Surveying Lab - Ii Manual

Total Page:16

File Type:pdf, Size:1020Kb

Surveying Lab - Ii Manual SURVEYING LAB - II MANUAL Department of Civil Engineering B.V. Raju Institute of Technology, Narsapur CONTENTS Sl No List of Experiments Study of theodolite in detail - practice for measurement of horizontal 1. and vertical angles. Measurement of horizontal angles by method of repetition and 2. reiteration. Trigonometric Leveling - Heights and distance problem (Two 3. Exercises) Heights and distance using Principles of tacheometric surveying (Two 4. Exercises) 5. Curve setting – different methods. (Two Exercises) 6. Determine of area using total station. 7. Traversing using total station. 8. Contouring using total station. 9. Determination of remote height using total station. 10. Stake out using total station. Distance , gradient ,diff, height between two inaccessible points using 11. total station. Experiment No.: 1 STUDY OF THEODOLITE OBJECTIVE: To study different parts of transit Theodolite and Temporary adjustments. DEFINITON AND TERMS VERTICAL AXIS: It is the axis about which the telescope can be rotated in a horizontal plane. HORIZONTAL AXIS: It is the axis about which the telescope can be rotated in a vertical plane. LINE OF COLLINATION: It is the imaginary line joining the intersection of the cross hairs of the diaphragm to the optical center of the object glass and its continuation. AXIS OF THE TELESCOPE: It is the line joining the optical center of the object glass to the center of the eye-piece. AXIS OF THE LEVEL TUBE: It is the straight line tangential to the longitudinal curve of the level tube at the center of the tube. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) CENTERING: The process of setting the theodolite exactly over the station mark is known as centering. TRANSITING: It is the process of turning the telescope in vertical plane through 180º about the trunnion axis. DESCRIPTION OF EQUIPMENT: TELESCOPE: It consists of eye-piece, object glass and focusing screw and it is used to sight the object. VERTICAL CIRCLE: It is used to measure vertical angles. LEVELLING HEAD: It consists of two parallel triangular plates called tribrach plates. Its uses are 1. To support the main part of the instrument. 2. To attach the theodolite to the tripod. LOWER PLATE: It consists of lower clamp screw and tangent screw. UPPER PLATE: The upper plate is attached to the inner axis and it carries two verniers. It consists an upper clamp screw and tangent screws. These screws are used to fix upper plate with lower plate accurately. FOOT SCREWS: These are used to level the instrument PLUMB BOB: It is used to center theodolite exactly over the ground station mark. SWINGING THE TELESCOPE: It means turning the telescope about its vertical axis in the horizontal plane. A swing is called right or left according as the telescope is rotated clockwise or counter clockwise. FACE LEFT: If face of the vertical circle is to the left side of the observer, then the observation of the angles taken is known as face left observation. FACE RIGHT: If the face of the vertical circle is to the right side of the observation, then the observation of the angles taken is known as face right observation. CHANGING FACE: It is an operation of bringing the face of the telescope from left to right and vice-versa. TEMPORARY ADJUSTMENTS: Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) There are three temporary adjustments of a theodolite. These are 1. Setting up the theodolite over a station. 2. Leveling up. 3. Elimination of parallax. SETTING UP: It includes two operations 1. Centering a theodolite over a station: Done by means of plumb bob. 2. Approximately leveling it by tripod legs only: Done by moving tripod legs radially or circumferentially. LEVELING UP: Having centered and approximately leveled the instrument, accurate leveling is done with the help of foot screws with reference to the plate levels, so that the vertical axis shall be truly vertical. To level the instrument the following operations have to be done. 1. Turn the upper plate until the longitudinal axis of the plate level is roughly parallel to a line joining any two of the leveling screws (A & B). 2. Hold these two leveling screws between the thumb and first finger of each hand uniformly so that the thumb moves either towards each other or away from each other until the bubble comes to the center. 3. Turn the upper plate through 90º i.e until the axes of the level passes over the position of the third leveling screw ‘C’. 4. Turn this leveling screw until the bubble comes to the center. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) 5. Rotate the upper plate through 90º to its original position fig(a) and repeat step(2) till the bubble comes to the center. 6. Turn back again through 90º and repeat step 4. 7. Repeat the steps 2 and 4 till the bubble is central in both the positions. 8. Now rotate the instrument through 180º. The bubble should be remaining in the center of its run, provided it is in correct adjustment. The vertical axis will then be truly vertical. 3. ELIMINATION OF PARALLAX: Parallax is a condition arising when the image formed by the objective is not in the plane of the cross hairs. Unless parallax is eliminated, accurate sighting is not possible. Parallax can be eliminated in two steps. a. FOCUSSING THE EYE-PIECE: Point the telescope to the sky or hold a piece of white paper in front of the telescope. Move the eyepiece in and out until a distant and sharp black image of the cross-hairs is seen. b. FOCUSSING THE OBJECT: Telescope is now turned towards object to be sighted and the focusing screw is turned until image appears clear and sharp. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) Experiment No.: 2 MEASUREMENT OF HORIZONTAL ANGLE BY REPETITION METHOD OBJECTIVE: To measure a horizontal angle by repetition method. THEORY: In this method, the angle is added several times mechanically and the value of the angle obtained by dividing the accumulated reading by the number of repetitions. EQUIPMENTS USED: • Transit Theodolite • Tripod and • Ranging rods PROCEDURE: 1. Set up the instrument over ‘O’ and level it accurately. 2. With the help of upper clamp and tangent screw, set 0º reading on vernier ‘A’. Note the reading of vernier ‘B’. 3. Release the upper clamp and direct the telescope approximately towards the point ‘P’. Tighten the lower clamp and bisect point ‘P’ accurately by lower tangent screw. 4. Release the upper clamp and turn the instrument clock-wise towards Q. Clamp the upper clamp and bisect ‘Q’ accurately with the upper tangent screw. Note the readings of verniers ‘A’ and ‘B’ to get the values of the angle POQ. 5. Release the lower clamp and turn the telescope clockwise to sight P again. Bisect P by using the lower tangent screw. 6. Release the upper clamp, turn the telescope clockwise and sight Q. Bisect Q by using the upper tangent screw. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) 7. Repeat the process until the angle measured (required number of times is 3). The average angle with face left will be equal to final reading divided by three. 8. Change face and make three more repetitions as described above. Find the average angle with face right, by dividing the final reading by three. 9. The average horizontal angle is then obtained by taking the average of the two angles with face left and face right. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) Experiment No.: 3 MEASUREMENT OF HORIZONTAL ANGLE BY REITERATION METHOD OBJECTIVE: To measure horizontal angle by reiteration method. EQUIPMENTS: • Transit Theodolite • Tripod and • Ranging rods PROCEDURE: If it is required to measure angles AOB, BOC, and COD etc by reiteration method The following steps are to be used. 1. Set the instrument over “O” and level it set the Vernier to zero and bisect point A accurately. 2. Loose the upper clamp and turn the Telescope clockwise to point B. Bisect B by using the upper tangent screw. Read both the Verniers, the mean of the Verniers will give the angles AOB. 3. Similarly, bisect successively C, D etc, thus closing the circle. Read both the Verniers at each bisection. 4. Finally sight to A the reading of the vernier should be the same as the original setting reading. Repeat the steps 02 to 04 with other face i.e. face Right. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) Experiment No.: 4 & 5 DETERMINING AN HEIGHT OF OBJECT BY MEASURING VERTICAL ANGLE OBJECTIVE: Determining a height of object by measuring vertical angle. EQUIPMENTS: 1. Theodolite 2. Leveling Stop 3. Tape or Chain 4. Pegs 5. Plumb bob PROCEDURE: 1. Setup the instrument at station P. 2. Perform all temporary adjustments. 3. Bring the line of collimation horizontal 4. Enter the initial readings in the tabular form. 5. Swing the telescope and take staff reading over the given B.M. 6. Swing the telescope towards the object. Department of Civil Engineering, B.V. Raju Institute of Technology (BVRIT) 7. Release the vertical clamp screw, sight the top of the object Q1, and clamp the vertical clamp screw. 8. Read C and D verniers and enter the readings. 9. Release the vertical clamp screw, sight the bottom of the object Q, and clamp the screw. 10. Read vernier readings and enter in the tabular form. 11. Measure the Horizontal distance between the instrument station and the object. 12. The above procedure will be repeated with the face right observation.
Recommended publications
  • FOR 274: Forest Measurements and Inventory an Introduction to Surveying
    FOR 274: Forest Measurements and Inventory Lecture 5: Principals of Surveying • An Introduction to Surveying • Horizontal Distances & Angles An Introduction to Surveying: Social and Land In Natural Resources we survey populations to gain representative information about something We also conduct land surveys to record the fine-scale topographic detail of an area We use both kinds of surveying in Natural Resources An Introduction to Surveying: Why do we Survey? To measure in the field the distance, bearing, and location of features on the Earth’s surface Geodetic Surveying • Very large distances • Have to account for curvature of the Earth! Plane Surveying • What we do • Thankfully regular trig works just fine 1 An Introduction to Surveying: Why do we Survey? Foresters as a rule do not conduct many new surveys BUT it is very common to: • Retrace old lines • Locate boundaries • Run cruise lines and transects • Analyze post treatments impacts on stream morphology, soils fuels,etc In addition to land survey equipment, Modern tools include the use of GIS and GPS Æ FOR 375 for more details An Introduction to Surveying: Types of Survey Construction Surveys: collect data essential for planning of new projects - constructing a new forest road - putting in a culvert Hydrological Surveys: collect data on stream channel morphology or impacts of treatments on erosion potential An Introduction to Surveying: Types of Survey Topographic Surveys: gather data on natural and man-made features on the Earth's surface to produce a 3D topographic map Typical
    [Show full text]
  • Surveying and Drawing Instruments
    SURVEYING AND DRAWING INSTRUMENTS MAY \?\ 10 1917 , -;>. 1, :rks, \ C. F. CASELLA & Co., Ltd II to 15, Rochester Row, London, S.W. Telegrams: "ESCUTCHEON. LONDON." Telephone : Westminster 5599. 1911. List No. 330. RECENT AWARDS Franco-British Exhibition, London, 1908 GRAND PRIZE AND DIPLOMA OF HONOUR. Japan-British Exhibition, London, 1910 DIPLOMA. Engineering Exhibition, Allahabad, 1910 GOLD MEDAL. SURVEYING AND DRAWING INSTRUMENTS - . V &*>%$> ^ .f C. F. CASELLA & Co., Ltd MAKERS OF SURVEYING, METEOROLOGICAL & OTHER SCIENTIFIC INSTRUMENTS TO The Admiralty, Ordnance, Office of Works and other Home Departments, and to the Indian, Canadian and all Foreign Governments. II to 15, Rochester Row, Victoria Street, London, S.W. 1911 Established 1810. LIST No. 330. This List cancels previous issues and is subject to alteration with out notice. The prices are for delivery in London, packing extra. New customers are requested to send remittance with order or to furnish the usual references. C. F. CAS ELL A & CO., LTD. Y-THEODOLITES (1) 3-inch Y-Theodolite, divided on silver, with verniers to i minute with rack achromatic reading ; adjustment, telescope, erect and inverting eye-pieces, tangent screw and clamp adjustments, compass, cross levels, three screws and locking plate or parallel plates, etc., etc., in mahogany case, with tripod stand, complete 19 10 Weight of instrument, case and stand, about 14 Ibs. (6-4 kilos). (2) 4-inch Do., with all improvements, as above, to i minute... 22 (3) 5-inch Do., ... 24 (4) 6-inch Do., 20 seconds 27 (6 inch, to 10 seconds, 403. extra.) Larger sizes and special patterns made to order.
    [Show full text]
  • MICHIGAN STATE COLLEGE Paul W
    A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING INSTRUMENTS Thai: for III. Dean. of I. S. MICHIGAN STATE COLLEGE Paul W. Hoynigor I948 This]: _ C./ SUPP! '3' Nagy NIH: LJWIHL WA KOF BOOK A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING’INSIRUMENTS A Thesis Submitted to The Faculty of MICHIGAN‘STATE COLLEGE OF AGRICULTURE AND.APPLIED SCIENCE by Paul W. Heyniger Candidate for the Degree of Batchelor of Science June 1948 \. HE-UI: PREFACE This Thesis is submitted to the faculty of Michigan State College as one of the requirements for a B. S. De- gree in Civil Engineering.' At this time,I Iish to express my appreciation to c. M. Cade, Professor of Civil Engineering at Michigan State Collegeafor his assistance throughout the course and to the manufacturers,vhose products are represented, for their help by freely giving of the data used in this paper. In preparing the laterial used in this thesis, it was the authors at: to point out new develop-ants on existing instruments and recent inventions or engineer- ing equipment used principally by the Civil Engineer. 20 6052 TAEEE OF CONTENTS Chapter One Page Introduction B. Drafting Equipment ----------------------- 13 Chapter Two Telescopic Inprovenents A. Glass Reticles .......................... -32 B. Coated Lenses .......................... --J.B Chapter three The Tilting Level- ............................ -33 Chapter rear The First One-Second.Anerican Optical 28 “00d011 ‘6- -------------------------- e- --------- Chapter rive Chapter Six The Latest Type Altineter ----- - ................ 5.5 TABLE OF CONTENTS , Chapter Seven Page The Most Recent Drafting Machine ........... -39.--- Chapter Eight Chapter Nine SmOnnB By Radar ....... - ------------------ In”.-- Chapter Ten Conclusion ------------ - ----- -.
    [Show full text]
  • Plane Table Civil Engineering Department Integral
    CIVIL ENGINEERING DEPARTMENT INTEGRAL UNIVERSITY LUCKNOW Basic Survey Field Work (ICE-352) The history of surveying started with plane surveying when the first line was measured. Today the land surveying basics are the same but the instruments and technology has changed. The surveying equipments used today are much more different than the simple surveying instruments in the past. The land surveying methods too have changed and the surveyor uses more advanced tools and techniques in Land survey. Civil Engineering survey is based on measuring, recording and drawing to scale the physical features on the surface of the earth. The surveyor uses instruments for measuring, a field book for recording and now a days surveying softwares for plotting and drawing to scale the site features in civil engineering survey. The surveying Leveling techniques are aided by instruments such as theodolite, Level, tripods, tapes, chains, telescopes etc and then the surveying engineer drafts a report on the proceedings. S.NO APPARATUS IMAGE DISCRIPTION . NAME In case of plane table survey, the measurements of survey lines of the traverse and their plotting to a suitable 1- PLANE TABLE scale are done simultaneously. Instruments required: Alidade, Drawing board, peg, Plumbing fork, Spirit level and Trough compass . The length of the survey lines are measured with the help of tape or chain. 2- CHAIN AND TAPE Compass surveying is a type of surveying in which the directions of surveying lines are determined with a 3- PRISMATIC magnetic compass. &SURVEYOR The compass is CAMPASS generally used to run a traverse line. The compass calculates bearings of lines with respect to magnetic north.
    [Show full text]
  • 6. Determination of Height and Distance: Theodolite
    Geography (H), UG, 2nd Sem CC-04-TH: Thematic Cartography 6. Determination of Height and Distance: Theodolite What is Theodolite? A Theodolite is a measuring instrument used to measure the horizontal and vertical angles are determined with great precision. Theodolite is more precise than magnetic compass. Magnetic compass measures the angle up to as accuracy of 30’. Anyhow a vernier theodolite measures the angles up to and accuracy of 10’’, 20”. It is of either transit or non- transit type. In Transit theodolites the telescope can rotate in a complete circle in the vertical plane while Non-transit theodolites are those in which the telescope can rotate only in a semicircle in the vertical plane. Types of Theodolite A Transit Theodolite Non transit Theodolite B Vernier Theodolite Micrometer Theodolite A I. Transit Theodolite: a theodolite is called transit theodolite when its telescope can be transited i.e. revolved through a complete revolution about its horizontal axis in the vertical plane. II. Non transit Theodolite: the telescope cannot be transited. They are inferior in utility and have now become obsolete. Kaberi Murmu B I. Vernier Theodolite: For reading the graduated circle if verniers are used, the theodolite is called a vernier theodolit. II. Whereas, if a micrometer is provided to read the graduated circle the same is called as a Micrometer Theodolite. Vernier type theodolites are commonly used. Uses of Theodolite Theodolite uses for many purposes, but mainly it is used for measuring angles, scaling points of constructional works. For example, to determine highway points, huge buildings’ escalating edges theodolites are used.
    [Show full text]
  • Instruments and Methods of Physical Measurement
    INSTRUMENTS AND METHODS OF PHYSICAL MEASUREMENT By J. W. MOORE, . i» Professor of Mechanics and Experimental Philosophy, LAFAYETTE COLLEGE. Easton, Pa.: The Eschenbach Printing House. 1892. Copyright by J. W. Moore, 1892 PREFACE. 'y'HE following pages have been arranged for use in the physical laboratory. The aim has been to be as concise as is con- sistent with clearness. sources of information have been used, and in many cases, perhaps, the ipsissima verba of well- known authors. j. w. M. Lafayette College, August 23,' 18g2. TABLE OF CONTENTS. Measurement of A. Length— I. The Diagonal Scale 7 11. The Vernier, Straight 8 * 111. Mayer’s Vernier Microscope . 9 IV. The Vernier Calipers 9 V. The Beam Compass 10 VI. The Kathetometer 10 VII. The Reading Telescope 12 VIII. Stage Micrometer with Camera Lucida 12 IX. Jackson’s Eye-piece Micrometer 13 X. Quincke’s Kathetometer Microscope 13 XI. The Screw . 14 a. The Micrometer Calipers 14 b. The Spherometer 15 c. The Micrometer Microscope or Reading Microscope . 16 d. The Dividing Engine 17 To Divide a Line into Equal Parts by 1. The Beam Compass . 17 2. The Dividing Engine 17 To Divide a Line “Originally” into Equal Parts by 1. Spring Dividers or Beam Compass 18 2. Spring Dividers and Straight Edge 18 3. Another Method 18 B. Angees— 1. Arc Verniers 19 2. The Spirit Level 20 3. The Reading Microscope with Micrometer Attachment .... 22 4. The Filar Micrometer 5. The Optical Method— 1. The Optical Lever 23 2. Poggendorff’s Method 25 3. The Objective or English Method 28 6.
    [Show full text]
  • Comments on Double-Theodolite Evaluations
    322 BULLETIN AMERICAN METEOROLOGICAL SOCIETY Comments on Double-Theodolite Evaluations ROBERT O. WEEDFALL AND WALTER M. JAGODZINSKI U. S. Weather Bureau (Original manuscript received 7 May 1960; revised manuscript received 26 August 1960) 1. Introduction After reading an article [1], in the May 1959 issue of the Bulletin of the AMS wherein Mssrs. Hansen and Taft describe another method of computing double-theodolite runs, it was realized that a method developed at the AEC installation at Yucca Flat, Nevada is even more efficient than any previous method and could be of great value in speed and saving of man-hours to those wind- research installations that use the double-theodo- lite method. Further, it does not need special plotting boards but utilizes the standard Weather Bureau equipment with a few ingenious adaptations. FIG. 1. Winds-aloft plotting board, showing position of three distance scales. (360-deg intervals not indicated.) 2. Materials needed (1) Winds-aloft plotting board (fig. 1). A 3-ft-square board with distance scales running from the center to the bottom, with a movable circular piece of plastic attached to the center of the board, whose outer edge is marked off in 360-deg intervals. (2) Circular protractor (fig. 2). A 10-inch- square piece of clear plastic divided into 360-deg intervals. (3) Appropriately marked scale in the shape of an "L" (fig. 3). (4) Scotch tape, rubber band and short piece of string. (5) Winds-aloft graphing board (fig. 4). A rectangular board 2 X 2% ft marked with height FIG. 2. Clear plastic protractor, 10 inches square.
    [Show full text]
  • Parts of Theodolite and Their Functions Pdf
    Parts of theodolite and their functions pdf Continue The components and their the TheodoliteA compass functions measure direction by measuring the angle between the line and the direction of the reference, which is a magnetic meridian. The compass can measure angles up to 30 accuracy and judgment to 15. The principle of the compass is based on the property of the magnetic needle, which at free suspension takes the direction of north-south. Thus, compass measurements affect external magnetic influences, and therefore in some areas the compass is unsuitable. In this here we will discuss another method of measuring the direction of lines; theodolit is very often used to measure angles in the survey work. There are various theodolites, optical, electronic, etc. improvements (from one form to another) have been made to ensure simplicity of work, better accuracy and speed. Electronic theodolites display and store corners at the touch of a button. This data can also be transferred to the computer for further processing. We begin our discussion with the simplest theodolite-faithful theodolite. Theodolit is a simple and inexpensive tool, but very valuable in terms of measuring angles. The common vernier theodolite measures angles up to an accuracy of 20 in the compass, where the line of sight is simple, limiting its range, theodolites are provided by telescopes that provide a much greater range and better ac-curacy in sighting distant objects. It is, however, a delicate tool and should be treated with caution. Theodolit measures horizontal angles between lines and can also measure vertical angles. The horizontal angle measured can be turned on by angle, angle of deviation or outer angle in the traverse.
    [Show full text]
  • Theodolite Surveying
    THEODOLITE SURVEYING 1 So far we have been measuring horizontal angles by using a Compass with respect to meridian, which is less accurate and also it is not possible to measure vertical angles with a Compass. So when the objects are at a considerable distance or situated at a considerable elevation or depression ,it becomes necessary to measure horizontal and vertical angles more precisely. So these measurements are taken by an instrument known as a theodolite. THEODOLITE SURVEYING 2 THEODOLITE SURVEYING The system of surveying in which the angles are measured with the help of a theodolite, is called Theodolite surveying. THEODOLITE SURVEYING 3 THEODOLITE The Theodolite is a most accurate surveying instrument mainly used for : • Measuring horizontal and vertical angles. • Locating points on a line. • Prolonging survey lines. • Finding difference of level. • Setting out grades • Ranging curves • Tacheometric Survey THEODOLITE SURVEYING 4 TRANSIT VERNIER THEODOLITE THEODOLITETHEODOLITE SURVEYING SURVEYING 5 TRANSIT VERNIER THEODOLITE Fig. Details if Upper & Lower Plates. THEODOLITETHEODOLITE SURVEYING SURVEYING 6 TRANSIT VERNIER THEODOLITE THEODOLITETHEODOLITE SURVEYING SURVEYING 7 CLASSIFICATION OF THEODOLITES Theodolites may be classified as ; A. i) Transit Theodolite. ii) Non Transit Theodolite. B. i) Vernier Theodolites. ii) Micrometer Theodolites. THEODOLITE SURVEYING 8 CLASSIFICATION OF THEODOLITES A. Transit Theodolite: A theodolite is called a transit theodolite when its telescope can be transited i.e revolved through a complete revolution about its horizontal axis in the vertical plane, whereas in a- Non-Transit type, the telescope cannot be transited. They are inferior in utility and have now become obsolete. THEODOLITE SURVEYING 9 CLASSIFICATION OF THEODOLITES B. Vernier Theodolite: For reading the graduated circle if verniers are used ,the theodolite is called as a Vernier Theodolite.
    [Show full text]
  • Compendium the Secrets of Inclination Measurement
    Compendium The secreTs of inclinaTion measuremenT WYLER AG, Inclination measuring systems Im Hölderli 13, CH - 8405 WINTERTHUR (Switzerland) Tel. +41 (0) 52 233 66 66 Fax +41 (0) 52 233 20 53 E-Mail: [email protected] Web: www.wylerag.com Compendium inclination measurement WYLER AG, Winterthur / Switzerland Page Preface 5 1 General introduction to inclination measurement 6 1.1 History of inclination measurement 6 1.2 WHat is inclination? 7 1.3 units in inclination measurement 8 1.4 relationsHip betWeen degrees/arcmin and µm/m 8 1.5 WHat is a µm/m? 9 1.6 WHat is a radian? 9 1.7 correlation betWeen tHe most common units (si) 9 1.8 correlation betWeen tHe most common units in inclination measurement 10 1.9 WHat are positive and negative inclinations? 10 1.10 tHe absolute zero by means of a reversal measurement 10 1.11 linearity 11 1.12 effect of gravitational force and compensation WitH inclination measuring instruments 12 1.13 measuring uncertainty 13 1.14 lengtH of measuring bases 14 1.15 absolute measurement - relative measurement - long-term monitoring 15 1.16 Quality control and calibration lab scs Wyler AG 16 2 measurement systems and aPPlication software at a Glance 18 3 Product GrouPs in the area of inclination measurinG instruments 23 3.1 precision spirit levels and clinometers 23 3.2 electronic measuring instruments 23 3.3 inclination measuring sensor WitH a digital measuring system 23 4 aPPlications with wyler inclination measurinG instruments and systems 24 4.1 applications WitH inclination measuring instruments 25 5 Precision
    [Show full text]
  • Theodolite Survey
    1 THEODOLITE SURVEY RCI4C001 SURVEYING Module IV Theodolite Survey: Use of theodolite, temporary adjustment, measuring horizontal andvertical angles, theodolite traversing Mr. Saujanya Kumar Sahu Assistant Professor Department of Civil Engineering Government College of Engineering, Kalahandi Email : [email protected] Theodolite Surveying 2 The system of surveying in which the angles (both horizontal & vertical) are measured with the help of a theodolite, is called Theodolite surveying Compass Surveying vs. Theodolite Surveying ➢Horizontal angles are measured by using a Compass with respect to meridian, which is less accurate and also it is not possible to measure vertical angles with a Compass. ➢So when the objects are at a considerable distance orsituated at a considerable elevation or depression ,it becomes necessary to measure horizontal and vertical angles more precisely. So these measurements are taken by an instrument known as a theodolite. How Does a Theodolite Work? A theodolite works by combining optical plummets (or plumb bobs), a spirit (bubble level), and graduated circles to find vertical and horizontal angles in surveying. An optical plummet ensures the theodolite is placed as close to exactly vertical above the survey point. The internal spirit level makes sure the device is level to to the horizon. The graduated circles, one vertical and one horizontal, allow the user to actually survey for angles. APPLICATIONS 3 • Measuring horizontal and vertical angles. • Locating points on a line. • Prolonging survey lines. • Finding difference of level. • Setting out grades • Ranging curves • Tacheometric Survey • Mesurement of Bearings CLASSIFICATION OF THEODOLITES 4 Theodolites may be classified as ; A. Primary i) Transit Theodolite. ii) Non Transit Theodolite.
    [Show full text]
  • Always Exceeding the Standards Leica Industrial Theodolite
    PRODUCT BROCHURE Hexagon Manufacturing Intelligence helps industrial COORDINATE MEASURING MACHINES manufacturers develop the disruptive technologies of today and the life-changing products of tomorrow. 3D LASER SCANNING As a leading metrology and manufacturing solution SENSORS specialist, our expertise in sensing, thinking and acting – the collection, analysis and active use of measurement PORTABLE MEASURING ARMS data – gives our customers the confidence to increase production speed and accelerate productivity while SERVICES enhancing product quality. LASER TRACKERS & STATIONS Through a network of local service centres, production MULTISENSOR & OPTICAL SYSTEMS LEICA INDUSTRIAL THEODOLITE facilities and commercial operations across WHITE LIGHT SCANNERS five continents, we are shaping smart change in LEICA TM6100A manufacturing to build a world where quality drives METROLOGY SOFTWARE SOLUTIONS productivity. For more information, visit HexagonMI.com. CAD / CAM Hexagon Manufacturing Intelligence is part of Hexagon STATISTICAL PROCESS CONTROL (Nasdaq Stockholm: HEXA B; hexagon.com), a leading global provider of information technologies that drive AUTOMATED APPLICATIONS quality and productivity across geospatial and industrial MICROMETERS, CALIPERS AND GAUGES enterprise applications. ALWAYS EXCEEDING THE STANDARDS Leica Geosystems’ Industrial Theodolites are known around the world for being the most accurate, with the highest angular accuracy of 0.5”. These autocollimating theodolites have set the benchmark with unrivalled precision and superb optics. Now Leica Geosystems has set the standard even higher by incorporating more features and benefits into their latest industrial theodolite: the Leica TM6100A. © Copyright 2016 Hexagon Manufacturing Intelligence. All rights reserved. Hexagon Manufacturing Intelligence is part of Hexagon. Other brands and product names are trademarks of their respective owners. Hexagon Manufacturing Intelligence believes the information in this publication is accurate as of its publication date.
    [Show full text]