MARÍA SUSANA BÓ & SOFÍA COPELLO Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Laboratorio de Vertebrados, Funes 3350, 7600 Mar del Plata, Argentina ([email protected]) Received 20 September 2000, accepted 15 January 2001 SUMMARY BÓ, M.S. & COPELLO, S. 2000. Distribution and abundance of breeding birds at Deception Island, South Shetland Islands, Antarctica, February to April 2000. Marine Ornithology 29: 39–42. A survey of breeding birds during the brooding stage was carried out from February to April 2000 in the southern portion of Deception Island, South Shetland Islands, Antarctica. This island supports two Sites of Special Scien- tific Interest (SSSI Nos. 21 and 27). Nine species were found breeding in the study area: Chinstrap Penguin Pygoscelis antarctica (an estimated 6820 breeding pairs at two colonies surveyed), Pintado or Cape Petrel Daption capense (36), Wilson’s Storm Petrel Oceanites oceanicus (3), Antarctic Cormorant Phalacrocorax atriceps bransfieldensis (9), Greater Sheathbill Chionis alba (2), Subantarctic Skua Catharacta antarctica (4), South Polar Skua C. maccormicki (11), Kelp Gull Larus dominicanus (49) and Antarctic Tern Sterna vittata (5). Due to the increasing tourist activity at Deception Island, better information on the location and size of breeding populations is a particular requirement if effective precautionary conservation actions are to be taken. Key words: seabird censuses, Deception Island, Antarctica INTRODUCTION tal Protection to the Antarctic Treaty and the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR) Populations of most seabird species in Antarctica are stable or (Walton & Dingwall 1995).
    [Show full text]
  • Diesel in Antarctica and a Bibliometric Study on Its Indigenous Microorganisms As Remediation Agent
    International Journal of Environmental Research and Public Health Review Diesel in Antarctica and a Bibliometric Study on Its Indigenous Microorganisms as Remediation Agent Rasidnie Razin Wong 1 , Zheng Syuen Lim 1 , Noor Azmi Shaharuddin 1, Azham Zulkharnain 2, Claudio Gomez-Fuentes 3,4 and Siti Aqlima Ahmad 1,4,5,* 1 Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; [email protected] (R.R.W.); [email protected] (Z.S.L.); [email protected] (N.A.S.) 2 Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan; [email protected] 3 Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas, Región de Magallanes y Antártica Chilena 01855, Chile; [email protected] 4 Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas, Región de Magallanes y Antártica Chilena 01855, Chile 5 National Antarctic Research Centre, Universiti Malaya B303 Level 3, Block B, IPS Building, Kuala Lumpur 50603, Malaysia * Correspondence: [email protected] Abstract: Diesel acts as a main energy source to complement human activities in Antarctica. However, the increased expedition in Antarctica has threatened the environment as well as its living organisms. While more efforts on the use of renewable energy are being done, most activities in Antarctica still depend heavily on the use of diesel. Diesel contaminants in their natural state are known to be persistent, complex and toxic. The low temperature in Antarctica worsens these issues, making Citation: Wong, R.R.; Lim, Z.S.; pollutants more significantly toxic to their environment and indigenous organisms.
    [Show full text]
  • Federal Register/Vol. 80, No. 183/Tuesday, September 22, 2015
    Federal Register / Vol. 80, No. 183 / Tuesday, September 22, 2015 / Notices 57237 directed by the Antarctic Conservation Dates: 1 December 2015 through 30 modification request and has Act of 1978 (Public Law 95–541), as June 2016. determined that the amendment is not amended by the Antarctic Science, a material change to the permit, and it Nadene G. Kennedy, Tourism and Conservation Act of 1996, will have a less than a minor or Polar Coordination Specialist, Division of transitory impact. has developed regulations for the Polar Programs. establishment of a permit system for [FR Doc. 2015–24005 Filed 9–21–15; 8:45 am] The permit modification was issued on various activities in Antarctica and September 16, 2015. BILLING CODE 7555–01–P designation of certain animals and Nadene G. Kennedy, certain geographic areas a requiring Polar Coordination Specialist, Division of special protection. The regulations NATIONAL SCIENCE FOUNDATION Polar Programs. establish such a permit system to [FR Doc. 2015–24000 Filed 9–21–15; 8:45 am] designate Antarctic Specially Protected Notice of Permit Modification Received BILLING CODE 7555–01–P Areas. Under the Antarctic Conservation Act of 1978 Application Details NATIONAL SCIENCE FOUNDATION AGENCY: National Science Foundation. Permit Application: 2015–012 ACTION: Notice of Permit Modification Notice of Permit Applications Received 1. Applicant: Dr. Stephanie Jenourvrier, Request Received and Permit Issued Under the Antarctic Conservation Act Woods Hole Oceanographic under the Antarctic Conservation Act of of 1978 (Pub. L. 95–541) Institution, Woods Hole, MA 02453. 1978, Public Law 95–541. AGENCY: National Science Foundation. Activity for Which Permit is SUMMARY: The National Science ACTION: Notice of Permit Applications Requested: The applicant intends to Foundation (NSF) is required to publish Received under the Antarctic collect a multi-scale and temporal a notice of requests to modify permits Conservation Act of 1978, (Pub.
    [Show full text]